Pub Date : 2024-10-10DOI: 10.1038/s41377-024-01612-0
Lorry Mazzella, Thomas Mangeat, Guillaume Giroussens, Benoit Rogez, Hao Li, Justine Creff, Mehdi Saadaoui, Carla Martins, Ronan Bouzignac, Simon Labouesse, Jérome Idier, Frédéric Galland, Marc Allain, Anne Sentenac, Loïc LeGoff
The ultimate aim of fluorescence microscopy is to achieve high-resolution imaging of increasingly larger biological samples. Extended depth of field presents a potential solution to accelerate imaging of large samples when compression of information along the optical axis is not detrimental to the interpretation of images. We have implemented an extended depth of field (EDF) approach in a random illumination microscope (RIM). RIM uses multiple speckled illuminations and variance data processing to double the resolution. It is particularly adapted to the imaging of thick samples as it does not require the knowledge of illumination patterns. We demonstrate highly-resolved projective images of biological tissues and cells. Compared to a sequential scan of the imaged volume with conventional 2D-RIM, EDF-RIM allows an order of magnitude improvement in speed and light dose reduction, with comparable resolution. As the axial information is lost in an EDF modality, we propose a method to retrieve the sample topography for samples that are organized in cell sheets.
{"title":"Extended-depth of field random illumination microscopy, EDF-RIM, provides super-resolved projective imaging.","authors":"Lorry Mazzella, Thomas Mangeat, Guillaume Giroussens, Benoit Rogez, Hao Li, Justine Creff, Mehdi Saadaoui, Carla Martins, Ronan Bouzignac, Simon Labouesse, Jérome Idier, Frédéric Galland, Marc Allain, Anne Sentenac, Loïc LeGoff","doi":"10.1038/s41377-024-01612-0","DOIUrl":"10.1038/s41377-024-01612-0","url":null,"abstract":"<p><p>The ultimate aim of fluorescence microscopy is to achieve high-resolution imaging of increasingly larger biological samples. Extended depth of field presents a potential solution to accelerate imaging of large samples when compression of information along the optical axis is not detrimental to the interpretation of images. We have implemented an extended depth of field (EDF) approach in a random illumination microscope (RIM). RIM uses multiple speckled illuminations and variance data processing to double the resolution. It is particularly adapted to the imaging of thick samples as it does not require the knowledge of illumination patterns. We demonstrate highly-resolved projective images of biological tissues and cells. Compared to a sequential scan of the imaged volume with conventional 2D-RIM, EDF-RIM allows an order of magnitude improvement in speed and light dose reduction, with comparable resolution. As the axial information is lost in an EDF modality, we propose a method to retrieve the sample topography for samples that are organized in cell sheets.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"285"},"PeriodicalIF":19.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479626/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1038/s41377-024-01637-5
Sirazul Haque, Miguel Alexandre, António T Vicente, Kezheng Li, Christian S Schuster, Sui Yang, Hugo Águas, Rodrigo Martins, Rute A S Ferreira, Manuel J Mendes
{"title":"Publisher Correction: Photon shifting and trapping in perovskite solar cells for improved efficiency and stability.","authors":"Sirazul Haque, Miguel Alexandre, António T Vicente, Kezheng Li, Christian S Schuster, Sui Yang, Hugo Águas, Rodrigo Martins, Rute A S Ferreira, Manuel J Mendes","doi":"10.1038/s41377-024-01637-5","DOIUrl":"https://doi.org/10.1038/s41377-024-01637-5","url":null,"abstract":"","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"259"},"PeriodicalIF":19.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413199/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142290416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conventional hyperspectral cameras cascade lenses and spectrometers to acquire the spectral datacube, which forms the fundamental framework for hyperspectral imaging. However, this cascading framework involves tradeoffs among spectral and imaging performances when the system is driven toward miniaturization. Here, we propose a spectral singlet lens that unifies optical imaging and computational spectrometry functions, enabling the creation of minimalist, miniaturized and high-performance hyperspectral cameras. As a paradigm, we capitalize on planar liquid crystal optics to implement the proposed framework, with each liquid-crystal unit cell acting as both phase modulator and electrically tunable spectral filter. Experiments with various targets show that the resulting millimeter-scale hyperspectral camera exhibits both high spectral fidelity ( > 95%) and high spatial resolutions ( ~1.7 times the diffraction limit). The proposed "two-in-one" framework can resolve the conflicts between spectral and imaging resolutions, which paves a practical pathway for advancing hyperspectral imaging systems toward miniaturization and portable applications.
{"title":"Electrically tunable planar liquid-crystal singlets for simultaneous spectrometry and imaging.","authors":"Zhou Zhou, Yiheng Zhang, Yingxin Xie, Tian Huang, Zile Li, Peng Chen, Yan-Qing Lu, Shaohua Yu, Shuang Zhang, Guoxing Zheng","doi":"10.1038/s41377-024-01608-w","DOIUrl":"10.1038/s41377-024-01608-w","url":null,"abstract":"<p><p>Conventional hyperspectral cameras cascade lenses and spectrometers to acquire the spectral datacube, which forms the fundamental framework for hyperspectral imaging. However, this cascading framework involves tradeoffs among spectral and imaging performances when the system is driven toward miniaturization. Here, we propose a spectral singlet lens that unifies optical imaging and computational spectrometry functions, enabling the creation of minimalist, miniaturized and high-performance hyperspectral cameras. As a paradigm, we capitalize on planar liquid crystal optics to implement the proposed framework, with each liquid-crystal unit cell acting as both phase modulator and electrically tunable spectral filter. Experiments with various targets show that the resulting millimeter-scale hyperspectral camera exhibits both high spectral fidelity ( > 95%) and high spatial resolutions ( ~1.7 times the diffraction limit). The proposed \"two-in-one\" framework can resolve the conflicts between spectral and imaging resolutions, which paves a practical pathway for advancing hyperspectral imaging systems toward miniaturization and portable applications.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"242"},"PeriodicalIF":19.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1038/s41377-024-01572-5
Youyan Lu, Liyun Liu, Ruoqian Gao, Ying Xiong, Peiqing Sun, Zhanghao Wu, Kai Wu, Tong Yu, Kai Zhang, Cheng Zhang, Tarik Bourouina, Xiaofeng Li, Xiaoyi Liu
Pyroelectric (PE) detection technologies have attracted extensive attention due to the cooling-free, bias-free, and broadband properties. However, the PE signals are generated by the continuous energy conversion processes from light, heat, to electricity, normally leading to very slow response speeds. Herein, we design and fabricate a PE detector which shows extremely fast response in near-infrared (NIR) band by combining with the inhomogeneous plasmonic metasurface. The plasmonic effect dramatically accelerates the light-heat conversion process, unprecedentedly improving the NIR response speed by 2-4 orders of magnitude to 22 μs, faster than any reported infrared (IR) PE detector. We also innovatively introduce the concept of time resolution into the field of PE detection, which represents the detector's ability to distinguish multiple fast-moving targets. Furthermore, the spatially inhomogeneous design overcomes the traditional narrowband constraint of plasmonic systems and thus ensures a wideband response from visible to NIR. This study provides a promising approach to develop next-generation IR PE detectors with ultrafast and broadband responses.
热释电 (PE) 检测技术因其无冷却、无偏差和宽带特性而受到广泛关注。然而,热释电信号是通过从光、热到电的连续能量转换过程产生的,通常导致响应速度非常缓慢。在此,我们设计并制造了一种 PE 探测器,通过与非均匀质子元表面相结合,该探测器在近红外(NIR)波段显示出极快的响应速度。质子效应显著加速了光热转换过程,前所未有地将近红外响应速度提高了 2-4 个数量级,达到 22 μs,比任何已报道的红外 PE 探测器都要快。我们还在 PE 检测领域创新性地引入了时间分辨率的概念,它代表了检测器分辨多个快速移动目标的能力。此外,空间不均匀设计克服了传统等离子系统的窄带限制,从而确保了从可见光到近红外的宽带响应。这项研究为开发具有超快和宽带响应的下一代红外 PE 探测器提供了一种前景广阔的方法。
{"title":"Ultrafast near-infrared pyroelectric detector based on inhomogeneous plasmonic metasurface.","authors":"Youyan Lu, Liyun Liu, Ruoqian Gao, Ying Xiong, Peiqing Sun, Zhanghao Wu, Kai Wu, Tong Yu, Kai Zhang, Cheng Zhang, Tarik Bourouina, Xiaofeng Li, Xiaoyi Liu","doi":"10.1038/s41377-024-01572-5","DOIUrl":"10.1038/s41377-024-01572-5","url":null,"abstract":"<p><p>Pyroelectric (PE) detection technologies have attracted extensive attention due to the cooling-free, bias-free, and broadband properties. However, the PE signals are generated by the continuous energy conversion processes from light, heat, to electricity, normally leading to very slow response speeds. Herein, we design and fabricate a PE detector which shows extremely fast response in near-infrared (NIR) band by combining with the inhomogeneous plasmonic metasurface. The plasmonic effect dramatically accelerates the light-heat conversion process, unprecedentedly improving the NIR response speed by 2-4 orders of magnitude to 22 μs, faster than any reported infrared (IR) PE detector. We also innovatively introduce the concept of time resolution into the field of PE detection, which represents the detector's ability to distinguish multiple fast-moving targets. Furthermore, the spatially inhomogeneous design overcomes the traditional narrowband constraint of plasmonic systems and thus ensures a wideband response from visible to NIR. This study provides a promising approach to develop next-generation IR PE detectors with ultrafast and broadband responses.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"241"},"PeriodicalIF":19.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377428/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1038/s41377-024-01585-0
Sang Ho Suk, Sanghee Nah, Muhammad Sajjad, Sung Bok Seo, Jianxiang Chen, Sangwan Sim
In cutting-edge optical technologies, polarization is a key for encoding and transmitting vast information, highlighting the importance of selectively switching and modulating polarized light. Recently, anisotropic two-dimensional materials have emerged for ultrafast switching of polarization-multiplexed optical signals, but face challenges with low polarization ratios and limited spectral ranges. Here, we apply strain to quasi-one-dimensional layered ZrSe3 to enhance polarization selectivity and tune operational energies in ultrafast all-optical switching. Initially, transient absorption on unstrained ZrSe3 reveals a sub-picosecond switching response in polarization along a specific crystal axis, attributed to shifting-recovery dynamics of an anisotropic exciton. However, its polarization selectivity is weakened by a slow non-excitonic response in the perpendicular polarization. To overcome this limitation, we apply strain to ZrSe3 by bending its flexible substrate. The compressive strain spectrally decouples the excitonic and non-excitonic components, doubling the polarization selectivity of the sub-picosecond switching and tripling it compared to that in the tensile-strained ZrSe3. It also effectively tunes the switching energy at a shift rate of ~93 meV %-1. This strain-tunable switching is repeatable, reversible, and robustly maintains the sub-picosecond operation. First-principles calculations reveal that the strain control is enabled by momentum- and band-dependent modulations of the electronic band structure, causing opposite shifts in the excitonic and non-excitonic transitions. Our findings offer a novel approach for high-performance, wavelength-tunable, polarization-selective ultrafast optical switching.
{"title":"Sub-picosecond, strain-tunable, polarization-selective optical switching via anisotropic exciton dynamics in quasi-1D ZrSe<sub>3</sub>.","authors":"Sang Ho Suk, Sanghee Nah, Muhammad Sajjad, Sung Bok Seo, Jianxiang Chen, Sangwan Sim","doi":"10.1038/s41377-024-01585-0","DOIUrl":"10.1038/s41377-024-01585-0","url":null,"abstract":"<p><p>In cutting-edge optical technologies, polarization is a key for encoding and transmitting vast information, highlighting the importance of selectively switching and modulating polarized light. Recently, anisotropic two-dimensional materials have emerged for ultrafast switching of polarization-multiplexed optical signals, but face challenges with low polarization ratios and limited spectral ranges. Here, we apply strain to quasi-one-dimensional layered ZrSe<sub>3</sub> to enhance polarization selectivity and tune operational energies in ultrafast all-optical switching. Initially, transient absorption on unstrained ZrSe<sub>3</sub> reveals a sub-picosecond switching response in polarization along a specific crystal axis, attributed to shifting-recovery dynamics of an anisotropic exciton. However, its polarization selectivity is weakened by a slow non-excitonic response in the perpendicular polarization. To overcome this limitation, we apply strain to ZrSe<sub>3</sub> by bending its flexible substrate. The compressive strain spectrally decouples the excitonic and non-excitonic components, doubling the polarization selectivity of the sub-picosecond switching and tripling it compared to that in the tensile-strained ZrSe<sub>3</sub>. It also effectively tunes the switching energy at a shift rate of ~93 meV %<sup>-1</sup>. This strain-tunable switching is repeatable, reversible, and robustly maintains the sub-picosecond operation. First-principles calculations reveal that the strain control is enabled by momentum- and band-dependent modulations of the electronic band structure, causing opposite shifts in the excitonic and non-excitonic transitions. Our findings offer a novel approach for high-performance, wavelength-tunable, polarization-selective ultrafast optical switching.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"240"},"PeriodicalIF":19.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377565/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1038/s41377-024-01584-1
Wei Ren, Xichuan Ge, Meiqi Li, Jing Sun, Shiyi Li, Shu Gao, Chunyan Shan, Baoxiang Gao, Peng Xi
{"title":"Author Correction: Visualization of cristae and mtDNA interactions via STED nanoscopy using a low saturation power probe.","authors":"Wei Ren, Xichuan Ge, Meiqi Li, Jing Sun, Shiyi Li, Shu Gao, Chunyan Shan, Baoxiang Gao, Peng Xi","doi":"10.1038/s41377-024-01584-1","DOIUrl":"10.1038/s41377-024-01584-1","url":null,"abstract":"","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"235"},"PeriodicalIF":19.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375147/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1038/s41377-024-01575-2
Isaac Nape, Andrew Forbes
Transparent objects are invisible to traditional cameras because they can only detect intensity fluctuations, necessitating the need for interferometry followed by computationally intensive digital image processing. Now it is shown that the necessary transformations can be performed optically by combining machine learning and diffractive optics, for a direct in-situ measurement of transparent objects with conventional cameras.
{"title":"Seeing invisible objects with intelligent optics.","authors":"Isaac Nape, Andrew Forbes","doi":"10.1038/s41377-024-01575-2","DOIUrl":"10.1038/s41377-024-01575-2","url":null,"abstract":"<p><p>Transparent objects are invisible to traditional cameras because they can only detect intensity fluctuations, necessitating the need for interferometry followed by computationally intensive digital image processing. Now it is shown that the necessary transformations can be performed optically by combining machine learning and diffractive optics, for a direct in-situ measurement of transparent objects with conventional cameras.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"232"},"PeriodicalIF":19.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374888/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1038/s41377-024-01579-y
Hou-Tong Chen
Structured light beams offer promising properties for a variety of applications, but the generation of broadband structured light remains a challenge. New opportunities are emerging in the terahertz frequency range owing to recent progress in light-driven ultrafast vectorial currents through spatially patterning spintronic and optoelectronic systems.
{"title":"Micro-patterning of spintronic emitters enables ultrabroadband structured terahertz radiation.","authors":"Hou-Tong Chen","doi":"10.1038/s41377-024-01579-y","DOIUrl":"10.1038/s41377-024-01579-y","url":null,"abstract":"<p><p>Structured light beams offer promising properties for a variety of applications, but the generation of broadband structured light remains a challenge. New opportunities are emerging in the terahertz frequency range owing to recent progress in light-driven ultrafast vectorial currents through spatially patterning spintronic and optoelectronic systems.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"234"},"PeriodicalIF":19.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374789/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1038/s41377-024-01576-1
Dawn T H Tan, Xavier X Chia
Ultra-low loss silicon nitride realized using deuterated precursors and low thermal budgets well within backend-of-line CMOS processing may accelerate widespread proliferation of their use.
使用氚化前驱体实现的超低损耗氮化硅和 CMOS 后段制程中的低热预算可能会加速其广泛应用。
{"title":"Ultra-low loss silicon nitride becomes even cooler.","authors":"Dawn T H Tan, Xavier X Chia","doi":"10.1038/s41377-024-01576-1","DOIUrl":"10.1038/s41377-024-01576-1","url":null,"abstract":"<p><p>Ultra-low loss silicon nitride realized using deuterated precursors and low thermal budgets well within backend-of-line CMOS processing may accelerate widespread proliferation of their use.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"233"},"PeriodicalIF":19.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374801/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1038/s41377-024-01570-7
Xutao Zhang, Fanlu Zhang, Ruixuan Yi, Naiyin Wang, Zhicheng Su, Mingwen Zhang, Bijun Zhao, Ziyuan Li, Jiangtao Qu, Julie M Cairney, Yuerui Lu, Jianlin Zhao, Xuetao Gan, Hark Hoe Tan, Chennupati Jagadish, Lan Fu
Highly integrated optoelectronic and photonic systems underpin the development of next-generation advanced optical and quantum communication technologies, which require compact, multiwavelength laser sources at the telecom band. Here, we report on-substrate vertical emitting lasing from ordered InGaAs/InP multi-quantum well core-shell nanowire array epitaxially grown on InP substrate by selective area epitaxy. To reduce optical loss and tailor the cavity mode, a new nanowire facet engineering approach has been developed to achieve controlled quantum well nanowire dimensions with uniform morphology and high crystal quality. Owing to the strong quantum confinement effect of InGaAs quantum wells and the successful formation of a vertical Fabry-Pérot cavity between the top nanowire facet and bottom nanowire/SiO2 mask interface, stimulated emissions of the EH11a/b mode from single vertical nanowires from an on-substrate nanowire array have been demonstrated with a lasing threshold of ~28.2 μJ cm-2 per pulse and a high characteristic temperature of ~128 K. By fine-tuning the In composition of the quantum wells, room temperature, single-mode lasing is achieved in the vertical direction across a broad near-infrared spectral range, spanning from 940 nm to the telecommunication O and C bands. Our research indicates that through a carefully designed facet engineering strategy, highly ordered, uniform nanowire arrays with precise dimension control can be achieved to simultaneously deliver thousands of nanolasers with multiple wavelengths on the same substrate, paving a promising and scalable pathway towards future advanced optoelectronic and photonic systems.
高度集成的光电子和光子系统是下一代先进光通信和量子通信技术发展的基础,这些技术需要电信波段的紧凑型多波长激光源。在此,我们报告了通过选择性区域外延在 InP 衬底上生长的有序 InGaAs/InP 多量子阱核壳纳米线阵列的衬底垂直发射激光。为了降低光损耗和定制腔模式,我们开发了一种新的纳米线刻面工程方法,以实现具有均匀形态和高晶体质量的可控量子阱纳米线尺寸。由于 InGaAs 量子阱具有很强的量子约束效应,并且在顶部纳米线刻面和底部纳米线/二氧化硅掩膜界面之间成功形成了垂直法布里-佩罗腔,因此在基底上的纳米线阵列中,单根垂直纳米线的 EH11a/b 模式受激发射得到了证实,其激光阈值为 ~28.通过微调量子阱的 In 成分,在垂直方向上实现了室温单模激光,其光谱范围从 940 纳米到电信 O 波段和 C 波段。我们的研究表明,通过精心设计的刻面工程策略,可以实现高度有序、均匀、尺寸控制精确的纳米线阵列,从而在同一基底上同时提供数千个多波长的纳米激光器,为未来的先进光电和光子系统铺平了一条前景广阔、可扩展的道路。
{"title":"Telecom-band multiwavelength vertical emitting quantum well nanowire laser arrays.","authors":"Xutao Zhang, Fanlu Zhang, Ruixuan Yi, Naiyin Wang, Zhicheng Su, Mingwen Zhang, Bijun Zhao, Ziyuan Li, Jiangtao Qu, Julie M Cairney, Yuerui Lu, Jianlin Zhao, Xuetao Gan, Hark Hoe Tan, Chennupati Jagadish, Lan Fu","doi":"10.1038/s41377-024-01570-7","DOIUrl":"10.1038/s41377-024-01570-7","url":null,"abstract":"<p><p>Highly integrated optoelectronic and photonic systems underpin the development of next-generation advanced optical and quantum communication technologies, which require compact, multiwavelength laser sources at the telecom band. Here, we report on-substrate vertical emitting lasing from ordered InGaAs/InP multi-quantum well core-shell nanowire array epitaxially grown on InP substrate by selective area epitaxy. To reduce optical loss and tailor the cavity mode, a new nanowire facet engineering approach has been developed to achieve controlled quantum well nanowire dimensions with uniform morphology and high crystal quality. Owing to the strong quantum confinement effect of InGaAs quantum wells and the successful formation of a vertical Fabry-Pérot cavity between the top nanowire facet and bottom nanowire/SiO<sub>2</sub> mask interface, stimulated emissions of the EH<sub>11a/b</sub> mode from single vertical nanowires from an on-substrate nanowire array have been demonstrated with a lasing threshold of ~28.2 μJ cm<sup>-2</sup> per pulse and a high characteristic temperature of ~128 K. By fine-tuning the In composition of the quantum wells, room temperature, single-mode lasing is achieved in the vertical direction across a broad near-infrared spectral range, spanning from 940 nm to the telecommunication O and C bands. Our research indicates that through a carefully designed facet engineering strategy, highly ordered, uniform nanowire arrays with precise dimension control can be achieved to simultaneously deliver thousands of nanolasers with multiple wavelengths on the same substrate, paving a promising and scalable pathway towards future advanced optoelectronic and photonic systems.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"230"},"PeriodicalIF":19.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372134/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}