Pub Date : 2024-06-19DOI: 10.1007/s11368-024-03792-z
Jiawei Wang, Yongyi Wu, Yulu Zhang, Honghao Wang, Hong Yan, Hua Jin
Purpose
Accurate assessment of soil moisture content (SMC) is crucial for applications in climate science, hydrology, ecology, and agriculture. However, conventional SMC characterization and measurement are expensive, time-consuming, and have negative effects on soil. Recently, the application of multispectral technology provides a new idea for SMC accurate detection. The objective of this study was to develop and compare regression and machine learning algorithms to estimate SMC from multispectral images.
Materials and methods
A multispectral sensor was used to collect spectral images of 125 soil samples from five distinct soil textures in Shanxi province at varying degrees of soil moisture, ranging from arid to fully saturated. A set of seven spectral parameters was derived from images, and predictive relationships were developed against laboratory-measured SMC. A linear regression (LR) model and a backpropagation neural network model based on genetic algorithm optimization (GA-BP) were compared in this study to predict SMC.
Results and discussion
The results showed that (1) the spectral reflectance and SMC exhibit a clear negative correlation, and the lower the SMC, the larger the spectral reflectance is. (2) The GA-BP neural network model exhibits higher prediction accuracy and performance (R2 = 0.978 ~ 0.990, RMSE = 0.366 ~ 0.799%, MAE = 0.360 ~ 0.890%). (3) The GA-BP model exhibits the excellent inversion precision for the fine sand soil (R2 = 0.990, RMSE = 0.518%, MAE = 0.360%).
Conclusions
This study introduces an effective methodology for accurate estimation of SMC using multispectral remote sensing technology. It further underscores the significant effectiveness of employing backpropagation neural networks and genetic algorithms in SMC prediction, providing a rapid, precise, non-intrusive, and practical approach towards precision agriculture.
{"title":"A genetic algorithm-optimized backpropagation neural network model for predicting soil moisture content using spectral data","authors":"Jiawei Wang, Yongyi Wu, Yulu Zhang, Honghao Wang, Hong Yan, Hua Jin","doi":"10.1007/s11368-024-03792-z","DOIUrl":"https://doi.org/10.1007/s11368-024-03792-z","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Accurate assessment of soil moisture content (SMC) is crucial for applications in climate science, hydrology, ecology, and agriculture. However, conventional SMC characterization and measurement are expensive, time-consuming, and have negative effects on soil. Recently, the application of multispectral technology provides a new idea for SMC accurate detection. The objective of this study was to develop and compare regression and machine learning algorithms to estimate SMC from multispectral images.</p><h3 data-test=\"abstract-sub-heading\">Materials and methods</h3><p>A multispectral sensor was used to collect spectral images of 125 soil samples from five distinct soil textures in Shanxi province at varying degrees of soil moisture, ranging from arid to fully saturated. A set of seven spectral parameters was derived from images, and predictive relationships were developed against laboratory-measured SMC. A linear regression (LR) model and a backpropagation neural network model based on genetic algorithm optimization (GA-BP) were compared in this study to predict SMC.</p><h3 data-test=\"abstract-sub-heading\">Results and discussion</h3><p>The results showed that (1) the spectral reflectance and SMC exhibit a clear negative correlation, and the lower the SMC, the larger the spectral reflectance is. (2) The GA-BP neural network model exhibits higher prediction accuracy and performance (<i>R</i><sup>2</sup> = 0.978 ~ 0.990, <i>RMSE</i> = 0.366 ~ 0.799%, <i>MAE</i> = 0.360 ~ 0.890%). (3) The GA-BP model exhibits the excellent inversion precision for the fine sand soil (<i>R</i><sup>2</sup> = 0.990, <i>RMSE</i> = 0.518%, <i>MAE</i> = 0.360%).</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>This study introduces an effective methodology for accurate estimation of SMC using multispectral remote sensing technology. It further underscores the significant effectiveness of employing backpropagation neural networks and genetic algorithms in SMC prediction, providing a rapid, precise, non-intrusive, and practical approach towards precision agriculture.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-19DOI: 10.1007/s11368-024-03813-x
Dan QIU, Chunmiao LU, Huarong SUN, Chaohang LI, Guangqiang LONG, Ping ZHAO, Yijun LONG, Yue DING, Cuixia SU, Zhengyan PAN, Yuefang CAO, Shuran HE
Purpose
The aim of this study was to explore the effects of the variations in biodegradable and nonbiodegradable microplastic particles (MPs) on the absorption of lead (Pb) in maize.
Materials and methods
Pot experiments were conducted using maize and two types of MPs, nonbiodegradable polyethylene (PE) and biodegradable polybutylene adipate/terephthalate (PBAT), at four different MP concentrations (0, 0.1, 1, and 10%). After one month of growth, the Pb content in aboveground and belowground parts of the maize seedlings, CaCl2-extracted Pb content, the proportion of different speciation of Pb within the soil, and soil properties were determined. We determined Pb uptake by maize seedlings, soil physicochemical properties, and Pb speciation in soil.
Results
The addition of PE and PBAT particles led to the decrease in Pb content in maize root with the increase in concentration. The addition of 0.1% PBAT particles significantly increased the Pb content in the shoot of maize plants by 37.60% and Pb content in the root by 65.06% compared with 0.1% PE. The addition of PE and PBAT particles increased the proportion of residual Pb to 36.0% and 38.0%, respectively. The correlation analysis showed that the addition of MPs mainly affected the absorption of Pb by maize plants by affecting soil pH, dissolved organic carbon (DOC), cation exchange capacity (CEC), free crystalline Mn (MnDCB), and amorphous Fe (FeTamm).
Conclusions
This study demonstrates that biodegradable and nonbiodegradable MPs in soil inhibited Pb accumulation in maize seedling roots. FeDCB, MnDCB, and FeTamm may be the main control factors affecting the inhibition of lead uptake by PE in maize seedling roots. Additionally, FeTamm may be the main controlling factor influencing PBAT to reduce lead accumulation in maize seedling roots. The results of the present study could provide novel insights into the toxicity and bioavailability effects of MPs and Pb on maize, as well as a valuable reference for ongoing research on the ecological risk assessment of MPs and other pollutants in the soil environment.
材料与方法采用玉米和两种类型的微塑料颗粒(不可生物降解的聚乙烯(PE)和可生物降解的聚己二酸丁二醇酯/对苯二甲酸丁二醇酯(PBAT)),在四种不同的微塑料颗粒浓度(0、0.1、1和10%)下进行盆栽实验。生长一个月后,测定了玉米幼苗地上部分和地下部分的铅含量、CaCl2 萃取的铅含量、土壤中不同种类铅的比例以及土壤性质。我们测定了玉米幼苗对铅的吸收、土壤理化性质和土壤中铅的种类。结果添加 PE 和 PBAT 颗粒后,玉米根中的铅含量随着浓度的增加而降低。与 0.1% PE 相比,添加 0.1% PBAT 颗粒可使玉米植株芽中的铅含量显著增加 37.60%,根中的铅含量显著增加 65.06%。添加 PE 和 PBAT 颗粒后,残余铅的比例分别增加到 36.0% 和 38.0%。相关分析表明,MPs 的添加主要通过影响土壤 pH 值、溶解有机碳(DOC)、阳离子交换容量(CEC)、游离结晶锰(MnDCB)和无定形铁(FeTamm)来影响玉米植株对铅的吸收。FeDCB、MnDCB 和 FeTamm 可能是影响玉米幼苗根部 PE 对铅吸收抑制作用的主要控制因子。此外,FeTamm 可能是影响 PBAT 减少玉米幼苗根系铅积累的主要控制因子。本研究的结果可为了解多溴联苯和铅对玉米的毒性和生物利用率效应提供新的见解,同时也为正在进行的多溴联苯和其他污染物在土壤环境中的生态风险评估研究提供有价值的参考。
{"title":"Exploring the Impact of Biodegradable and Nonbiodegradable Microplastic Particles on Pb Absorption in Maize","authors":"Dan QIU, Chunmiao LU, Huarong SUN, Chaohang LI, Guangqiang LONG, Ping ZHAO, Yijun LONG, Yue DING, Cuixia SU, Zhengyan PAN, Yuefang CAO, Shuran HE","doi":"10.1007/s11368-024-03813-x","DOIUrl":"https://doi.org/10.1007/s11368-024-03813-x","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>The aim of this study was to explore the effects of the variations in biodegradable and nonbiodegradable microplastic particles (MPs) on the absorption of lead (Pb) in maize.</p><h3 data-test=\"abstract-sub-heading\">Materials and methods</h3><p>Pot experiments were conducted using maize and two types of MPs, nonbiodegradable polyethylene (PE) and biodegradable polybutylene adipate/terephthalate (PBAT), at four different MP concentrations (0, 0.1, 1, and 10%). After one month of growth, the Pb content in aboveground and belowground parts of the maize seedlings, CaCl<sub>2</sub>-extracted Pb content, the proportion of different speciation of Pb within the soil, and soil properties were determined. We determined Pb uptake by maize seedlings, soil physicochemical properties, and Pb speciation in soil.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The addition of PE and PBAT particles led to the decrease in Pb content in maize root with the increase in concentration. The addition of 0.1% PBAT particles significantly increased the Pb content in the shoot of maize plants by 37.60% and Pb content in the root by 65.06% compared with 0.1% PE. The addition of PE and PBAT particles increased the proportion of residual Pb to 36.0% and 38.0%, respectively. The correlation analysis showed that the addition of MPs mainly affected the absorption of Pb by maize plants by affecting soil pH, dissolved organic carbon (DOC), cation exchange capacity (CEC), free crystalline Mn (MnDCB), and amorphous Fe (FeTamm).</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>This study demonstrates that biodegradable and nonbiodegradable MPs in soil inhibited Pb accumulation in maize seedling roots. FeDCB, MnDCB, and FeTamm may be the main control factors affecting the inhibition of lead uptake by PE in maize seedling roots. Additionally, FeTamm may be the main controlling factor influencing PBAT to reduce lead accumulation in maize seedling roots. The results of the present study could provide novel insights into the toxicity and bioavailability effects of MPs and Pb on maize, as well as a valuable reference for ongoing research on the ecological risk assessment of MPs and other pollutants in the soil environment.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.1007/s11368-024-03846-2
Li Hua, Fanglin Dang, Lumengfei Yu, Hui Zhao, Ting Wei, Fengqiu An
Purpose
This study aimed to investigate the residual levels of representative organophosphorus and pyrethroid pesticides (chlorpyrifos, cypermethrin, deltamethrin, and lambda-cyhalothrin) in agricultural soils and crops in Shaanxi Province, and to reveal their accumulation characteristics and regional distribution characteristics in crops.
Materials and methods
The study was conducted using 115 soils and crops samples from typical agricultural areas in Shaanxi Province. The pesticide residues were measured using gas chromatography-mass spectrometry (GC-MS). The crops were analyzed based on the residue characteristics of fruits, vegetables, and field crops. Additionally, the pesticide residues in crops from the Guanzhong area (central part of Shaanxi), northern Shaanxi, and southern Shaanxi regions were analyzed. A correlation analysis was conducted to examine the influencing factors of pesticide residues in soil-crops, considering the physical and chemical properties of the soil in Shaanxi Province.
Results and discussion
The results indicate that there are differences in the detection rates and residual concentrations of different pesticides in soil. In the Guanzhong area, the pesticide residual levels in crops follow the trend of chlorpyrifos > deltamethrin > lambda-cyhalothrin > cypermethrin, with relatively high pesticide residues found in corn. In northern Shaanxi, the overall pesticide residual levels in crops show a trend of chlorpyrifos > deltamethrin > cypermethrin > lambda-cyhalothrin. In southern Shaanxi, all the pesticides were detected to varying degrees in crops, with chlorpyrifos showing the highest residual levels.
Conclusions
All four pesticides were detected in the soils of the study area and the enrichment capacity of different crops varied greatly. Pesticide enrichment is not only affected by temperature and climate conditions in different regions, but soil organic matter, pH, and CEC also have a significant effect on the enrichment of pesticides by crops.
{"title":"Soil residues and crop accumulation of organophosphorus and pyrethroid pesticides in agricultural fields in Shaanxi, China","authors":"Li Hua, Fanglin Dang, Lumengfei Yu, Hui Zhao, Ting Wei, Fengqiu An","doi":"10.1007/s11368-024-03846-2","DOIUrl":"https://doi.org/10.1007/s11368-024-03846-2","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>This study aimed to investigate the residual levels of representative organophosphorus and pyrethroid pesticides (chlorpyrifos, cypermethrin, deltamethrin, and lambda-cyhalothrin) in agricultural soils and crops in Shaanxi Province, and to reveal their accumulation characteristics and regional distribution characteristics in crops.</p><h3 data-test=\"abstract-sub-heading\">Materials and methods</h3><p>The study was conducted using 115 soils and crops samples from typical agricultural areas in Shaanxi Province. The pesticide residues were measured using gas chromatography-mass spectrometry (GC-MS). The crops were analyzed based on the residue characteristics of fruits, vegetables, and field crops. Additionally, the pesticide residues in crops from the Guanzhong area (central part of Shaanxi), northern Shaanxi, and southern Shaanxi regions were analyzed. A correlation analysis was conducted to examine the influencing factors of pesticide residues in soil-crops, considering the physical and chemical properties of the soil in Shaanxi Province.</p><h3 data-test=\"abstract-sub-heading\">Results and discussion</h3><p>The results indicate that there are differences in the detection rates and residual concentrations of different pesticides in soil. In the Guanzhong area, the pesticide residual levels in crops follow the trend of chlorpyrifos > deltamethrin > lambda-cyhalothrin > cypermethrin, with relatively high pesticide residues found in corn. In northern Shaanxi, the overall pesticide residual levels in crops show a trend of chlorpyrifos > deltamethrin > cypermethrin > lambda-cyhalothrin. In southern Shaanxi, all the pesticides were detected to varying degrees in crops, with chlorpyrifos showing the highest residual levels.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>All four pesticides were detected in the soils of the study area and the enrichment capacity of different crops varied greatly. Pesticide enrichment is not only affected by temperature and climate conditions in different regions, but soil organic matter, pH, and CEC also have a significant effect on the enrichment of pesticides by crops.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In threatened diversity hotspots, such as mountain cloud forests, microbiome studies have focused essentially on bacteria. Unlike prokaryotic microbiomes, the study of the microeukaryotes has largely been restricted to the visual identification of specific groups. Herein, microeukaryotic edaphic diversity from a pristine mountain cloud forest (MCF) of Mexico was analyzed via the metabarcoding of the ITS1 region of ribosomal DNA.
Materials and methods
An exploratory triangular sampling was conducted in the mountain cloud forest located in El Relámpago Mount, Santiago Comaltepec, Oaxaca, Mexico. Each vertex was located adjacent to a dominant plant species in the ecosystem (Oreomunnea mexicana and Alsophila salvinii). After DNA extraction the ITS1 region (rDNA) was amplified. Microeukaryotic sequences were filtered by computational subtraction against the ITS2 Database. Next, alpha and beta diversity indexes were calculated, and the relationship between abiotic variables and diversity patterns were inferred by means of a Canonical Correspondence Analysis.
Results
Overall, 138 inferred sequence variants were identified, including 87 protists, 35 animals (microfauna), and 16 algae. Within the animals, the nematodes were the dominant group, chlorophytes dominated algae, and in Protista, no dominance patterns were observed given the high diversity and equitability of this group. Soil available carbon, carbon degrading enzymes and the pH play a key role in modeling the community structure. Remarkably, high beta diversity levels were obtained, evidencing a strong spatial heterogeneity at the small scale.
Conclusions
The ITS metabarcoding proved to be a useful tool to conduct multi-taxa diversity assessments for microeukaryotes, allowing the identification of alpha and beta diversity patterns and overcoming limitations of sampling and the direct observation of individuals. The results presented in this work evidenced high microeukaryotic diversity levels in the soil of MCF and encourage future studies aiming to explore the taxonomic diversity of individual taxa.
目的在山区云雾林等受到威胁的多样性热点地区,微生物组的研究主要集中在细菌上。与原核微生物组不同,微真核细胞的研究主要局限于对特定群体的直观识别。在此,我们通过对核糖体 DNA 的 ITS1 区域进行元编码,分析了墨西哥原始高山云雾林(MCF)中的微真核生物多样性。每个顶点都毗邻生态系统中的优势植物物种(Oreomunnea mexicana 和 Alsophila salvinii)。提取 DNA 后,扩增 ITS1 区域(rDNA)。通过计算减去 ITS2 数据库,筛选出微真核序列。随后,计算了α和β多样性指数,并通过卡农对应分析法推断了非生物变量与多样性模式之间的关系。结果共鉴定出 138 个推断序列变体,包括 87 个原生动物、35 个动物(微型动物)和 16 个藻类。在动物中,线虫是主要群体,藻类中叶绿体占主导地位,而在原生动物中,由于该群体具有高度的多样性和均衡性,因此没有观察到优势模式。土壤可利用碳、碳降解酶和 pH 值在群落结构建模中起着关键作用。结论 ITS 代谢编码被证明是对微真核细胞进行多物种多样性评估的有用工具,可识别阿尔法和贝塔多样性模式,克服了取样和直接观察个体的局限性。本研究的结果表明 MCF 土壤中微真核生物的多样性水平很高,鼓励今后开展旨在探索单个类群分类多样性的研究。
{"title":"Implementing ITS1 metabarcoding for the analysis of soil microeukariotic diversity in the Mountain Cloud Forest","authors":"Andrea Aurora Rivera-Zizumbo, Patricia Velez, Margarita Ojeda, Angel Herrera-Mares, Yunuen Tapia-Torres, Jaime Gasca-Pineda","doi":"10.1007/s11368-024-03839-1","DOIUrl":"https://doi.org/10.1007/s11368-024-03839-1","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>In threatened diversity hotspots, such as mountain cloud forests, microbiome studies have focused essentially on bacteria. Unlike prokaryotic microbiomes, the study of the microeukaryotes has largely been restricted to the visual identification of specific groups. Herein, microeukaryotic edaphic diversity from a pristine mountain cloud forest (MCF) of Mexico was analyzed via the metabarcoding of the ITS1 region of ribosomal DNA.</p><h3 data-test=\"abstract-sub-heading\">Materials and methods</h3><p>An exploratory triangular sampling was conducted in the mountain cloud forest located in El Relámpago Mount, Santiago Comaltepec, Oaxaca, Mexico. Each vertex was located adjacent to a dominant plant species in the ecosystem (<i>Oreomunnea mexicana</i> and <i>Alsophila salvinii</i>). After DNA extraction the ITS1 region (rDNA) was amplified. Microeukaryotic sequences were filtered by computational subtraction against the ITS2 Database. Next, alpha and beta diversity indexes were calculated, and the relationship between abiotic variables and diversity patterns were inferred by means of a Canonical Correspondence Analysis.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Overall, 138 inferred sequence variants were identified, including 87 protists, 35 animals (microfauna), and 16 algae. Within the animals, the nematodes were the dominant group, chlorophytes dominated algae, and in Protista, no dominance patterns were observed given the high diversity and equitability of this group. Soil available carbon, carbon degrading enzymes and the pH play a key role in modeling the community structure. Remarkably, high beta diversity levels were obtained, evidencing a strong spatial heterogeneity at the small scale.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>The ITS metabarcoding proved to be a useful tool to conduct multi-taxa diversity assessments for microeukaryotes, allowing the identification of alpha and beta diversity patterns and overcoming limitations of sampling and the direct observation of individuals. The results presented in this work evidenced high microeukaryotic diversity levels in the soil of MCF and encourage future studies aiming to explore the taxonomic diversity of individual taxa.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-15DOI: 10.1007/s11368-024-03845-3
Tatjana Simčič, Monika Poklukar, N. Mori
{"title":"Response of hyporheic biofilms to temperature changes and dissolved organic carbon enrichment: a mesocosm study","authors":"Tatjana Simčič, Monika Poklukar, N. Mori","doi":"10.1007/s11368-024-03845-3","DOIUrl":"https://doi.org/10.1007/s11368-024-03845-3","url":null,"abstract":"","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141337776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-14DOI: 10.1007/s11368-024-03844-4
Junjun Feng, Mingmin Jia, Yan Tan, Hongwen Yue, Xueqing Feng, Ningguo Zheng, Juan Wang, Jiantao Xue
{"title":"Diversity and influencing factors of microbial communities in rhizosphere and nonrhizosphere soils of tea plant","authors":"Junjun Feng, Mingmin Jia, Yan Tan, Hongwen Yue, Xueqing Feng, Ningguo Zheng, Juan Wang, Jiantao Xue","doi":"10.1007/s11368-024-03844-4","DOIUrl":"https://doi.org/10.1007/s11368-024-03844-4","url":null,"abstract":"","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141341204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1007/s11368-024-03814-w
Paweł Siwek, M. Jaźwa, M. Niklińska, Beata Klimek
{"title":"Soil bacterial activity and functional diversity as indicators of recultivation of alkaline settlements of a ‘Solvay’ process","authors":"Paweł Siwek, M. Jaźwa, M. Niklińska, Beata Klimek","doi":"10.1007/s11368-024-03814-w","DOIUrl":"https://doi.org/10.1007/s11368-024-03814-w","url":null,"abstract":"","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141346547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using a comprehensive model for cropland types in relationships between soil bulk density and organic carbon to predict site-specific carbon stocks","authors":"Chin-Jin Hou, Yung-Hsiang Lu, Yu-Chien Tseng, Yuan-Ching Tsai, Wen-Lii Huang, Kai-Wei Juang","doi":"10.1007/s11368-024-03829-3","DOIUrl":"https://doi.org/10.1007/s11368-024-03829-3","url":null,"abstract":"","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141350438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-12DOI: 10.1007/s11368-024-03838-2
S. Silvonen, J. Niemistö, Tom Jilbert, J. Horppila
{"title":"Wintertime diffusion of sedimentary phosphorus – implications for under-ice phosphorus removal from eutrophic lakes","authors":"S. Silvonen, J. Niemistö, Tom Jilbert, J. Horppila","doi":"10.1007/s11368-024-03838-2","DOIUrl":"https://doi.org/10.1007/s11368-024-03838-2","url":null,"abstract":"","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141354600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-12DOI: 10.1007/s11368-024-03843-5
Peiyin Wang, Guiping Fu, Zhipeng Guo, Lin Zhao, Weicheng Pang, Chao Pan, Ke Wang, Qiqi Wu, Yurou Chen
{"title":"Composting of invasive plants in urban watercourses and its application in riverbanks: mechanisms and compost quality assessment","authors":"Peiyin Wang, Guiping Fu, Zhipeng Guo, Lin Zhao, Weicheng Pang, Chao Pan, Ke Wang, Qiqi Wu, Yurou Chen","doi":"10.1007/s11368-024-03843-5","DOIUrl":"https://doi.org/10.1007/s11368-024-03843-5","url":null,"abstract":"","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141351647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}