Pub Date : 2024-11-11DOI: 10.1038/s41377-024-01649-1
Lukas Glandorf, Bastian Wittmann, Jeanne Droux, Chaim Glück, Bruno Weber, Susanne Wegener, Mohamad El Amki, Rainer Leitgeb, Bjoern Menze, Daniel Razansky
Understanding the morphology and function of large-scale cerebrovascular networks is crucial for studying brain health and disease. However, reconciling the demands for imaging on a broad scale with the precision of high-resolution volumetric microscopy has been a persistent challenge. In this study, we introduce Bessel beam optical coherence microscopy with an extended focus to capture the full cortical vascular hierarchy in mice over 1000 × 1000 × 360 μm3 field-of-view at capillary level resolution. The post-processing pipeline leverages a supervised deep learning approach for precise 3D segmentation of high-resolution angiograms, hence permitting reliable examination of microvascular structures at multiple spatial scales. Coupled with high-sensitivity Doppler optical coherence tomography, our method enables the computation of both axial and transverse blood velocity components as well as vessel-specific blood flow direction, facilitating a detailed assessment of morpho-functional characteristics across all vessel dimensions. Through graph-based analysis, we deliver insights into vascular connectivity, all the way from individual capillaries to broader network interactions, a task traditionally challenging for in vivo studies. The new imaging and analysis framework extends the frontiers of research into cerebrovascular function and neurovascular pathologies.
{"title":"Bessel beam optical coherence microscopy enables multiscale assessment of cerebrovascular network morphology and function","authors":"Lukas Glandorf, Bastian Wittmann, Jeanne Droux, Chaim Glück, Bruno Weber, Susanne Wegener, Mohamad El Amki, Rainer Leitgeb, Bjoern Menze, Daniel Razansky","doi":"10.1038/s41377-024-01649-1","DOIUrl":"https://doi.org/10.1038/s41377-024-01649-1","url":null,"abstract":"<p>Understanding the morphology and function of large-scale cerebrovascular networks is crucial for studying brain health and disease. However, reconciling the demands for imaging on a broad scale with the precision of high-resolution volumetric microscopy has been a persistent challenge. In this study, we introduce Bessel beam optical coherence microscopy with an extended focus to capture the full cortical vascular hierarchy in mice over 1000 × 1000 × 360 μm<sup>3</sup> field-of-view at capillary level resolution. The post-processing pipeline leverages a supervised deep learning approach for precise 3D segmentation of high-resolution angiograms, hence permitting reliable examination of microvascular structures at multiple spatial scales. Coupled with high-sensitivity Doppler optical coherence tomography, our method enables the computation of both axial and transverse blood velocity components as well as vessel-specific blood flow direction, facilitating a detailed assessment of morpho-functional characteristics across all vessel dimensions. Through graph-based analysis, we deliver insights into vascular connectivity, all the way from individual capillaries to broader network interactions, a task traditionally challenging for in vivo studies. The new imaging and analysis framework extends the frontiers of research into cerebrovascular function and neurovascular pathologies.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"70 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1038/s41377-024-01587-y
Aamod Shanker, Johannes E. Fröch, Saswata Mukherjee, Maksym Zhelyeznyakov, Steven L. Brunton, Eric J. Seibel, Arka Majumdar
Quantitative phase imaging (QPI) recovers the exact wavefront of light from intensity measurements. Topographical and optical density maps of translucent microscopic bodies can be extracted from these quantified phase shifts. We demonstrate quantitative phase imaging at the tip of a coherent fiber bundle using chromatic aberrations inherent in a silicon nitride hyperboloid metalens. Our method leverages spectral multiplexing to recover phase from multiple defocus planes in a single capture using a color camera. Our 0.5 mm aperture metalens shows robust quantitative phase imaging capability with a ({28}^{circ}) field of view and 0.({2}{pi}) phase resolution ( ~ 0.({1}{lambda}) in air) for experiments with an endoscopic fiber bundle. Since the spectral functionality is encoded directly in the imaging lens, the metalens acts both as a focusing element and a spectral filter. The use of a simple computational backend will enable real-time operation. Key limitations in the adoption of phase imaging methods for endoscopy such as multiple acquisition, interferometric alignment or mechanical scanning are completely mitigated in the reported metalens based QPI.
{"title":"Quantitative phase imaging endoscopy with a metalens","authors":"Aamod Shanker, Johannes E. Fröch, Saswata Mukherjee, Maksym Zhelyeznyakov, Steven L. Brunton, Eric J. Seibel, Arka Majumdar","doi":"10.1038/s41377-024-01587-y","DOIUrl":"https://doi.org/10.1038/s41377-024-01587-y","url":null,"abstract":"<p>Quantitative phase imaging (QPI) recovers the exact wavefront of light from intensity measurements. Topographical and optical density maps of translucent microscopic bodies can be extracted from these quantified phase shifts. We demonstrate quantitative phase imaging at the tip of a coherent fiber bundle using chromatic aberrations inherent in a silicon nitride hyperboloid metalens. Our method leverages spectral multiplexing to recover phase from multiple defocus planes in a single capture using a color camera. Our 0.5 mm aperture metalens shows robust quantitative phase imaging capability with a <span>({28}^{circ})</span> field of view and 0.<span>({2}{pi})</span> phase resolution ( ~ 0.<span>({1}{lambda})</span> in air) for experiments with an endoscopic fiber bundle. Since the spectral functionality is encoded directly in the imaging lens, the metalens acts both as a focusing element and a spectral filter. The use of a simple computational backend will enable real-time operation. Key limitations in the adoption of phase imaging methods for endoscopy such as multiple acquisition, interferometric alignment or mechanical scanning are completely mitigated in the reported metalens based QPI.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1038/s41377-024-01603-1
Liheng Bian, Xuyang Chang, Hanwen Xu, Jun Zhang
The event detection technique has been introduced to light-field microscopy, boosting its imaging speed in orders of magnitude with simultaneous axial resolution enhancement in scattering medium.
光场显微镜引入了事件检测技术,使其成像速度提高了几个数量级,同时提高了散射介质的轴向分辨率。
{"title":"Ultra-fast light-field microscopy with event detection","authors":"Liheng Bian, Xuyang Chang, Hanwen Xu, Jun Zhang","doi":"10.1038/s41377-024-01603-1","DOIUrl":"https://doi.org/10.1038/s41377-024-01603-1","url":null,"abstract":"<p>The event detection technique has been introduced to light-field microscopy, boosting its imaging speed in orders of magnitude with simultaneous axial resolution enhancement in scattering medium.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"95 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1038/s41377-024-01630-y
Hong-Hua Fang, Xiao-Jie Wang, Xavier Marie, Hong-Bo Sun
Quantum sensing has emerged as a powerful technique to detect and measure physical and chemical parameters with exceptional precision. One of the methods is to use optically active spin defects within solid-state materials. These defects act as sensors and have made significant progress in recent years, particularly in the realm of two-dimensional (2D) spin defects. In this article, we focus on the latest trends in quantum sensing that use spin defects in van der Waals (vdW) materials. We discuss the benefits of combining optically addressable spin defects with 2D vdW materials while highlighting the challenges and opportunities to use these defects. To make quantum sensing practical and applicable, the article identifies some areas worth further exploration. These include identifying spin defects with properties suitable for quantum sensing, generating quantum defects on demand with control of their spatial localization, understanding the impact of layer thickness and interface on quantum sensing, and integrating spin defects with photonic structures for new functionalities and higher emission rates. The article explores the potential applications of quantum sensing in several fields, such as superconductivity, ferromagnetism, 2D nanoelectronics, and biology. For instance, combining nanoscale microfluidic technology with nanopore and quantum sensing may lead to a new platform for DNA sequencing. As materials technology continues to evolve, and with the advancement of defect engineering techniques, 2D spin defects are expected to play a vital role in quantum sensing.
量子传感已经成为一种强大的技术,可以非常精确地探测和测量物理和化学参数。其中一种方法是利用固态材料中的光学活性自旋缺陷。近年来,这些缺陷作为传感器取得了重大进展,尤其是在二维(2D)自旋缺陷领域。在本文中,我们将重点讨论利用范德华(vdW)材料中的自旋缺陷进行量子传感的最新趋势。我们讨论了将光学可寻址自旋缺陷与二维范德华材料相结合的好处,同时强调了使用这些缺陷所面临的挑战和机遇。为了使量子传感切实可行,文章指出了一些值得进一步探索的领域。这些领域包括识别具有适合量子传感特性的自旋缺陷、按需生成量子缺陷并控制其空间定位、了解层厚度和界面对量子传感的影响,以及将自旋缺陷与光子结构集成以实现新功能和更高的发射率。文章探讨了量子传感在超导、铁磁、二维纳米电子学和生物学等多个领域的潜在应用。例如,将纳米级微流体技术与纳米孔和量子传感技术相结合,可能会开发出一种新的 DNA 测序平台。随着材料技术的不断发展,以及缺陷工程技术的进步,二维自旋缺陷有望在量子传感领域发挥重要作用。
{"title":"Quantum sensing with optically accessible spin defects in van der Waals layered materials","authors":"Hong-Hua Fang, Xiao-Jie Wang, Xavier Marie, Hong-Bo Sun","doi":"10.1038/s41377-024-01630-y","DOIUrl":"https://doi.org/10.1038/s41377-024-01630-y","url":null,"abstract":"<p>Quantum sensing has emerged as a powerful technique to detect and measure physical and chemical parameters with exceptional precision. One of the methods is to use optically active spin defects within solid-state materials. These defects act as sensors and have made significant progress in recent years, particularly in the realm of two-dimensional (2D) spin defects. In this article, we focus on the latest trends in quantum sensing that use spin defects in van der Waals (vdW) materials. We discuss the benefits of combining optically addressable spin defects with 2D vdW materials while highlighting the challenges and opportunities to use these defects. To make quantum sensing practical and applicable, the article identifies some areas worth further exploration. These include identifying spin defects with properties suitable for quantum sensing, generating quantum defects on demand with control of their spatial localization, understanding the impact of layer thickness and interface on quantum sensing, and integrating spin defects with photonic structures for new functionalities and higher emission rates. The article explores the potential applications of quantum sensing in several fields, such as superconductivity, ferromagnetism, 2D nanoelectronics, and biology. For instance, combining nanoscale microfluidic technology with nanopore and quantum sensing may lead to a new platform for DNA sequencing. As materials technology continues to evolve, and with the advancement of defect engineering techniques, 2D spin defects are expected to play a vital role in quantum sensing.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1038/s41377-024-01647-3
Andreas Mischok
Exciton-polaritons have long been a focus point of fundamental research towards polariton lasing, chemistry, and quantum optics. Recent developments now show their extraordinary potential for efficient and bright displays with ultimate color purity.
{"title":"Polaritons light up future displays","authors":"Andreas Mischok","doi":"10.1038/s41377-024-01647-3","DOIUrl":"https://doi.org/10.1038/s41377-024-01647-3","url":null,"abstract":"<p>Exciton-polaritons have long been a focus point of fundamental research towards polariton lasing, chemistry, and quantum optics. Recent developments now show their extraordinary potential for efficient and bright displays with ultimate color purity.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"145 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The growing focus on enhancing color quality in liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) has spurred significant advancements in color-conversion materials. Furthermore, color conversion is also important for the development and commercialization of Micro-LEDs. This article provides a comprehensive review of different types of color conversion methods as well as different types of color conversion materials. We summarize the current status of patterning process, and discuss key strategies to enhance display performance. Finally, we speculate on the future prospects and roles that color conversion will play in ultra-high-definition micro- and projection displays.
{"title":"Color-conversion displays: current status and future outlook","authors":"Guijun Li, Man-Chun Tseng, Yu Chen, Fion Sze-Yan Yeung, Hangyu He, Yuechu Cheng, Junhu Cai, Enguo Chen, Hoi-Sing Kwok","doi":"10.1038/s41377-024-01618-8","DOIUrl":"https://doi.org/10.1038/s41377-024-01618-8","url":null,"abstract":"<p>The growing focus on enhancing color quality in liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) has spurred significant advancements in color-conversion materials. Furthermore, color conversion is also important for the development and commercialization of Micro-LEDs. This article provides a comprehensive review of different types of color conversion methods as well as different types of color conversion materials. We summarize the current status of patterning process, and discuss key strategies to enhance display performance. Finally, we speculate on the future prospects and roles that color conversion will play in ultra-high-definition micro- and projection displays.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"240 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1038/s41377-024-01644-6
Jing Lv, Hengrong Lan, Aoji Qin, Tong Sun, Dan Shao, Fei Gao, Junjie Yao, Kamran Avanaki, Liming Nie
Advancements in precision medicine necessitate understanding drug clearance pathways, especially in organs like the liver and kidneys. Traditional techniques such as PET/CT pose radiation hazards, whereas optical imaging poses challenges in maintaining both depth penetration and high resolution. Moreover, very few longitudinal studies have been performed for drug candidates for different symptoms. Leveraging non-ionizing photoacoustic tomography for deep tissue imaging, we developed a spatiotemporally resolved clearance pathway tracking (SRCPT) method, providing unprecedented insights into drug clearance dynamics within vital organs. SRCPT addresses challenges like laser fluence attenuation, enabling dynamic visualization of drug clearance pathways and essential parameter extraction. We employed a novel frequency component selection based synthetic aperture focusing technique (FCS-SAFT) with respiratory-artifacts-free weighting factors to enhance three-dimensional imaging resolutions. Inspired by this, we investigated the clearance pathway of a clinical drug, mitoxantrone, revealing reduced liver clearance when hepatic function is impaired. Furthermore, immunoglobulin G clearance analysis revealed significant differences among mice with varying renal injury degrees. The accuracy of our method was validated using a double-labeled probe [68Ga]DFO-IRDye800CW, showing a strong positive correlation between SRCPT and PET. We believe that this powerful SRCPT promises precise mapping of drug clearance pathways and enhances diagnosis and treatment of liver and kidney-related diseases.
精准医疗的发展要求了解药物清除途径,尤其是肝脏和肾脏等器官的清除途径。正电子发射计算机断层显像(PET/CT)等传统技术存在辐射危害,而光学成像在保持深度穿透和高分辨率方面也面临挑战。此外,针对不同症状的候选药物很少进行纵向研究。利用用于深部组织成像的非电离光声断层成像技术,我们开发了一种时空分辨清除路径跟踪(SRCPT)方法,为重要器官内的药物清除动态提供了前所未有的洞察力。SRCPT 解决了激光通量衰减等难题,实现了药物清除路径的动态可视化和基本参数提取。我们采用了一种新颖的基于频率成分选择的合成孔径聚焦技术(FCS-SAFT)和无呼吸伪影加权因子,以提高三维成像分辨率。受此启发,我们研究了临床药物米托蒽醌的清除途径,发现当肝功能受损时,肝脏的清除率会降低。此外,免疫球蛋白 G 清除率分析表明,不同肾损伤程度的小鼠之间存在显著差异。我们使用双标记探针[68Ga]DFO-IRDye800CW验证了我们方法的准确性,结果显示 SRCPT 和 PET 之间存在很强的正相关性。我们相信,这种功能强大的 SRCPT 可精确绘制药物清除途径图,提高肝肾相关疾病的诊断和治疗水平。
{"title":"Dynamic synthetic-scanning photoacoustic tracking monitors hepatic and renal clearance pathway of exogeneous probes in vivo","authors":"Jing Lv, Hengrong Lan, Aoji Qin, Tong Sun, Dan Shao, Fei Gao, Junjie Yao, Kamran Avanaki, Liming Nie","doi":"10.1038/s41377-024-01644-6","DOIUrl":"https://doi.org/10.1038/s41377-024-01644-6","url":null,"abstract":"<p>Advancements in precision medicine necessitate understanding drug clearance pathways, especially in organs like the liver and kidneys. Traditional techniques such as PET/CT pose radiation hazards, whereas optical imaging poses challenges in maintaining both depth penetration and high resolution. Moreover, very few longitudinal studies have been performed for drug candidates for different symptoms. Leveraging non-ionizing photoacoustic tomography for deep tissue imaging, we developed a spatiotemporally resolved clearance pathway tracking (SRCPT) method, providing unprecedented insights into drug clearance dynamics within vital organs. SRCPT addresses challenges like laser fluence attenuation, enabling dynamic visualization of drug clearance pathways and essential parameter extraction. We employed a novel frequency component selection based synthetic aperture focusing technique (FCS-SAFT) with respiratory-artifacts-free weighting factors to enhance three-dimensional imaging resolutions. Inspired by this, we investigated the clearance pathway of a clinical drug, mitoxantrone, revealing reduced liver clearance when hepatic function is impaired. Furthermore, immunoglobulin G clearance analysis revealed significant differences among mice with varying renal injury degrees. The accuracy of our method was validated using a double-labeled probe [<sup>68</sup>Ga]DFO-IRDye800CW, showing a strong positive correlation between SRCPT and PET. We believe that this powerful SRCPT promises precise mapping of drug clearance pathways and enhances diagnosis and treatment of liver and kidney-related diseases.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1038/s41377-024-01629-5
Paulo Dainese, Louis Marra, Davide Cassara, Ary Portes, Jaewon Oh, Jun Yang, Alfonso Palmieri, Janderson Rocha Rodrigues, Ahmed H. Dorrah, Federico Capasso
Complex non-local behavior makes designing high efficiency and multifunctional metasurfaces a significant challenge. While using libraries of meta-atoms provide a simple and fast implementation methodology, pillar to pillar interaction often imposes performance limitations. On the other extreme, inverse design based on topology optimization leverages non-local coupling to achieve high efficiency, but leads to complex and difficult to fabricate structures. In this paper, we demonstrate numerically and experimentally a shape optimization method that enables high efficiency metasurfaces while providing direct control of the structure complexity through a Fourier decomposition of the surface gradient. The proposed method provides a path towards manufacturability of inverse-designed high efficiency metasurfaces.
{"title":"Shape optimization for high efficiency metasurfaces: theory and implementation","authors":"Paulo Dainese, Louis Marra, Davide Cassara, Ary Portes, Jaewon Oh, Jun Yang, Alfonso Palmieri, Janderson Rocha Rodrigues, Ahmed H. Dorrah, Federico Capasso","doi":"10.1038/s41377-024-01629-5","DOIUrl":"https://doi.org/10.1038/s41377-024-01629-5","url":null,"abstract":"<p>Complex non-local behavior makes designing high efficiency and multifunctional metasurfaces a significant challenge. While using libraries of meta-atoms provide a simple and fast implementation methodology, pillar to pillar interaction often imposes performance limitations. On the other extreme, inverse design based on topology optimization leverages non-local coupling to achieve high efficiency, but leads to complex and difficult to fabricate structures. In this paper, we demonstrate numerically and experimentally a shape optimization method that enables high efficiency metasurfaces while providing direct control of the structure complexity through a Fourier decomposition of the surface gradient. The proposed method provides a path towards manufacturability of inverse-designed high efficiency metasurfaces.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"61 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We demonstrate long-range enhancement of fluorescence and Raman scattering using a dense random array of Ag nanoislands (AgNIs) coated with column-structured silica (CSS) overlayer of over 100 nm thickness, namely, remote plasmonic-like enhancement (RPE). The CSS layer provides physical and chemical protection, reducing the impact between analyte molecules and metal nanostructures. RPE plates are fabricated with high productivity using sputtering and chemical immersion in gold(I)/halide solution. The RPE plate significantly enhances Raman scattering and fluorescence, even without proximity between analyte molecules and metal nanostructures. The maximum enhancement factors are 107-fold for Raman scattering and 102-fold for fluorescence. RPE is successfully applied to enhance fluorescence biosensing of intracellular signalling dynamics in HeLa cells and Raman histological imaging of oesophagus tissues. Our findings present an interesting deviation from the conventional near-field enhancement theory, as they cannot be readily explained within its framework. However, based on the phenomenological aspects we have demonstrated, the observed enhancement is likely associated with the remote resonant coupling between the localised surface plasmon of AgNIs and the molecular transition dipole of the analyte, facilitated through the CSS structure. Although further investigation is warranted to fully understand the underlying mechanisms, the RPE plate offers practical advantages, such as high productivity and biocompatibility, making it a valuable tool for biosensing and biomolecular analysis in chemistry, biology, and medicine. We anticipate that RPE will advance as a versatile analytical tool for enhanced biosensing using Raman and fluorescence analysis in various biological contexts.
{"title":"Long-range enhancement for fluorescence and Raman spectroscopy using Ag nanoislands protected with column-structured silica overlayer","authors":"Takeo Minamikawa, Reiko Sakaguchi, Yoshinori Harada, Hiroki Tanioka, Sota Inoue, Hideharu Hase, Yasuo Mori, Tetsuro Takamatsu, Yu Yamasaki, Yukihiro Morimoto, Masahiro Kawasaki, Mitsuo Kawasaki","doi":"10.1038/s41377-024-01655-3","DOIUrl":"https://doi.org/10.1038/s41377-024-01655-3","url":null,"abstract":"<p>We demonstrate long-range enhancement of fluorescence and Raman scattering using a dense random array of Ag nanoislands (AgNIs) coated with column-structured silica (CSS) overlayer of over 100 nm thickness, namely, remote plasmonic-like enhancement (RPE). The CSS layer provides physical and chemical protection, reducing the impact between analyte molecules and metal nanostructures. RPE plates are fabricated with high productivity using sputtering and chemical immersion in gold(I)/halide solution. The RPE plate significantly enhances Raman scattering and fluorescence, even without proximity between analyte molecules and metal nanostructures. The maximum enhancement factors are 10<sup>7</sup>-fold for Raman scattering and 10<sup>2</sup>-fold for fluorescence. RPE is successfully applied to enhance fluorescence biosensing of intracellular signalling dynamics in HeLa cells and Raman histological imaging of oesophagus tissues. Our findings present an interesting deviation from the conventional near-field enhancement theory, as they cannot be readily explained within its framework. However, based on the phenomenological aspects we have demonstrated, the observed enhancement is likely associated with the remote resonant coupling between the localised surface plasmon of AgNIs and the molecular transition dipole of the analyte, facilitated through the CSS structure. Although further investigation is warranted to fully understand the underlying mechanisms, the RPE plate offers practical advantages, such as high productivity and biocompatibility, making it a valuable tool for biosensing and biomolecular analysis in chemistry, biology, and medicine. We anticipate that RPE will advance as a versatile analytical tool for enhanced biosensing using Raman and fluorescence analysis in various biological contexts.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1038/s41377-024-01610-2
Jacob Kher-Aldeen, Kobi Cohen, Stav Lotan, Kobi Frischwasser, Bergin Gjonaj, Shai Tsesses, Guy Bartal
Shaping and controlling electromagnetic fields at the nanoscale is vital for advancing efficient and compact devices used in optical communications, sensing and metrology, as well as for the exploration of fundamental properties of light-matter interaction and optical nonlinearity. Real-time feedback for active control over light can provide a significant advantage in these endeavors, compensating for ever-changing experimental conditions and inherent or accumulated device flaws. Scanning nearfield microscopy, being slow in essence, cannot provide such a real-time feedback that was thus far possible only by scattering-based microscopy. Here, we present active control over nanophotonic near-fields with direct feedback facilitated by real-time near-field imaging. We use far-field wavefront shaping to control nanophotonic patterns in surface waves, demonstrating translation and splitting of near-field focal spots at nanometer-scale precision, active toggling of different near-field angular momenta and correction of patterns damaged by structural defects using feedback enabled by the real-time operation. The ability to simultaneously shape and observe nanophotonic fields can significantly impact various applications such as nanoscale optical manipulation, optical addressing of integrated quantum emitters and near-field adaptive optics.
{"title":"Dynamic control and manipulation of near-fields using direct feedback","authors":"Jacob Kher-Aldeen, Kobi Cohen, Stav Lotan, Kobi Frischwasser, Bergin Gjonaj, Shai Tsesses, Guy Bartal","doi":"10.1038/s41377-024-01610-2","DOIUrl":"https://doi.org/10.1038/s41377-024-01610-2","url":null,"abstract":"<p>Shaping and controlling electromagnetic fields at the nanoscale is vital for advancing efficient and compact devices used in optical communications, sensing and metrology, as well as for the exploration of fundamental properties of light-matter interaction and optical nonlinearity. Real-time feedback for active control over light can provide a significant advantage in these endeavors, compensating for ever-changing experimental conditions and inherent or accumulated device flaws. Scanning nearfield microscopy, being slow in essence, cannot provide such a real-time feedback that was thus far possible only by scattering-based microscopy. Here, we present active control over nanophotonic near-fields with direct feedback facilitated by real-time near-field imaging. We use far-field wavefront shaping to control nanophotonic patterns in surface waves, demonstrating translation and splitting of near-field focal spots at nanometer-scale precision, active toggling of different near-field angular momenta and correction of patterns damaged by structural defects using feedback enabled by the real-time operation. The ability to simultaneously shape and observe nanophotonic fields can significantly impact various applications such as nanoscale optical manipulation, optical addressing of integrated quantum emitters and near-field adaptive optics.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}