Pub Date : 2024-04-27DOI: 10.1016/j.supflu.2024.106292
P. Guillou , S. Marre , A. Erriguible
For the crystallization of an API in supercritical CO2, a two – step nucleation mechanism involves the apparition of metastable liquid droplets in the vapour phase composed of the API dissolved in the CO2, before crystallization. To find out the pressure and temperature conditions such a two – step mechanism could be observed, we studied the stability / metastability / instability for {(S)-Naproxen + CO2} and {(RS)-Ibuprofen + CO2} vapour binary mixtures. Thermodynamic computations proposed in the paper, have shown that a mixture of API and CO2 at elevated pressures can be unstable and/or metastable with respect to a liquid-vapour equilibrium and at the same time with respect to a solid-vapour equilibrium. Depending on the degree of supersaturation, such a mixture can potentially first decompose via spinodal decomposition into coexisting liquid and vapour phases, which turn due to nucleation and growth theory to a solid-fluid equilibrium.
{"title":"Thermodynamic assessment of two-step nucleation occurrence in supercritical fluid","authors":"P. Guillou , S. Marre , A. Erriguible","doi":"10.1016/j.supflu.2024.106292","DOIUrl":"https://doi.org/10.1016/j.supflu.2024.106292","url":null,"abstract":"<div><p>For the crystallization of an API in supercritical CO<sub>2</sub>, a two – step nucleation mechanism involves the apparition of metastable liquid droplets in the vapour phase composed of the API dissolved in the CO<sub>2</sub>, before crystallization. To find out the pressure and temperature conditions such a two – step mechanism could be observed, we studied the stability / metastability / instability for {(S)-Naproxen + CO<sub>2</sub>} and {(RS)-Ibuprofen + CO<sub>2</sub>} vapour binary mixtures. Thermodynamic computations proposed in the paper, have shown that a mixture of API and CO<sub>2</sub> at elevated pressures can be unstable and/or metastable with respect to a liquid-vapour equilibrium and at the same time with respect to a solid-vapour equilibrium. Depending on the degree of supersaturation, such a mixture can potentially first decompose via spinodal decomposition into coexisting liquid and vapour phases, which turn due to nucleation and growth theory to a solid-fluid equilibrium.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S089684462400127X/pdfft?md5=d4b9efa89e03e2b07c5d3c218f4766eb&pid=1-s2.0-S089684462400127X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140879983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-26DOI: 10.1016/j.supflu.2024.106293
Dawn D. Rhee, Emma M. Troiano, Grant Floyd, Erdogan Kiran
Melting and crystallization temperatures of poly(ε-caprolactone)(PCL) exposed to CO2 and N2 have been evaluated at pressures up to 125 bar using High Pressure Torsional Braid Analysis. It is shown that in contrast to CO2, exposure to high pressure N2 does not lead to a significant depression of Tm or Tc. Instead, these transition temperatures tend to increase in nitrogen, reflecting more of a hydrostatic pressure rather than a solvent effect. Another factor that may play a role is the fluid-induced crystallization which tends to increase the melting temperature. By conducting foaming at properly selected temperatures along the rigidity reduction paths which are scaled with respect to the melting temperatures in CO2 or N2, foams with low bulk foam densities of about 0.2 g/cm3 could be generated in CO2 at 100 bar and in N2 at 200 bar.
{"title":"Melting and crystallization temperatures, foaming, and fluid-induced crystallization of poly (ε-caprolactone) in compressed CO2 and N2","authors":"Dawn D. Rhee, Emma M. Troiano, Grant Floyd, Erdogan Kiran","doi":"10.1016/j.supflu.2024.106293","DOIUrl":"10.1016/j.supflu.2024.106293","url":null,"abstract":"<div><p>Melting and crystallization temperatures of poly(ε-caprolactone)(PCL) exposed to CO<sub>2</sub> and N<sub>2</sub> have been evaluated at pressures up to 125 bar using High Pressure Torsional Braid Analysis. It is shown that in contrast to CO<sub>2</sub>, exposure to high pressure N<sub>2</sub> does not lead to a significant depression of T<sub>m</sub> or T<sub>c</sub>. Instead, these transition temperatures tend to increase in nitrogen, reflecting more of a hydrostatic pressure rather than a solvent effect. Another factor that may play a role is the fluid-induced crystallization which tends to increase the melting temperature. By conducting foaming at properly selected temperatures along the rigidity reduction paths which are scaled with respect to the melting temperatures in CO<sub>2</sub> or N<sub>2</sub>, foams with low bulk foam densities of about 0.2 g/cm<sup>3</sup> could be generated in CO<sub>2</sub> at 100 bar and in N<sub>2</sub> at 200 bar.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140903414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Porous surfaces show great potential for superhydrophobic applications. Supercritical CO2 foaming is a green technology for preparing porous materials, but it is rarely used to prepare porous surfaces due to the non-porous skin caused by the escape of gas. In this study, a porous thermoplastic polyurethane (TPU) surface with dense cell and small cell spacing is prepared by employing bilayer TPU sheet to restrict the escape of gas from surfaces. The influence of the foaming pressure and temperature on the cells of the TPU surface is researched. Furthermore, bimodal cells are obtained by regulating the foaming process and the effect of cell structure on wettability is investigated. Subsequently, a flexible superhydrophobic material with low water-adhesion, mechanical stability, and self-cleaning properties is successfully prepared by modifying fluorinated silica particles on porous TPU surfaces.
{"title":"A flexible superhydrophobic thermoplastic polyurethane porous surface with good self-cleaning function prepared by supercritical CO2 foaming","authors":"Shaowei Xing, Cuifang Lv, Meijiang Lin, Yao Wang, Fangfang Zou, Guangxian Li, Xia Liao","doi":"10.1016/j.supflu.2024.106294","DOIUrl":"https://doi.org/10.1016/j.supflu.2024.106294","url":null,"abstract":"<div><p>Porous surfaces show great potential for superhydrophobic applications. Supercritical CO<sub>2</sub> foaming is a green technology for preparing porous materials, but it is rarely used to prepare porous surfaces due to the non-porous skin caused by the escape of gas. In this study, a porous thermoplastic polyurethane (TPU) surface with dense cell and small cell spacing is prepared by employing bilayer TPU sheet to restrict the escape of gas from surfaces. The influence of the foaming pressure and temperature on the cells of the TPU surface is researched. Furthermore, bimodal cells are obtained by regulating the foaming process and the effect of cell structure on wettability is investigated. Subsequently, a flexible superhydrophobic material with low water-adhesion, mechanical stability, and self-cleaning properties is successfully prepared by modifying fluorinated silica particles on porous TPU surfaces.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140815732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-24DOI: 10.1016/j.supflu.2024.106288
Naila Marcuzzo , Crisleine P. Draszewski , Roger Wagner , Madison Willy Silva Cordeiro , Fernanda Castilhos , Flávio D. Mayer , Déborah Cristina Barcelos Flores , Flávia M.D. Nora , Ederson R. Abaide , Claudia S. Rosa
Olive pomace has high economic potential and the supercritical technology for extraction produces oil with potential use in the food and biofuels industries. The remaining solid can be used to obtain fermentable sugars from the hydrolysis. The present work aims to evaluate the effect of supercritical fluid extraction (SFE) of pomace olive oil at 60 and 40 °C and 18 and 22 MPa on oil yield and composition. Furthermore, use the remaining solid of SFE to obtain fermentable sugars from enzymatic hydrolysis. Kinetic curves were obtained for SFE, with the best oil yields 19.36 ± 2.43 wt% obtained at 40 °C / 22 MPa. The antioxidant activity was better for (60 °C / 22 MPa) presenting 137.87 ± 1.04 µmol TEAC / g am. dry. The highest yield of fermentable sugar (YFS) was 41.02 ± 4.79 g defatted olive pomace (DOP) for 26 Filter Paper Unit (FPU) / 1% solid loading (CS).
{"title":"Obtaining oil and fermentable sugars from olive pomace using sequential supercritical fluid extraction and enzymatic hydrolysis","authors":"Naila Marcuzzo , Crisleine P. Draszewski , Roger Wagner , Madison Willy Silva Cordeiro , Fernanda Castilhos , Flávio D. Mayer , Déborah Cristina Barcelos Flores , Flávia M.D. Nora , Ederson R. Abaide , Claudia S. Rosa","doi":"10.1016/j.supflu.2024.106288","DOIUrl":"10.1016/j.supflu.2024.106288","url":null,"abstract":"<div><p>Olive pomace has high economic potential and the supercritical technology for extraction produces oil with potential use in the food and biofuels industries. The remaining solid can be used to obtain fermentable sugars from the hydrolysis. The present work aims to evaluate the effect of supercritical fluid extraction (SFE) of pomace olive oil at 60 and 40 °C and 18 and 22 MPa on oil yield and composition. Furthermore, use the remaining solid of SFE to obtain fermentable sugars from enzymatic hydrolysis. Kinetic curves were obtained for SFE, with the best oil yields 19.36 ± 2.43 wt% obtained at 40 °C / 22 MPa. The antioxidant activity was better for (60 °C / 22 MPa) presenting 137.87 ± 1.04 µmol TEAC / g am. dry. The highest yield of fermentable sugar (Y<sub>FS</sub>) was 41.02 ± 4.79 g defatted olive pomace (DOP) for 26 Filter Paper Unit (FPU) / 1% solid loading (CS).</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140792566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-24DOI: 10.1016/j.supflu.2024.106289
Kousuke Sasaki, Kazumasa Hirogaki, Isao Tabata, Koji Nakane
This study explores the efficacy of electrospun polyvinyl alcohol (PVA) nanofibers loaded with C.I. Disperse Red 60 (DR60) as dyeing agents for polyethylene terephthalate (PET) fabrics in a supercritical carbon dioxide environment. The fabrication of DR60-loaded PVA nanofibers (DR60/NF-1) involved a spinning solution containing water and dimethyl sulfoxide. Analysis revealed that PET fabrics treated with DR60/NF-1 exhibited significantly higher K/S values (8.51) compared to those treated with DR60 powder (3.19), resulting in visibly distinct coloration among dyed fabrics (ΔEab: 17.77). Additionally, DR60/NF-1 demonstrated superior dye uptake by PET fabrics (15.07 mg/g) at a dosage of 3% (o.w.f.) compared to DR60 powder (13.19 mg/g) at a dosage of 4% (o.w.f.). These findings underscore the potential of DR60-loaded PVA nanofibers to enhance coloration and dye uptake in PET fabric dyeing processes conducted under supercritical carbon dioxide conditions, offering promising avenues for advancing efficiency and sustainability in textile manufacturing.
本研究探讨了在超临界二氧化碳环境下,负载有 C.I. 分散红 60(DR60)的电纺聚乙烯醇(PVA)纳米纤维作为聚对苯二甲酸乙二酯(PET)织物染色剂的功效。含有 DR60 的 PVA 纳米纤维(DR60/NF-1)的制备涉及到含有水和二甲亚砜的纺丝溶液。分析表明,使用 DR60/NF-1 处理的 PET 织物的 K/S 值(8.51)明显高于使用 DR60 粉末处理的织物(3.19),因此染色织物的着色明显不同(ΔEab:17.77)。此外,与 DR60 粉剂(13.19 mg/g)(4%(o.w.f.))相比,DR60/NF-1 在 3%(o.w.f.)用量下对 PET 织物(15.07 mg/g)的染料吸收率更高。这些研究结果表明,在超临界二氧化碳条件下进行的 PET 织物染色过程中,负载 DR60 的 PVA 纳米纤维具有增强着色和染料吸收的潜力,为提高纺织品生产的效率和可持续性提供了广阔的前景。
{"title":"Supercritical fluid dyeing of polyester fabrics using polymeric nanofibers loaded with disperse dye","authors":"Kousuke Sasaki, Kazumasa Hirogaki, Isao Tabata, Koji Nakane","doi":"10.1016/j.supflu.2024.106289","DOIUrl":"10.1016/j.supflu.2024.106289","url":null,"abstract":"<div><p>This study explores the efficacy of electrospun polyvinyl alcohol (PVA) nanofibers loaded with C.I. Disperse Red 60 (DR60) as dyeing agents for polyethylene terephthalate (PET) fabrics in a supercritical carbon dioxide environment. The fabrication of DR60-loaded PVA nanofibers (DR60/NF-1) involved a spinning solution containing water and dimethyl sulfoxide. Analysis revealed that PET fabrics treated with DR60/NF-1 exhibited significantly higher K/S values (8.51) compared to those treated with DR60 powder (3.19), resulting in visibly distinct coloration among dyed fabrics (<em>ΔEab</em>: 17.77). Additionally, DR60/NF-1 demonstrated superior dye uptake by PET fabrics (15.07 mg/g) at a dosage of 3% (o.w.f.) compared to DR60 powder (13.19 mg/g) at a dosage of 4% (o.w.f.). These findings underscore the potential of DR60-loaded PVA nanofibers to enhance coloration and dye uptake in PET fabric dyeing processes conducted under supercritical carbon dioxide conditions, offering promising avenues for advancing efficiency and sustainability in textile manufacturing.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0896844624001244/pdfft?md5=c596c55769a01bc33c012bec9df0068b&pid=1-s2.0-S0896844624001244-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140769241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-23DOI: 10.1016/j.supflu.2024.106291
Lingling Zhang , Jie Zhang , Hulin Li , Jianjun Feng , Xinyue Tian
Supercritical hydrothermal combustion is a novel, clean, and efficient combustion method. In this work, a mechanism-based kinetic model of ethanol appropriate for high-pressure hydrothermal environment was developed. Combined with theoretical analysis and continuous ignition experiments, the transient ignition process, ignition temperature, and extinction temperature were discussed. A turbulent combustion model coupling detailed kinetics was constructed to analyze the co-flow diffusion hydrothermal flame. It was found that the ethanol kinetic model can well predict the reaction process, critical ignition temperatures, extinction temperatures, and diffusion combustion process of hydrothermal combustion. The ignition temperatures of 2.40–5.72 wt% ethanol ranged between 500–390 °C, and OH was a significant ignition indicator. As an auxiliary fuel, ethanol is superior to methanol. During co-flow hydrothermal combustion, the interfacial reaction between fuel and oxidant in jet core area had an important influence, and the local high-temperature flame was mainly distributed near the downstream of fuel jet.
超临界水热燃烧是一种新型、清洁、高效的燃烧方法。本研究建立了适合高压水热环境的乙醇机理动力学模型。结合理论分析和连续点火实验,讨论了瞬态点火过程、点火温度和熄灭温度。构建了一个耦合了详细动力学的湍流燃烧模型来分析共流扩散热液火焰。研究发现,乙醇动力学模型可以很好地预测热液燃烧的反应过程、临界点火温度、熄灭温度和扩散燃烧过程。2.40-5.72 wt%乙醇的点火温度在 500-390 °C 之间,OH 是一个重要的点火指标。作为辅助燃料,乙醇优于甲醇。在共流水热燃烧过程中,燃料与氧化剂在射流核心区的界面反应具有重要影响,局部高温火焰主要分布在燃料射流下游附近。
{"title":"Kinetics and hydrothermal combustion characteristics of ethanol in supercritical water","authors":"Lingling Zhang , Jie Zhang , Hulin Li , Jianjun Feng , Xinyue Tian","doi":"10.1016/j.supflu.2024.106291","DOIUrl":"10.1016/j.supflu.2024.106291","url":null,"abstract":"<div><p>Supercritical hydrothermal combustion is a novel, clean, and efficient combustion method. In this work, a mechanism-based kinetic model of ethanol appropriate for high-pressure hydrothermal environment was developed. Combined with theoretical analysis and continuous ignition experiments, the transient ignition process, ignition temperature, and extinction temperature were discussed. A turbulent combustion model coupling detailed kinetics was constructed to analyze the co-flow diffusion hydrothermal flame. It was found that the ethanol kinetic model can well predict the reaction process, critical ignition temperatures, extinction temperatures, and diffusion combustion process of hydrothermal combustion. The ignition temperatures of 2.40–5.72 wt% ethanol ranged between 500–390 °C, and OH was a significant ignition indicator. As an auxiliary fuel, ethanol is superior to methanol. During co-flow hydrothermal combustion, the interfacial reaction between fuel and oxidant in jet core area had an important influence, and the local high-temperature flame was mainly distributed near the downstream of fuel jet.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140769822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-23DOI: 10.1016/j.supflu.2024.106290
Yilun Luo , Taotao Lu , Shi Jin , Kai Ye , Shaoming Yu , Xianlong Zhang , Xueping Wu , Peiyong Ma , Jefferson W. Tester , Kui Wang
This study explores the core-shell structure formation mechanisms of primary carbon nanospheres (PCNs) through hydrothermal carbonization (HTC) of glucose at 200 °C, focusing on key phase-change polymerization reactions. Colloidal carbon nanoparticles in the aqueous phase filtrate self-assembled into secondary carbon nanospheres (SCNs) with intrinsic hollow structures during room temperature storage. FTIR results revealed similar functional groups on the surfaces of PCNs and SCNs due to esterification reactions during HTC cooling. XPS and 13 C NMR analyses identified HMF aldol condensation and etherification as dominant reactions for PCNs, while esterification and aldol condensation with levulinic acid were dominant for SCNs. The hypothesis suggests that PCNs initially formed hollow microframeworks but collapsed due to consumption of encapsulated organics, resulting in hydrophobic cores. These cores grew through aggregation (linear) and surface reactions (exponential), internalizing hydrophilic surfaces into hydrophobic cores, forming the final core-shell structure of PCNs.
{"title":"Elucidating the intrinsic core-shell structure of carbon nanospheres from glucose hydrothermal carbonization","authors":"Yilun Luo , Taotao Lu , Shi Jin , Kai Ye , Shaoming Yu , Xianlong Zhang , Xueping Wu , Peiyong Ma , Jefferson W. Tester , Kui Wang","doi":"10.1016/j.supflu.2024.106290","DOIUrl":"10.1016/j.supflu.2024.106290","url":null,"abstract":"<div><p>This study explores the core-shell structure formation mechanisms of primary carbon nanospheres (PCNs) through hydrothermal carbonization (HTC) of glucose at 200 °C, focusing on key phase-change polymerization reactions. Colloidal carbon nanoparticles in the aqueous phase filtrate self-assembled into secondary carbon nanospheres (SCNs) with intrinsic hollow structures during room temperature storage. FTIR results revealed similar functional groups on the surfaces of PCNs and SCNs due to esterification reactions during HTC cooling. XPS and <sup>13</sup> C NMR analyses identified HMF aldol condensation and etherification as dominant reactions for PCNs, while esterification and aldol condensation with levulinic acid were dominant for SCNs. The hypothesis suggests that PCNs initially formed hollow microframeworks but collapsed due to consumption of encapsulated organics, resulting in hydrophobic cores. These cores grew through aggregation (linear) and surface reactions (exponential), internalizing hydrophilic surfaces into hydrophobic cores, forming the final core-shell structure of PCNs.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140796541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-18DOI: 10.1016/j.supflu.2024.106287
Vicente D. Arévalo , Adolfo L. Cabrera , Flavia C. Zacconi , Sebastián Morales-Guerrero , José M. del Valle , Lautaro Taborga , Juan C. de la Fuente
Dichlone, also known as 2,3-dichloronaphthalene-1,4-dione, is a solid organic substance employed in the field of agriculture for its fungicidal properties and as a retardant for vegetable decomposition. The bioactive properties of dichlone can be enhanced by modifying its structure, specifically through the synthesis of new derivatives achieved by replacing the functional groups within its molecular structure. Two new solid dichlone derivatives were synthesized in this work, namely 2-chloro-3-((4-fluorobenzyl)amino)naphthalene-1,4-dione (dCl-2B-F) and 2-chloro-3-((4-fluorophenethyl)amino)naphthalene-1,4-dione (dCl-3 P-F) and measured their solubility in supercritical carbon dioxide at (313, 323, and 333) K and pressures between (9. to 32) MPa. The results indicated that solubility ranged between 30.5 and 47.9 µmol of solute/mol of CO2 for dCl-2B-F, and from 2.2 to 243.5 µmol of solute/mol of CO2 for dCl-3 P-F. The solubility data of dichlone and its synthesized derivatives (dCl-2B-F, dCl-3 P-F, 2-chloro-3-((4-chlorobenzyl)amino)naphthalene-1,4-dione (dCl-2B-Cl), 2-chloro-3-((4-chlorophenethyl)amino)naphthalene-1,4-dione (dCl-3 P-Cl), 2-(benzylamino)-3-chloronaphthalene-1,4-dione (dCl-2B) and 2-chloro-3-(phenethylamino)naphthalene-1,4-dione (dCl-3 P)) was compared using the density-based correlation of Chrastil and the Statistical Associating Fluid Theory of Variable Range Mie-potential (SAFT-VR Mie) equation of state (EoS), to better comprehend the effects of the structural differences on the solubility. As a result, for the Chrastil model, a root mean square deviation (rmsd) of 3% was obtained for dCl-2B-F and 16% for dCl-3 P-F, whereas for the SAFT-VR Mie equation, it averaged 24% for dCl-2B-F and 28% for dCl-3 P-F. It was found that the solubility of the homologous compounds, differing only in one methylene group, increased with solute size (-2B derivatives were less soluble in CO2 than the −3 P ones), contrary to the expected trend, which could be attributed to the increased probability of ring-to-ring interactions as the chain length connecting the rings decreases. This demonstrates that geometric factors, along with the pressure and temperature, affect the behavior of the solubility and these should be accurately represented in the predictive models.
{"title":"Experimental measurement and modeling of the solubility of fluorinated compounds derived from dichlone in supercritical carbon dioxide","authors":"Vicente D. Arévalo , Adolfo L. Cabrera , Flavia C. Zacconi , Sebastián Morales-Guerrero , José M. del Valle , Lautaro Taborga , Juan C. de la Fuente","doi":"10.1016/j.supflu.2024.106287","DOIUrl":"https://doi.org/10.1016/j.supflu.2024.106287","url":null,"abstract":"<div><p>Dichlone, also known as 2,3-dichloronaphthalene-1,4-dione, is a solid organic substance employed in the field of agriculture for its fungicidal properties and as a retardant for vegetable decomposition. The bioactive properties of dichlone can be enhanced by modifying its structure, specifically through the synthesis of new derivatives achieved by replacing the functional groups within its molecular structure. Two new solid dichlone derivatives were synthesized in this work, namely 2-chloro-3-((4-fluorobenzyl)amino)naphthalene-1,4-dione (dCl-2B-F) and 2-chloro-3-((4-fluorophenethyl)amino)naphthalene-1,4-dione (dCl-3 P-F) and measured their solubility in supercritical carbon dioxide at (313, 323, and 333) K and pressures between (9. to 32) MPa. The results indicated that solubility ranged between 30.5 and 47.9 µmol of solute/mol of CO<sub>2</sub> for dCl-2B-F, and from 2.2 to 243.5 µmol of solute/mol of CO<sub>2</sub> for dCl-3 P-F. The solubility data of dichlone and its synthesized derivatives (dCl-2B-F, dCl-3 P-F, 2-chloro-3-((4-chlorobenzyl)amino)naphthalene-1,4-dione (dCl-2B-Cl), 2-chloro-3-((4-chlorophenethyl)amino)naphthalene-1,4-dione (dCl-3 P-Cl), 2-(benzylamino)-3-chloronaphthalene-1,4-dione (dCl-2B) and 2-chloro-3-(phenethylamino)naphthalene-1,4-dione (dCl-3 P)) was compared using the density-based correlation of Chrastil and the Statistical Associating Fluid Theory of Variable Range Mie-potential (SAFT-VR Mie) equation of state (EoS), to better comprehend the effects of the structural differences on the solubility. As a result, for the Chrastil model, a root mean square deviation (<em>rmsd</em>) of 3% was obtained for dCl-2B-F and 16% for dCl-3 P-F, whereas for the SAFT-VR Mie equation, it averaged 24% for dCl-2B-F and 28% for dCl-3 P-F. It was found that the solubility of the homologous compounds, differing only in one methylene group, increased with solute size (-2B derivatives were less soluble in CO<sub>2</sub> than the −3 P ones), contrary to the expected trend, which could be attributed to the increased probability of ring-to-ring interactions as the chain length connecting the rings decreases. This demonstrates that geometric factors, along with the pressure and temperature, affect the behavior of the solubility and these should be accurately represented in the predictive models.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140633247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigates the production of furfural via formic acid-catalyzed dehydration of xylose and the effect of simultaneous extraction of furfural using supercritical carbon dioxide (Sc-CO2). The addition of Sc-CO2 results in a secondary reaction pathway comprised of two steps: CO2-catalyzed isomerization of xylose into the reactive intermediate xylulose, followed by furfural production from xylulose, catalyzed by formic acid. Xylose dehydration with CO2 in both batch and semi-batch systems yielded a higher furfural yield and selectivity compared with systems without CO2. The Sc-CO2 extraction in a semi-batch system prevents furfural degradation by maintaining high productivity, even with increased initial xylose concentration. A maximum furfural yield of 68.5% (71.4% selectivity and 99% separation efficiency) was achieved after 5 h at 140 °C and 20 MPa with a constant flow rate of 5 g/min of CO2 and initial concentrations of 10 g/L of xylose and 10 wt% of formic acid.
{"title":"Integrated supercritical carbon dioxide extraction for efficient furfural production from xylose using formic acid as a catalyst","authors":"Kritsana Namhaed , Yolande Pérès , Worapon Kiatkittipong , Thibaut Triquet , Séverine Camy , Patrick Cognet","doi":"10.1016/j.supflu.2024.106274","DOIUrl":"https://doi.org/10.1016/j.supflu.2024.106274","url":null,"abstract":"<div><p>This study investigates the production of furfural via formic acid-catalyzed dehydration of xylose and the effect of simultaneous extraction of furfural using supercritical carbon dioxide (Sc-CO<sub>2</sub>). The addition of Sc-CO<sub>2</sub> results in a secondary reaction pathway comprised of two steps: CO<sub>2</sub>-catalyzed isomerization of xylose into the reactive intermediate xylulose, followed by furfural production from xylulose, catalyzed by formic acid. Xylose dehydration with CO<sub>2</sub> in both batch and semi-batch systems yielded a higher furfural yield and selectivity compared with systems without CO<sub>2</sub>. The Sc-CO<sub>2</sub> extraction in a semi-batch system prevents furfural degradation by maintaining high productivity, even with increased initial xylose concentration. A maximum furfural yield of 68.5% (71.4% selectivity and 99% separation efficiency) was achieved after 5 h at 140 °C and 20 MPa with a constant flow rate of 5 g/min of CO<sub>2</sub> and initial concentrations of 10 g/L of xylose and 10 wt% of formic acid.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140558132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-10DOI: 10.1016/j.supflu.2024.106273
Guoying Yang , Gang Yin , Pengfei Zhang , Qinghua Deng , Jun Li , Zhenping Feng
To investigate the aerodynamic loss mechanisms in supercritical carbon dioxide turbine (CT) and steam turbine (ST) stages, entropy generation and entropy generation rate are used to analyze various losses in stage passages. The results reveal that under sealing clearance at 2.5 % blade height, the leakage losses of CT and ST constitute over 7 % of total available energy. Rotor and stator losses of CT and ST decrease as the Mach number of stage outlet increases. The endwall losses of CT and ST rotor are both predominant, constituting over 1.78 % of total available energy, with lower endwall losses of CT rotor. Furthermore, the stator profile loss of CT represents the majority of stator loss and is notably higher than that of ST. The impact loss and separation loss are more pronounced in CT. The conclusions will provide direction, guidance, and data support for the design and optimization of CT and ST.
为了研究超临界二氧化碳涡轮机(CT)和蒸汽涡轮机(ST)级的空气动力损失机制,使用熵生成和熵生成率来分析级通道中的各种损失。结果表明,在叶片高度为 2.5 % 的密封间隙条件下,CT 和 ST 的泄漏损失占总可用能量的 7 % 以上。CT 和 ST 的转子和定子损耗随着级出口马赫数的增加而减少。CT 和 ST 转子的端壁损耗都很大,占总可用能量的 1.78 % 以上,其中 CT 转子的端壁损耗较小。此外,CT 的定子剖面损耗占定子损耗的绝大部分,明显高于 ST。CT 的冲击损耗和分离损耗更为明显。这些结论将为 CT 和 ST 的设计和优化提供方向、指导和数据支持。
{"title":"Comparative assessment of aerodynamic losses in turbine stages with supercritical carbon dioxide and steam","authors":"Guoying Yang , Gang Yin , Pengfei Zhang , Qinghua Deng , Jun Li , Zhenping Feng","doi":"10.1016/j.supflu.2024.106273","DOIUrl":"https://doi.org/10.1016/j.supflu.2024.106273","url":null,"abstract":"<div><p>To investigate the aerodynamic loss mechanisms in supercritical carbon dioxide turbine (CT) and steam turbine (ST) stages, entropy generation and entropy generation rate are used to analyze various losses in stage passages. The results reveal that under sealing clearance at 2.5 % blade height, the leakage losses of CT and ST constitute over 7 % of total available energy. Rotor and stator losses of CT and ST decrease as the Mach number of stage outlet increases. The endwall losses of CT and ST rotor are both predominant, constituting over 1.78 % of total available energy, with lower endwall losses of CT rotor. Furthermore, the stator profile loss of CT represents the majority of stator loss and is notably higher than that of ST. The impact loss and separation loss are more pronounced in CT. The conclusions will provide direction, guidance, and data support for the design and optimization of CT and ST.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140606668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}