Pub Date : 2024-09-19DOI: 10.1016/j.jics.2024.101388
Alyaa S. Abdel Halim , Marwa S. Salem , Selima A.M. Al-Mabrook , Maher A.E.M. El-Hashash
Quinazoline nucleus is a distinct scaffold with fascinating pharmacological characteristics. New quinazoline-4(3H)-thiones were synthesized and evaluated for their cytotoxic properties against two human cancer cell lines. Molecular investigations on their mechanism of action were conducted. The most potent derivatives were examined by molecular docking as EGFR-TKIs, and their ADME properties were predicted using the SwissADME tool. Derivatives 4, 10, and 12 exhibited the most notable cytotoxicity, as evidenced by their ability to upregulate p53 and caspase-3 expression while downregulating CDK1, inhibiting EGFR activity and downregulating EGFR and ERK1/2 signaling. These derivatives docked well with EGFR and had promising drug-like properties. Our derivatives deserve further optimization not only as novel anticancer agents but also as potent EGFR-TKIs.
{"title":"Synthesis, cytotoxicity and molecular docking of novel quinazoline-4(3H)-thione derivatives as EGFR-TKIs","authors":"Alyaa S. Abdel Halim , Marwa S. Salem , Selima A.M. Al-Mabrook , Maher A.E.M. El-Hashash","doi":"10.1016/j.jics.2024.101388","DOIUrl":"10.1016/j.jics.2024.101388","url":null,"abstract":"<div><div>Quinazoline nucleus is a distinct scaffold with fascinating pharmacological characteristics. New quinazoline-4(3H)-thiones were synthesized and evaluated for their cytotoxic properties against two human cancer cell lines. Molecular investigations on their mechanism of action were conducted. The most potent derivatives were examined by molecular docking as EGFR-TKIs, and their ADME properties were predicted using the SwissADME tool. Derivatives <strong>4</strong>, <strong>10,</strong> and <strong>12</strong> exhibited the most notable cytotoxicity, as evidenced by their ability to upregulate p53 and caspase-3 expression while downregulating CDK1, inhibiting EGFR activity and downregulating EGFR and ERK1/2 signaling. These derivatives docked well with EGFR and had promising drug-like properties. Our derivatives deserve further optimization not only as novel anticancer agents but also as potent EGFR-TKIs.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 11","pages":"Article 101388"},"PeriodicalIF":3.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.jics.2024.101390
Chaohui Wang, Xiaolong Jin, Zhenjun Yu, Gang Lin
The occurrence of gastric ulcer is mainly due to the damage of gastric mucosa which leads to inward flow of gastric acid to corrode the gastric cavity, thus producing gastric fever, vomiting, loss of appetite and other adverse reactions. Prevention and treatment of such injuries are crucial. In this study, a simple and non-toxic composite hydrogel (PLGA/CMCS) was prepared through Schiff base reaction between poly(lactic-co-glycolic acid) (PLGA) and carboxymethyl cellulose (CMCS). Subsequently, compound 1 was loaded onto it to construct PLGA/CMCS@1. A series of structural characterization and performance experiments were conducted on these novel hydrogel polymers. Furthermore, we detected the gene expression level of Fas/FasL apoptotic pathway after treating the cells with different concentrations of PLGA/CMCS@1 through an ethanol-induced damaged gastric mucosal epithelial cell model. The results showed that the system was able to significantly regulate the expression of genes related to the apoptotic pathway. The system can regulate the Fas/FasL apoptosis pathway to treat gastric ulcer.
{"title":"Construction of an intelligent pH-sensitive hydrogel drug delivery system and its application in gastric ulcer treatment","authors":"Chaohui Wang, Xiaolong Jin, Zhenjun Yu, Gang Lin","doi":"10.1016/j.jics.2024.101390","DOIUrl":"10.1016/j.jics.2024.101390","url":null,"abstract":"<div><div>The occurrence of gastric ulcer is mainly due to the damage of gastric mucosa which leads to inward flow of gastric acid to corrode the gastric cavity, thus producing gastric fever, vomiting, loss of appetite and other adverse reactions. Prevention and treatment of such injuries are crucial. In this study, a simple and non-toxic composite hydrogel (PLGA/CMCS) was prepared through Schiff base reaction between poly(lactic-co-glycolic acid) (PLGA) and carboxymethyl cellulose (CMCS). Subsequently, compound 1 was loaded onto it to construct PLGA/CMCS@1. A series of structural characterization and performance experiments were conducted on these novel hydrogel polymers. Furthermore, we detected the gene expression level of Fas/FasL apoptotic pathway after treating the cells with different concentrations of PLGA/CMCS@1 through an ethanol-induced damaged gastric mucosal epithelial cell model. The results showed that the system was able to significantly regulate the expression of genes related to the apoptotic pathway. The system can regulate the Fas/FasL apoptosis pathway to treat gastric ulcer.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 11","pages":"Article 101390"},"PeriodicalIF":3.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Here, we describe the synthesis and properties of zinc oxide (ZnO)-doped cadmium sulfide (CdS) nanocomposites tailored for gas sensing applications. The nanocomposites were prepared using a chemical synthesis method and underwent optimization through annealing processes. The optimized annealing conditions are determined to enhance the gas sensing properties. The gas detection properties of the zinc oxide doped cadmium sulfide nanocomposites are systematically evaluated under various gas atmospheres, including common industrial pollutants. The nanocomposites exhibit promising gas sensing capabilities, demonstrating sensitivity and selectivity towards specific gases. The results indicate that the annealing process significantly influences the gas sensing performance, leading to improved response and recovery times, as well as enhanced selectivity and stability.This research highlights the importance of controlled annealing in tailoring the gas detection properties of nanocomposites. Therefore, the synthesized nanocomposite can be used for a suitable materials for oxygen sensing.
{"title":"Developing zinc oxide-doped cadmium sulfide nanocomposites chemically for oxygen gas sensing properties via annealing effects","authors":"Lawrance Arunraja , Balakrishnan Srividhya , Ramanujam Bakkiyaraj , Govindasami Periyasami , Perumal Karthikeyan","doi":"10.1016/j.jics.2024.101387","DOIUrl":"10.1016/j.jics.2024.101387","url":null,"abstract":"<div><div>Here, we describe the synthesis and properties of zinc oxide (ZnO)-doped cadmium sulfide (CdS) nanocomposites tailored for gas sensing applications. The nanocomposites were prepared using a chemical synthesis method and underwent optimization through annealing processes. The optimized annealing conditions are determined to enhance the gas sensing properties. The gas detection properties of the zinc oxide doped cadmium sulfide nanocomposites are systematically evaluated under various gas atmospheres, including common industrial pollutants. The nanocomposites exhibit promising gas sensing capabilities, demonstrating sensitivity and selectivity towards specific gases. The results indicate that the annealing process significantly influences the gas sensing performance, leading to improved response and recovery times, as well as enhanced selectivity and stability.This research highlights the importance of controlled annealing in tailoring the gas detection properties of nanocomposites. Therefore, the synthesized nanocomposite can be used for a suitable materials for oxygen sensing.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 11","pages":"Article 101387"},"PeriodicalIF":3.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1016/j.jics.2024.101383
Venkatesh Yepuri
Nanofluids are prospective solutions for improving the transformer dielectric strengthby adding nanoparticles to the standard oils used in transformers.Oil-based titania nanofluids are becoming increasingly popular due to their superior insulating qualities and distinctive thermal performance, and they areconsideredas possible replacements in the domains of transformer insulating oils.This paper describes the industrial synthesis of titania nanoparticles for improving the insulating characteristics of virgin oil used in transformers.The titania nanoparticles were analyzed using an X-ray diffractogram (XRD), which revealed a prominent peak at Bragg angle 25O, indicating that the titania nanoparticles were generated in the anatase phase. Fourier transform infrared (FTIR) spectroscopy study endorsed the formation of Ti-O-Ti, Ti-OH, C-H and O-H stretching vibrations at 760 cm−1, 1345 cm−1, 2475 cm−1, and 3646 cm−1 wavenumbers respectively. Field emission scanning electron microscopy (FESEM) and Atomic Force Microscopy (AFM) examinations on the produced titania nanoparticles revealed that the particles had a circular shape with a diameter of 55 nm and an average roughness value of roughly 3.6 nm respectively.The viscosity of the host virgin oil and the nanoparticles-filled nanofluid were examined, and higher viscosity values were found as particle concentration increased.The effective conductivity study with the zeta potential and thermal conductivity fluctuation with temperature variation also revealed that at higher temperatures, conductivity with the zeta potential increased and thermal conductivity dropped. Furthermore, the breakdown strength of the titania nanoparticles-based virgin oil was observed to be effectively increased with the particle concentration.
{"title":"Cost-effective production of Titania nanoparticles for the modification of transformer insulating oil","authors":"Venkatesh Yepuri","doi":"10.1016/j.jics.2024.101383","DOIUrl":"10.1016/j.jics.2024.101383","url":null,"abstract":"<div><div>Nanofluids are prospective solutions for improving the transformer dielectric strengthby adding nanoparticles to the standard oils used in transformers.Oil-based titania nanofluids are becoming increasingly popular due to their superior insulating qualities and distinctive thermal performance, and they areconsideredas possible replacements in the domains of transformer insulating oils.This paper describes the industrial synthesis of titania nanoparticles for improving the insulating characteristics of virgin oil used in transformers.The titania nanoparticles were analyzed using an X-ray diffractogram (XRD), which revealed a prominent peak at Bragg angle 25<sup>O</sup>, indicating that the titania nanoparticles were generated in the anatase phase. Fourier transform infrared (FTIR) spectroscopy study endorsed the formation of Ti-O-Ti, Ti-OH, C-H and O-H stretching vibrations at 760 cm<sup>−1</sup>, 1345 cm<sup>−1</sup>, 2475 cm<sup>−1</sup>, and 3646 cm<sup>−1</sup> wavenumbers respectively. Field emission scanning electron microscopy (FESEM) and Atomic Force Microscopy (AFM) examinations on the produced titania nanoparticles revealed that the particles had a circular shape with a diameter of 55 nm and an average roughness value of roughly 3.6 nm respectively.The viscosity of the host virgin oil and the nanoparticles-filled nanofluid were examined, and higher viscosity values were found as particle concentration increased.The effective conductivity study with the zeta potential and thermal conductivity fluctuation with temperature variation also revealed that at higher temperatures, conductivity with the zeta potential increased and thermal conductivity dropped. Furthermore, the breakdown strength of the titania nanoparticles-based virgin oil was observed to be effectively increased with the particle concentration.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 11","pages":"Article 101383"},"PeriodicalIF":3.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1016/j.jics.2024.101386
Karuppiah Nagaraj , Raja Kaliyaperumal , Vijaya Kumar Poovan , Mohammad Khalid Al-Sadoon , Thavan Kasilingam , Tharini Kumaravel
The present study focuses on zirconium-doped zinc nanocomposites (ZDZN), representing a novel class of materials with antibacterial and antifungal properties. This work involves the preparation, characterization, and evaluation of the antibacterial activity of ZDZN. Zinc oxide nanoparticles were doped with varying concentrations of zirconium ions to create nanocomposites using a simple precipitation technique. The structural, morphological, and chemical properties were investigated using EDS, TEM, SEM, and XRD analyses. The results indicated the successful incorporation of zirconium ions into the lattice of zinc oxide nanoparticles, resulting in nanocomposites with well-defined shapes and compositions. Agar diffusion studies were conducted to assess the antibacterial activities of the nanocomposites against various bacterial and fungal species. The findings revealed that ZDZN exhibited superior antibacterial activity compared to pure zinc oxide nanoparticles, attributed to the concentration-dependent effect of the zirconium dopant. Furthermore, the nanocomposites demonstrated excellent biocompatibility and stability, making them highly suitable for applications in biomedical devices and antimicrobial coatings.
{"title":"Zirconium-doped zinc nanocomposites (ZDZN): Preparation, characterization, and evaluation of antibacterial activity","authors":"Karuppiah Nagaraj , Raja Kaliyaperumal , Vijaya Kumar Poovan , Mohammad Khalid Al-Sadoon , Thavan Kasilingam , Tharini Kumaravel","doi":"10.1016/j.jics.2024.101386","DOIUrl":"10.1016/j.jics.2024.101386","url":null,"abstract":"<div><div>The present study focuses on zirconium-doped zinc nanocomposites (ZDZN), representing a novel class of materials with antibacterial and antifungal properties. This work involves the preparation, characterization, and evaluation of the antibacterial activity of ZDZN. Zinc oxide nanoparticles were doped with varying concentrations of zirconium ions to create nanocomposites using a simple precipitation technique. The structural, morphological, and chemical properties were investigated using EDS, TEM, SEM, and XRD analyses. The results indicated the successful incorporation of zirconium ions into the lattice of zinc oxide nanoparticles, resulting in nanocomposites with well-defined shapes and compositions. Agar diffusion studies were conducted to assess the antibacterial activities of the nanocomposites against various bacterial and fungal species. The findings revealed that ZDZN exhibited superior antibacterial activity compared to pure zinc oxide nanoparticles, attributed to the concentration-dependent effect of the zirconium dopant. Furthermore, the nanocomposites demonstrated excellent biocompatibility and stability, making them highly suitable for applications in biomedical devices and antimicrobial coatings.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 11","pages":"Article 101386"},"PeriodicalIF":3.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1016/j.jics.2024.101380
Muhammad Naveed Abbas Hussain , Iqra Batool , Khadijah Mohammedsaleh Katubi , M.S. Al-Buriahi , Muhammad Imran , Ibrahim A. Alsafari , M. Naziruddin Khan , Alizah Jabeen
In this study, the synthesis of Ce2(WO4)3/ZnO/CuO nanocomposite (NCs) was carried out using Co-precipitation method. The structural, morphological and spectral confirmation was achieved through X-ray diffraction (XRD), Scanning electron microscopy (SEM), Differential reflectance spectroscopy (DRS) and Fourier transform infrared spectroscopy (FTIR) analysis. The degradation efficiency for photocatalytic degradation of Ciprofloxacin (CF) and band gap value of prepared Ce2(WO4)3/ZnO/CuO nanocomposite was determined by using UV–Visible and DRS analysis. Band gap value for Ce2(WO4)3/ZnO/CuO was found to be 1.39 eV. Effects of different parameters such as contact time, pH, and effect of concentration of catalyst were investigated to optimize degradation conditions. This prepared nanocomposite was used for the degradation of CF and about 91 % degradation efficiency of CF has been achieved at pH 5 within 70 min by irradiation under sunlight and 60 mg concentration of photocatalyst. The EDTA and IPA scavenged photo-generated holes and hydroxyl ions respectively, the decrease in photocatalytic degradation indicates that holes and hydroxyl ions are reactive species in photocatalytic degradation of CF. The value of R2 = 0.99 confirms the validity of Pseudo first order and Langmuir-Hinshelwood kinetic model for the degradation of CF. These results showed a novel method for the preparation of nanocomposite and the efficient degradation of antibiotics and can be applied to industrial manufacture.
{"title":"Application of Ce2(WO4)3–ZnO–CuO nanocomposite as active photocatalyst for removal of ciprofloxacin from wastewater","authors":"Muhammad Naveed Abbas Hussain , Iqra Batool , Khadijah Mohammedsaleh Katubi , M.S. Al-Buriahi , Muhammad Imran , Ibrahim A. Alsafari , M. Naziruddin Khan , Alizah Jabeen","doi":"10.1016/j.jics.2024.101380","DOIUrl":"10.1016/j.jics.2024.101380","url":null,"abstract":"<div><div>In this study, the synthesis of Ce<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>/ZnO/CuO nanocomposite (NCs) was carried out using Co-precipitation method. The structural, morphological and spectral confirmation was achieved through X-ray diffraction (XRD), Scanning electron microscopy (SEM), Differential reflectance spectroscopy (DRS) and Fourier transform infrared spectroscopy (FTIR) analysis. The degradation efficiency for photocatalytic degradation of Ciprofloxacin (CF) and band gap value of prepared Ce<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>/ZnO/CuO nanocomposite was determined by using UV–Visible and DRS analysis. Band gap value for Ce<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>/ZnO/CuO was found to be 1.39 eV. Effects of different parameters such as contact time, pH, and effect of concentration of catalyst were investigated to optimize degradation conditions. This prepared nanocomposite was used for the degradation of CF and about 91 % degradation efficiency of CF has been achieved at pH 5 within 70 min by irradiation under sunlight and 60 mg concentration of photocatalyst. The EDTA and IPA scavenged photo-generated holes and hydroxyl ions respectively, the decrease in photocatalytic degradation indicates that holes and hydroxyl ions are reactive species in photocatalytic degradation of CF. The value of R<sup>2</sup> = 0.99 confirms the validity of Pseudo first order and Langmuir-Hinshelwood kinetic model for the degradation of CF. These results showed a novel method for the preparation of nanocomposite and the efficient degradation of antibiotics and can be applied to industrial manufacture.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 11","pages":"Article 101380"},"PeriodicalIF":3.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1016/j.jics.2024.101367
Yujie Wang, Zhen Yu, Qinghua Yu
In this investigation, the enzymes collagenase and elastase were inhibited by artepillin.C and aromadendrin molecules with excellent to good IC50 values of 16.65, and 0.79 μM for artepillin.C and 7.31, 19.38, and 10.56 μM for aromadendrin. Using the molecular modeling study, the chemical activity of these compounds against the enzymes, collagenase, and elastase were evaluated. The anti-cancer properties of the compounds were evaluated using the following cell lines: NIH: OVCAR-3, ES-2, UACC-1598, Hs 832(C).T [Hs832.Tc], TOV-21G, UWB1.289. The DPPH (1,1-diphenyl-2-pricrylhydrazyl) free radical scavenging assay was used to measure antioxidant activity, and the spectrophotometric method was used in this work. The chemical activities of artepillin.C and aromadendrin against collagenase and elastase were investigated utilizing the molecular docking study. The anti-cancer activities of the compounds were evaluated against NIH: OVCAR-3, ES-2, UACC-1598, Hs 832(C).T [Hs832.Tc], TOV-21G, UWB1.289 cell lines. Also, some cell lines had best results for aromadendrin like NIH: OVCAR-3, ES-2, UACC-1598, Hs 832(C).T [Hs832.Tc], TOV-21G, UWB1.289 (10.54 ± 0.94, 22.11 ± 2.52, 31.85 ± 4.73, 8.14 ± 1.52, 17.94 ± 1.88, and 24.31 ± 2.64 μM). The chemical activities of artepillin.C and aromadendrin against some of the expressed surface receptor proteins (folate receptor, CD44, EGFR, Formyl Peptide Receptor–Like 1, M2 muscarinic receptor, and estrogen receptors) in the mentioned cell lines were assessed using the molecular docking calculations. The outcomes provided information on potential interactions and their atomic-level properties. According to the docking scores, the compounds show a high affinity for binding to proteins and enzymes. Furthermore, these substances made good contact with the receptors and enzymes. As a result, these substances may have the ability to suppress cancer cells and enzymes.
{"title":"In vitro and in silico therapeutic properties of Artepillin C and Aromadendrin as collagenase and elastase inhibitors and investigation of anti-Ovarian cancer effects and antioxidant potential","authors":"Yujie Wang, Zhen Yu, Qinghua Yu","doi":"10.1016/j.jics.2024.101367","DOIUrl":"10.1016/j.jics.2024.101367","url":null,"abstract":"<div><div>In this investigation, the enzymes collagenase and elastase were inhibited by artepillin.C and aromadendrin molecules with excellent to good IC50 values of 16.65, and 0.79 μM for artepillin.C and 7.31, 19.38, and 10.56 μM for aromadendrin. Using the molecular modeling study, the chemical activity of these compounds against the enzymes, collagenase, and elastase were evaluated. The anti-cancer properties of the compounds were evaluated using the following cell lines: NIH: OVCAR-3, ES-2, UACC-1598, Hs 832(C).T [Hs832.Tc], TOV-21G, UWB1.289. The DPPH (1,1-diphenyl-2-pricrylhydrazyl) free radical scavenging assay was used to measure antioxidant activity, and the spectrophotometric method was used in this work. The chemical activities of artepillin.C and aromadendrin against collagenase and elastase were investigated utilizing the molecular docking study. The anti-cancer activities of the compounds were evaluated against NIH: OVCAR-3, ES-2, UACC-1598, Hs 832(C).T [Hs832.Tc], TOV-21G, UWB1.289 cell lines. Also, some cell lines had best results for aromadendrin like NIH: OVCAR-3, ES-2, UACC-1598, Hs 832(C).T [Hs832.Tc], TOV-21G, UWB1.289 (10.54 ± 0.94, 22.11 ± 2.52, 31.85 ± 4.73, 8.14 ± 1.52, 17.94 ± 1.88, and 24.31 ± 2.64 μM). The chemical activities of artepillin.C and aromadendrin against some of the expressed surface receptor proteins (folate receptor, CD44, EGFR, Formyl Peptide Receptor–Like 1, M2 muscarinic receptor, and estrogen receptors) in the mentioned cell lines were assessed using the molecular docking calculations. The outcomes provided information on potential interactions and their atomic-level properties. According to the docking scores, the compounds show a high affinity for binding to proteins and enzymes. Furthermore, these substances made good contact with the receptors and enzymes. As a result, these substances may have the ability to suppress cancer cells and enzymes.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 11","pages":"Article 101367"},"PeriodicalIF":3.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142356908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1016/j.jics.2024.101384
Jiayou Yang , Tianxiang Li , Juan Xie , Baiyu Li , Yanfeng Sui , Lisha Yang , Jing Zhu , Songlin Liu
As a kind of alternative of natural fluorinated minerals and raw material for producing anhydrous hydrogen fluoride, fluorosilicic acid has attracted more and more attention. In order to raise its utilization rate, dilute fluorosilicic acid solution coming from chemical enterprises needs to be concentrated. The extraction technology with benzyl alcohol as extraction agent was used to concentrating fluorosilicic acid aqueous solution. In order to determine the optimizing operation conditions of the extracting process, single - factor experiments were carried out to confirm the significant affecting factors and their operating range. Then the Response Surface Methodology (RSM) was conducted to accomplish regression of a nonlinear quadratic polynomial model to the experimental data and statistical analysis. Based on these studies, the optimal technical parameters of extracting process are acquired by optimization of the model using the Design-Expert 13 software. The statistical analysis for the fitting response surface quadratic equation model indicated that the model was reliable and accurate with very low p-values (<0.0001), the predicted values with the model equation had remarkable consistency in experimental data. By a great number of optimizations carried out with the Design Expert 13 software based on the fitting model equation, the optimal extractive processing conditions for concentrating fluorosilicic acid aqueous solution were obtained: the phase ratio 7, the extraction time 120.11 min and the extraction temperature 39.70 °C. The optimal concentration of fluorosilicic acid is 26.68 %. In order to increase the concentration of fluorosilicic acid, three-stage cross-current extraction for dilute fluorosilicic acid solution was carried out at the optimizing extracting conditions, 17.43 wt% fluorosilicic acid solution can be concentrated up to 37.46 wt%. The extractant-benzyl alcohol can be recovered with vacuum distillation and recovery rate reached up to 98 %.
{"title":"Application of Response Surface Methodology for concentration of fluorosilicic acid by extraction technique with benzyl alcohol as extractant","authors":"Jiayou Yang , Tianxiang Li , Juan Xie , Baiyu Li , Yanfeng Sui , Lisha Yang , Jing Zhu , Songlin Liu","doi":"10.1016/j.jics.2024.101384","DOIUrl":"10.1016/j.jics.2024.101384","url":null,"abstract":"<div><div>As a kind of alternative of natural fluorinated minerals and raw material for producing anhydrous hydrogen fluoride, fluorosilicic acid has attracted more and more attention. In order to raise its utilization rate, dilute fluorosilicic acid solution coming from chemical enterprises needs to be concentrated. The extraction technology with benzyl alcohol as extraction agent was used to concentrating fluorosilicic acid aqueous solution. In order to determine the optimizing operation conditions of the extracting process, single - factor experiments were carried out to confirm the significant affecting factors and their operating range. Then the Response Surface Methodology (RSM) was conducted to accomplish regression of a nonlinear quadratic polynomial model to the experimental data and statistical analysis. Based on these studies, the optimal technical parameters of extracting process are acquired by optimization of the model using the Design-Expert 13 software. The statistical analysis for the fitting response surface quadratic equation model indicated that the model was reliable and accurate with very low p-values (<0.0001), the predicted values with the model equation had remarkable consistency in experimental data. By a great number of optimizations carried out with the Design Expert 13 software based on the fitting model equation, the optimal extractive processing conditions for concentrating fluorosilicic acid aqueous solution were obtained: the phase ratio 7, the extraction time 120.11 min and the extraction temperature 39.70 °C. The optimal concentration of fluorosilicic acid is 26.68 %. In order to increase the concentration of fluorosilicic acid, three-stage cross-current extraction for dilute fluorosilicic acid solution was carried out at the optimizing extracting conditions, 17.43 wt% fluorosilicic acid solution can be concentrated up to 37.46 wt%. The extractant-benzyl alcohol can be recovered with vacuum distillation and recovery rate reached up to 98 %.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 11","pages":"Article 101384"},"PeriodicalIF":3.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1016/j.jics.2024.101378
Tariq J. Al-Musawi , Fatin A. Alnasrawi , Sabreen L. Kareem , Ahmed A. Mohammed
In this work, Montmorillonite (MMt) coated with MgCuAl-layered double hydroxide (LDH) nanoparticles as a new adsorbent (MCA-LDH@MMt) was synthesized via a low supersaturation characterized using BET, TEM, XRD, SEM/EDS, and FT-IR analysis. The adsorption studies were conducted in a ternary-batch system of three heavy metal ions (cadmium, zinc, and lead). The results showed that the MMt was successfully loaded with MgCuAl nanoparticles with a porosity of 44.63 % and a specific surface area of 76.63 m2/g. In addition, the surface morphology analysis showed that there were several changes in elemental dispersion, molar ratio, and molecular weights during the preparation of the used adsorbent. The influence of environmental parameters on the adsorption behavior was studied in detail, whereby the maximum adsorption capacity for the three metals ions was achieved at pH 5, 120 min contact time, 0.2 g/100 mL dose, and 50 mg/l initial metal ion concentration at 25 ± 1 °C. A pseudo-second-order model well correlates the kinetic data of the three metal ions (R2 > 0.991). The Cd2+ and Zn2+ isotherm data exhibited high compatibility with the Langmuir model, while the Freundlich model better fitted the Pb2+ isotherm data. The maximum adsorption capacity from the Langmuir model was 91.6, 164.9, and 129.2 mg/g for Cd2+, Zn2+, and Pb2+, respectively. Also, the adsorption process of the three metal ions onto was primarily characterized by their spontaneous and exothermic nature. In conclusion, this study demonstrated that MCA-LDH@MMt is an effective adsorbent for the simultaneous adsorption of cadmium, zinc, and lead in aqueous solution, with the ability to recover the synthesized adsorbent after four consecutive cycles with a minimal reduction in adsorption ability.
{"title":"Simultaneous adsorption of cadmium, zinc, and lead ions from aqueous solution by Montmorillonite clay coated with MgCuAl-LDH nanoparticles","authors":"Tariq J. Al-Musawi , Fatin A. Alnasrawi , Sabreen L. Kareem , Ahmed A. Mohammed","doi":"10.1016/j.jics.2024.101378","DOIUrl":"10.1016/j.jics.2024.101378","url":null,"abstract":"<div><div>In this work, Montmorillonite (MMt) coated with MgCuAl-layered double hydroxide (LDH) nanoparticles as a new adsorbent (MCA-LDH@MMt) was synthesized via a low supersaturation characterized using BET, TEM, XRD, SEM/EDS, and FT-IR analysis. The adsorption studies were conducted in a ternary-batch system of three heavy metal ions (cadmium, zinc, and lead). The results showed that the MMt was successfully loaded with MgCuAl nanoparticles with a porosity of 44.63 % and a specific surface area of 76.63 m<sup>2</sup>/g. In addition, the surface morphology analysis showed that there were several changes in elemental dispersion, molar ratio, and molecular weights during the preparation of the used adsorbent. The influence of environmental parameters on the adsorption behavior was studied in detail, whereby the maximum adsorption capacity for the three metals ions was achieved at pH 5, 120 min contact time, 0.2 g/100 mL dose, and 50 mg/l initial metal ion concentration at 25 ± 1 °C. A pseudo-second-order model well correlates the kinetic data of the three metal ions (R<sup>2</sup> > 0.991). The Cd<sup>2+</sup> and Zn<sup>2+</sup> isotherm data exhibited high compatibility with the Langmuir model, while the Freundlich model better fitted the Pb<sup>2+</sup> isotherm data. The maximum adsorption capacity from the Langmuir model was 91.6, 164.9, and 129.2 mg/g for Cd<sup>2+</sup>, Zn<sup>2+</sup>, and Pb<sup>2+</sup>, respectively. Also, the adsorption process of the three metal ions onto <span><math><mrow><mtext>MCA</mtext><mo>−</mo><mtext>LDH</mtext><mo>@</mo><mtext>MMt</mtext></mrow></math></span> was primarily characterized by their spontaneous and exothermic nature. In conclusion, this study demonstrated that MCA-LDH@MMt is an effective adsorbent for the simultaneous adsorption of cadmium, zinc, and lead in aqueous solution, with the ability to recover the synthesized adsorbent after four consecutive cycles with a minimal reduction in adsorption ability.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 11","pages":"Article 101378"},"PeriodicalIF":3.2,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We report on the electrochemical properties of Salen (N, N’- bis salicylaldehyde ehtylenediamine) and Salphen (N, N’- bis salicylaldehyde phenylenediamine) ligands using density functional approach. The structural and electronic properties, and the reduction potentials of metalated M-Salen and M-Salphen ligands (where M = Sb & Mo) that involve in hydrogen evolution reaction were explored. Optimized geometries of the chosen metalated complexes were obtained at B3LYP/6-31+G(d, p) & LANL2DZ level of theory. The effects solvation on the electrochemical properties of M-Salen and M-Salphen systems were considered in the presence of solvent acetonitrile using conductor-like polarisable continuum model (CPCM) at the same level of theory. Upon reduction process, the charge distribution around the metal centers Mo and Sb, and C, N and O atoms that lie in the coordination sphere is found to change considerably. As the first unoccupied orbital LUMO is directly connected to the electron affinity, the greater negative values of LUMO observed in Mo substituted Salen and Salphen ligands indicate their ability to exhibit better reduction process. Calculated reduction potential values of M-Salen systems were found to vary from −2.23V to −0.62V and hence the catalytic activity of M-Salen ligands follows the order of Mo-Salen > Sb-Salen > Salen and the same trend has been observed in M-Salphen systems with enhanced reduction potential of −0.54V recorded for Mo-Salphen system.
{"title":"DFT study on the electronic and structural properties of M-Salen and M-Salphen electrocatalysts towards effective HER","authors":"Saravanapriya Arumugam , Abiram Angamuthu , Praveena Gopalan","doi":"10.1016/j.jics.2024.101381","DOIUrl":"10.1016/j.jics.2024.101381","url":null,"abstract":"<div><div>We report on the electrochemical properties of Salen (<em>N, N’- bis salicylaldehyde ehtylenediamine</em>) and Salphen (<em>N, N’- bis salicylaldehyde phenylenediamine</em>) ligands using density functional approach. The structural and electronic properties, and the reduction potentials of metalated M-Salen and M-Salphen ligands (where M = Sb & Mo) that involve in hydrogen evolution reaction were explored. Optimized geometries of the chosen metalated complexes were obtained at B3LYP/6-31+G(d, p) & LANL2DZ level of theory. The effects solvation on the electrochemical properties of M-Salen and M-Salphen systems were considered in the presence of solvent acetonitrile using conductor-like polarisable continuum model (CPCM) at the same level of theory. Upon reduction process, the charge distribution around the metal centers Mo and Sb, and C, N and O atoms that lie in the coordination sphere is found to change considerably. As the first unoccupied orbital LUMO is directly connected to the electron affinity, the greater negative values of LUMO observed in Mo substituted Salen and Salphen ligands indicate their ability to exhibit better reduction process. Calculated reduction potential values of M-Salen systems were found to vary from −2.23V to −0.62V and hence the catalytic activity of M-Salen ligands follows the order of Mo-Salen > Sb-Salen > Salen and the same trend has been observed in M-Salphen systems with enhanced reduction potential of −0.54V recorded for Mo-Salphen system.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 11","pages":"Article 101381"},"PeriodicalIF":3.2,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}