The structure and functioning of ecosystems are largely determined by the interactions between species within a biological community. Among these interactions, species exhibiting similar vertical and spatial prey preferences can be identified, thereby belonging to the same trophic guild. Our study explored some trophic characteristics of a diverse megafaunal community (cetaceans, tunas, seabirds) in the Bay of Biscay (BoB). Using stable isotope analysis (SIA), we explored the dietary habits and niche overlap among predators. The degree of isotopic niche overlap was generally low, but with certain species exhibiting large and narrow isotopic niche areas (long-finned pilot whales and Balearic shearwaters, respectively). Our results revealed a diversity of dietary preferences leading to the identification of three distinct trophic guilds based on prey functional groups and spatial preferences: cephalopod feeders (e.g. long-finned pilot whales, Cuvier's beaked whales, striped dolphins), crustacean feeders (e.g. fin whales, albacores), and piscivores (e.g. common dolphins, harbour porpoises, bottlenose dolphins, Atlantic bluefin tunas, Balearic shearwaters). Our findings showed resource partitioning and niche differentiation among the megafaunal community, highlighting the complexity of BoB's marine ecosystem. The insights derived from this study hold important implications for ecosystem management and the implementation of conservation initiatives.
{"title":"Trophic guilds and niche segregation among marine megafauna in the Bay of Biscay","authors":"Beñat Iglesias , Joan Giménez , Izaskun Preciado , Paula Méndez-Fernández , Tiphaine Chouvelon , Adrien Lambrechts , Paco Bustamante , Jérôme Fort , Nicolás Goñi , Jérôme Spitz , Amaia Astarloa , Maite Louzao","doi":"10.1016/j.marenvres.2024.106751","DOIUrl":"10.1016/j.marenvres.2024.106751","url":null,"abstract":"<div><p>The structure and functioning of ecosystems are largely determined by the interactions between species within a biological community. Among these interactions, species exhibiting similar vertical and spatial prey preferences can be identified, thereby belonging to the same trophic guild. Our study explored some trophic characteristics of a diverse megafaunal community (cetaceans, tunas, seabirds) in the Bay of Biscay (BoB). Using stable isotope analysis (SIA), we explored the dietary habits and niche overlap among predators. The degree of isotopic niche overlap was generally low, but with certain species exhibiting large and narrow isotopic niche areas (long-finned pilot whales and Balearic shearwaters, respectively). Our results revealed a diversity of dietary preferences leading to the identification of three distinct trophic guilds based on prey functional groups and spatial preferences: cephalopod feeders (e.g. long-finned pilot whales, Cuvier's beaked whales, striped dolphins), crustacean feeders (e.g. fin whales, albacores), and piscivores (e.g. common dolphins, harbour porpoises, bottlenose dolphins, Atlantic bluefin tunas, Balearic shearwaters). Our findings showed resource partitioning and niche differentiation among the megafaunal community, highlighting the complexity of BoB's marine ecosystem. The insights derived from this study hold important implications for ecosystem management and the implementation of conservation initiatives.</p></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"202 ","pages":"Article 106751"},"PeriodicalIF":3.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1016/j.marenvres.2024.106750
Linshu Li , Jiaxi Chang , Zhaosong Xu , Longfei Chu , Junhao Zhang , Qiang Xing , Zhenmin Bao
Global warming has significantly impacted agriculture, particularly in animal husbandry and aquaculture industry. Rising ocean temperatures due to global warming are severely affecting shellfish production, necessitating an understanding of how shellfish cope with thermal stress. The mitogen-activated protein kinases (MAPK) signaling pathway plays a crucial role in cell growth, differentiation, adaptation to environmental stress, inflammatory response, and managing high temperature stress. To investigate the function of MAPKs in bay scallops, a comparative genomics and bioinformatics approach identified three MAPK genes: AiERK, Aip38, and AiJNK. Structural and phylogenetic analyses of these proteins were conducted to determine their evolutionary relationships. Spatiotemporal expression patterns were examined at different developmental stages and in various tissues of healthy adult scallops. Additionally, the expression regulation of these genes was studied in selected tissues (hemocyte, gill, heart, mantle) following exposure to high temperatures (32 °C) for different durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d, 10 d). The spatiotemporal expressions of AiMAPKs were ubiquitous, with significant increases in AiERK expression observed at the umbo larval stage (3.09-fold), while Aip38 and AiJNK were identified as potential maternal effect genes. In adult scallops, different gene expression patterns of AiMAPKs were observed across eight tissues, with high expressions in the foot and gill, and lower expressions in the striated muscle. Following high temperature stress, AiMAPKs expressions in the gill and mantle were mainly up-regulated, while in the hemocyte, they were primarily down-regulated. These findings indicate time- and tissue-dependent expression patterns with functional allocation in response to different thermal durations. This study enhances our understanding of the function and evolution of AiMAPKs genes in shellfish and provides a theoretical basis for elucidating the energy regulation mechanism of bay scallops in response to high temperature stress.
{"title":"Functional allocation of Mitogen-activated protein kinases (MAPKs) unveils thermotolerance in scallop Argopecten irradians irradians","authors":"Linshu Li , Jiaxi Chang , Zhaosong Xu , Longfei Chu , Junhao Zhang , Qiang Xing , Zhenmin Bao","doi":"10.1016/j.marenvres.2024.106750","DOIUrl":"10.1016/j.marenvres.2024.106750","url":null,"abstract":"<div><p>Global warming has significantly impacted agriculture, particularly in animal husbandry and aquaculture industry. Rising ocean temperatures due to global warming are severely affecting shellfish production, necessitating an understanding of how shellfish cope with thermal stress. The mitogen-activated protein kinases (MAPK) signaling pathway plays a crucial role in cell growth, differentiation, adaptation to environmental stress, inflammatory response, and managing high temperature stress. To investigate the function of MAPKs in bay scallops, a comparative genomics and bioinformatics approach identified three <em>MAPK</em> genes: <em>AiERK</em>, <em>Aip38</em>, and <em>AiJNK</em>. Structural and phylogenetic analyses of these proteins were conducted to determine their evolutionary relationships. Spatiotemporal expression patterns were examined at different developmental stages and in various tissues of healthy adult scallops. Additionally, the expression regulation of these genes was studied in selected tissues (hemocyte, gill, heart, mantle) following exposure to high temperatures (32 °C) for different durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d, 10 d). The spatiotemporal expressions of <em>AiMAPKs</em> were ubiquitous, with significant increases in <em>AiERK</em> expression observed at the umbo larval stage (3.09-fold), while <em>Aip38</em> and <em>AiJNK</em> were identified as potential maternal effect genes. In adult scallops, different gene expression patterns of <em>AiMAPKs</em> were observed across eight tissues, with high expressions in the foot and gill, and lower expressions in the striated muscle. Following high temperature stress, <em>AiMAPKs</em> expressions in the gill and mantle were mainly up-regulated, while in the hemocyte, they were primarily down-regulated. These findings indicate time- and tissue-dependent expression patterns with functional allocation in response to different thermal durations. This study enhances our understanding of the function and evolution of <em>AiMAPKs</em> genes in shellfish and provides a theoretical basis for elucidating the energy regulation mechanism of bay scallops in response to high temperature stress.</p></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"202 ","pages":"Article 106750"},"PeriodicalIF":3.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emerita species (Scopoli, 1777; Crustacea: Decapoda: Pleocyemata: Anomura: Hippidae), commonly known as mole crabs, are specialized in burying and distributed in the swash zone of the Pacific, Atlantic, and Indian Ocean sandy beaches. This genus has received increasing attention in scientific studies owing to its ecological importance. It is used as a model species to evaluate the ecological state of communities and as a bioindicator of environmental health and quality. Here, we systematically reviewed the literature to understand how Emerita species are affected by anthropogenic activities and gathered records of its population densities. Two independent literature searches were conducted on anthropogenic impact and population density. Anthropogenic impacts were reviewed using 61 articles published between 1974 and 2023. The main anthropogenic impacts were physical changes (n = 19) and toxicity (n = 18). E. analoga, E. talpoida, and E. brasiliensis were the most studied species. Some anthropogenic impacts did not directly damage E. analoga and E. talpoida. E. analoga was more tolerant of certain types of impacts related to physical changes and toxicity. Lower densities of E. brasiliensis were associated with more urbanized beaches. Accessing data on annual cycles, density fluctuations, and population peaks is important to minimize the impacts on populations. In total, 42 articles reported surveys on population density or abundance in nine countries. E. brasiliensis exhibited the highest amount (n = 17) on the beaches in Brazil and Uruguay, followed by E. analoga (n = 13), in Chile and USA. A temporal reduction in the densities was observed for E. brasiliensis, primarily on beaches in Brazil, and E. talpoida. A global standardization of sampling and density and abundance data presentation is necessary for effective long-term assessments of Emerita species. This study synthesizes the impacts that have occurred on Emerita, highlighting potential threats to its conservation.
雌蟹(Emerita species,Scopoli,1777;甲壳纲:十足目:多足纲:无颌目:Hippidae)俗称鼹蟹,擅长埋藏,分布于太平洋、大西洋和印度洋沙滩的沼泽区。由于其生态重要性,该属在科学研究中受到越来越多的关注。它被用作评估群落生态状况的模式物种,以及环境健康和质量的生物指标。在此,我们系统地查阅了文献,以了解人类活动对 Emerita 物种的影响,并收集了其种群密度的记录。我们对人为影响和种群密度进行了两次独立的文献检索。我们利用 1974 年至 2023 年间发表的 61 篇文章对人为影响进行了研究。主要的人为影响是物理变化(19 篇)和毒性(18 篇)。E. analoga、E. talpoida 和 E. brasiliensis 是研究最多的物种。一些人为影响并未直接损害 E. analoga 和 E. talpoida。E.analoga对与物理变化和毒性有关的某些类型的影响更有耐受性。巴西鲎的密度较低与城市化程度较高的海滩有关。获取有关年度周期、密度波动和种群高峰的数据对于尽量减少对种群的影响非常重要。共有 42 篇文章报道了九个国家的种群密度或丰度调查。在巴西和乌拉圭的海滩上,E. brasiliensis 的数量最多(n = 17),其次是智利和美国的 E. analoga(n = 13)。在巴西和乌拉圭的海滩上,E. brasiliensis 和 E. talpoida 的数量最多(n = 17),其次是智利和美国的 E. analoga(n = 13)。为了对 Emerita 物种进行有效的长期评估,有必要对取样、密度和丰度数据的呈现进行全球标准化。本研究综述了Emerita受到的影响,强调了其保护面临的潜在威胁。
{"title":"Sandy beach mole crabs (Decapoda: Hippidae: Emerita): A systematic review of the anthropic impacts, populations density, and conservation strategies","authors":"Rayane Romão Saad Abude , Gisele Lôbo-Hajdu , Daniel Andrade Moreira , Tatiana Medeiros Barbosa Cabrini","doi":"10.1016/j.marenvres.2024.106745","DOIUrl":"10.1016/j.marenvres.2024.106745","url":null,"abstract":"<div><p><em>Emerita</em> species (Scopoli, 1777; Crustacea: Decapoda: Pleocyemata: Anomura: Hippidae), commonly known as mole crabs, are specialized in burying and distributed in the swash zone of the Pacific, Atlantic, and Indian Ocean sandy beaches. This genus has received increasing attention in scientific studies owing to its ecological importance. It is used as a model species to evaluate the ecological state of communities and as a bioindicator of environmental health and quality. Here, we systematically reviewed the literature to understand how <em>Emerita</em> species are affected by anthropogenic activities and gathered records of its population densities. Two independent literature searches were conducted on anthropogenic impact and population density. Anthropogenic impacts were reviewed using 61 articles published between 1974 and 2023. The main anthropogenic impacts were physical changes (n = 19) and toxicity (n = 18). <em>E. analoga</em>, <em>E. talpoida</em>, and <em>E. brasiliensis</em> were the most studied species. Some anthropogenic impacts did not directly damage <em>E. analoga</em> and <em>E. talpoida</em>. <em>E. analoga</em> was more tolerant of certain types of impacts related to physical changes and toxicity. Lower densities of <em>E. brasiliensis</em> were associated with more urbanized beaches. Accessing data on annual cycles, density fluctuations, and population peaks is important to minimize the impacts on populations. In total, 42 articles reported surveys on population density or abundance in nine countries. <em>E. brasiliensis</em> exhibited the highest amount (n = 17) on the beaches in Brazil and Uruguay, followed by <em>E. analoga</em> (n = 13), in Chile and USA. A temporal reduction in the densities was observed for <em>E. brasiliensis</em>, primarily on beaches in Brazil, and <em>E. talpoida</em>. A global standardization of sampling and density and abundance data presentation is necessary for effective long-term assessments of <em>Emerita</em> species. This study synthesizes the impacts that have occurred on <em>Emerita</em>, highlighting potential threats to its conservation.</p></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"202 ","pages":"Article 106745"},"PeriodicalIF":3.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1016/j.marenvres.2024.106749
Ali Sobhani , Seyed Mostafa Siadatmousavi , Ali Mehdinia
Microplastics have long-term negative effects on marine environment. One of the most significant threats of microplastics is their ability to absorb chemicals which enhances the transfer of pollutants. These pollutants eventually enter the tissues of living organisms e.g. through ingestion. To shed a light on the way these particles accumulate in the surface water of Persian Gulf and the Arabian Sea and the spatial and temporal distribution of their concentrations, a combination of field sampling, remote sensing techniques, and numerical modelling methods were used. Samples were collected using a Neuston net at 31 stations in 2018 and 2021. A hydrodynamic model was used to study the transport of these materials by tide, wind and density-driven currents, and microplastic pathways were mapped. Also, CYGNSS satellite data were used to estimate the particles concentration by measuring the roughness of the ocean surface. It was shown that the northeastern part of the Arabian Sea had the highest concentration of microplastics in winter. Oman's northern border and the Strait of Hormuz had relatively higher concentrations than other parts. This accumulation increases in winter and continues to rise until the end of summer. In autumn, the accumulation decreases, but it begins to increase again in the north of Oman during winter. During winter, the southern part of the Persian Gulf had high concentration, while from summer to autumn, the concentration in the northwest region had increased. In 2021, the average microplastic concentration in the Arabian Sea and the Gulf of Oman varied seasonally from 2.6x104 to 1.8x104 particle per km2. Meanwhile, the average concentration of pollutants in the Persian Gulf was almost invariable throughout the year, ranging from 2.8 x104 to 2.6 x104 particle per km2. Furthermore, the study reveals that these concentrations are influenced by various environmental factors. In the Persian Gulf, water density is the most significant factor controlling the surface concentration of microplastics, while in the Arabian Sea, the interaction of wind speed and sea surface currents is crucial.
{"title":"Surface microplastics dynamics in the Persian Gulf and Arabian Sea using numerical modelling and CYGNSS satellite estimations","authors":"Ali Sobhani , Seyed Mostafa Siadatmousavi , Ali Mehdinia","doi":"10.1016/j.marenvres.2024.106749","DOIUrl":"10.1016/j.marenvres.2024.106749","url":null,"abstract":"<div><p>Microplastics have long-term negative effects on marine environment. One of the most significant threats of microplastics is their ability to absorb chemicals which enhances the transfer of pollutants. These pollutants eventually enter the tissues of living organisms e.g. through ingestion. To shed a light on the way these particles accumulate in the surface water of Persian Gulf and the Arabian Sea and the spatial and temporal distribution of their concentrations, a combination of field sampling, remote sensing techniques, and numerical modelling methods were used. Samples were collected using a Neuston net at 31 stations in 2018 and 2021. A hydrodynamic model was used to study the transport of these materials by tide, wind and density-driven currents, and microplastic pathways were mapped. Also, CYGNSS satellite data were used to estimate the particles concentration by measuring the roughness of the ocean surface. It was shown that the northeastern part of the Arabian Sea had the highest concentration of microplastics in winter. Oman's northern border and the Strait of Hormuz had relatively higher concentrations than other parts. This accumulation increases in winter and continues to rise until the end of summer. In autumn, the accumulation decreases, but it begins to increase again in the north of Oman during winter. During winter, the southern part of the Persian Gulf had high concentration, while from summer to autumn, the concentration in the northwest region had increased. In 2021, the average microplastic concentration in the Arabian Sea and the Gulf of Oman varied seasonally from 2.6x10<sup>4</sup> to 1.8x10<sup>4</sup> particle per km<sup>2</sup>. Meanwhile, the average concentration of pollutants in the Persian Gulf was almost invariable throughout the year, ranging from 2.8 x10<sup>4</sup> to 2.6 x10<sup>4</sup> particle per km<sup>2</sup>. Furthermore, the study reveals that these concentrations are influenced by various environmental factors. In the Persian Gulf, water density is the most significant factor controlling the surface concentration of microplastics, while in the Arabian Sea, the interaction of wind speed and sea surface currents is crucial.</p></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"202 ","pages":"Article 106749"},"PeriodicalIF":3.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1016/j.marenvres.2024.106746
Laura Sordo , Eduardo Esteves , Joana F.A. Valente , Jaime Aníbal , Catarina Duarte , Nuno Alves , Teresa Baptista , Miguel B. Gaspar
Ocean acidification (OA) is expected to decrease the strength of bivalves’ shells, especially during the early stages of development, with negative consequences to the resilience of natural populations and the economy. The objectives of the present study were to assess the long-term effect of increasing pCO2 after 217 days of exposure under controlled conditions of pH of ∼8.2, 8.0, and 7.7 on the strength and integrity of shells of juveniles of the commercial striped venus clam Chamelea gallina. Shell strength was estimated through compression tests and integrity through scanning electron microscopy (SEM) and dispersive X-ray analyses (EDX). The results showed that under increasing pCO2 the shell strength of juveniles is unaffected, which could be related to the locally elevated total alkalinity of seawater with respect to other parts of the coastal lagoon. However, despite this, it was also observed that the juvenile clams exposed to elevated pCO2 decreased their shell thickness and increased the porosity of their prismatic layer. Under future OA conditions, these changes could eventually compromise the integrity of the shells, becoming more vulnerable to the attack of predators and breakable during fishing operations. Future studies should address the plasticity of the organisms and the effect of the alkalinization of seawater on the resilience of shellfish juveniles under global change conditions.
{"title":"Ocean acidification will not affect the shell strength of juveniles of the commercial clam species Chamelea gallina: Implications of the local alkalinization of seawater","authors":"Laura Sordo , Eduardo Esteves , Joana F.A. Valente , Jaime Aníbal , Catarina Duarte , Nuno Alves , Teresa Baptista , Miguel B. Gaspar","doi":"10.1016/j.marenvres.2024.106746","DOIUrl":"10.1016/j.marenvres.2024.106746","url":null,"abstract":"<div><p>Ocean acidification (OA) is expected to decrease the strength of bivalves’ shells, especially during the early stages of development, with negative consequences to the resilience of natural populations and the economy. The objectives of the present study were to assess the long-term effect of increasing <em>p</em>CO<sub>2</sub> after 217 days of exposure under controlled conditions of pH of ∼8.2, 8.0, and 7.7 on the strength and integrity of shells of juveniles of the commercial striped venus clam <em>Chamelea gallina</em>. Shell strength was estimated through compression tests and integrity through scanning electron microscopy (SEM) and dispersive X-ray analyses (EDX). The results showed that under increasing <em>p</em>CO<sub>2</sub> the shell strength of juveniles is unaffected, which could be related to the locally elevated total alkalinity of seawater with respect to other parts of the coastal lagoon. However, despite this, it was also observed that the juvenile clams exposed to elevated <em>p</em>CO<sub>2</sub> decreased their shell thickness and increased the porosity of their prismatic layer. Under future OA conditions, these changes could eventually compromise the integrity of the shells, becoming more vulnerable to the attack of predators and breakable during fishing operations. Future studies should address the plasticity of the organisms and the effect of the alkalinization of seawater on the resilience of shellfish juveniles under global change conditions.</p></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"202 ","pages":"Article 106746"},"PeriodicalIF":3.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141113624004070/pdfft?md5=136d67e79cf8d7dc8467e7cf8ffe5ed9&pid=1-s2.0-S0141113624004070-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1016/j.marenvres.2024.106731
Nagore Blasco , Mikel Ibeas , Julene Aramendia , Kepa Castro , Manu Soto , Urtzi Izagirre , Nerea Garcia-Velasco
Microplastics (MPs) constitute the predominant plastic type in marine environments. Since they occupy the same size fraction of sediment particles and planktonic organisms they are potentially bioavailable to a broad scope of organisms, such as filter feeders, which are particularly vulnerable to MP ingestion. To understand the potential impact of MPs in filter feeders it is essential to clarify the uptake, accumulation patterns and elimination rates with time of MPs. The aim of this study was to determine the depuration dynamics and accumulation in tissues of mussels Mytilus galloprovincialis exposed during 24 h to different size polystyrene MPs (1 μm and 10 μm), and depurated for a maximum of 7 days (T = 24 h, T = 48 h and T = 7 d). Mussels were chemically digested with KOH 10% and filtered to quantify the number of MP ingested, and they were cryostat sliced for MP localization in tissues. Both MP sizes were quantified in all depuration times, but mussels accumulated significantly higher quantities of 10 μm MP throughout depuration compared to 1 μm MP. A significant decrease was observed after 7 d depuration in mussels exposed to 10 μm. Mussels removed the same amount of 1 and 10 μm MP after 7 days depuration. However, the depuration dynamics differed for each size-MPs and showed to be size-dependent. Most of both size MPs were eliminated in the first 24 h, but 1 μm MP showed to pass faster through the digestive tract than 10 μm MP. MPs of 1 μm and 10 μm were localized mainly in the lumen and a few in the epithelium of the digestive tract (stomach, intestine and digestive gland) during the depuration and in the gills after the exposure; as confirmed by Raman spectroscopy. The usage of chemical digestion and histological analysis as complementary techniques show to be suitable to infer the depuration dynamics of MPs in mussels.
{"title":"Depuration kinetics and accumulation of microplastics in tissues of mussel Mytilus galloprovincialis","authors":"Nagore Blasco , Mikel Ibeas , Julene Aramendia , Kepa Castro , Manu Soto , Urtzi Izagirre , Nerea Garcia-Velasco","doi":"10.1016/j.marenvres.2024.106731","DOIUrl":"10.1016/j.marenvres.2024.106731","url":null,"abstract":"<div><p>Microplastics (MPs) constitute the predominant plastic type in marine environments. Since they occupy the same size fraction of sediment particles and planktonic organisms they are potentially bioavailable to a broad scope of organisms, such as filter feeders, which are particularly vulnerable to MP ingestion. To understand the potential impact of MPs in filter feeders it is essential to clarify the uptake, accumulation patterns and elimination rates with time of MPs. The aim of this study was to determine the depuration dynamics and accumulation in tissues of mussels <em>Mytilus galloprovincialis</em> exposed during 24 h to different size polystyrene MPs (1 μm and 10 μm), and depurated for a maximum of 7 days (T = 24 h, T = 48 h and T = 7 d). Mussels were chemically digested with KOH 10% and filtered to quantify the number of MP ingested, and they were cryostat sliced for MP localization in tissues. Both MP sizes were quantified in all depuration times, but mussels accumulated significantly higher quantities of 10 μm MP throughout depuration compared to 1 μm MP. A significant decrease was observed after 7 d depuration in mussels exposed to 10 μm. Mussels removed the same amount of 1 and 10 μm MP after 7 days depuration. However, the depuration dynamics differed for each size-MPs and showed to be size-dependent. Most of both size MPs were eliminated in the first 24 h, but 1 μm MP showed to pass faster through the digestive tract than 10 μm MP. MPs of 1 μm and 10 μm were localized mainly in the lumen and a few in the epithelium of the digestive tract (stomach, intestine and digestive gland) during the depuration and in the gills after the exposure; as confirmed by Raman spectroscopy. The usage of chemical digestion and histological analysis as complementary techniques show to be suitable to infer the depuration dynamics of MPs in mussels.</p></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"202 ","pages":"Article 106731"},"PeriodicalIF":3.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141113624003921/pdfft?md5=e8609d9960dff3ba7f83ce468832d554&pid=1-s2.0-S0141113624003921-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-07DOI: 10.1016/j.marenvres.2024.106734
Huihui Zhang , Nan Wang , Di Zhang , Fei Wang , Shiji Xu , Xiaokun Ding , Yixuan Xie , Jinghuan Tian , Bin Li , Zhengguo Cui , Tao Jiang
Laizhou Bay, a major breeding ground for economic marine organisms in the northern waters of China, is facing rapid environmental degradation. In this study, field surveys in this area were conducted in the spring, summer, and autumn of 2020. Microscopic observation and RuBisCO large subunit (rbcL) gene analysis were employed to understand the community structure and temporal dynamics of phytoplankton. The phytoplankton community structures detected by the two methods showed significant differences. Microscopic observation revealed the dominance of dinoflagellates in spring that shifted to the dominance of diatoms in summer and autumn. However, rbcL gene sequencing consistently identified diatoms as dominant throughout all three seasons, with their relative abundance showing an increasing trend. Conversely, the relative abundance of the second- and third-most abundant taxa, namely, haptophytes and ochrophytes, decreased as the seasons transitioned. rbcL gene sequencing annotated more species than microscopy. It could detect haptophytes and cryptophytes, which were overlooked by microscopy. In addition, rbcL gene sequencing detected a remarkable amount of Thalassiosira profunda, which was previously unidentified in this sea area. However, it appeared to underestimate the contribution of dinoflagellates considerably, with most taxa being only identified through microscopic identification. The two methods jointly identified 28 harmful algal bloom taxa with similar detection quantities but substantial differences in species composition. Phytoplankton communities were influenced by temperature, salinity, and nutrients. The results of this work suggest that a combination of multiple techniques is necessary for a comprehensive understanding of phytoplankton.
{"title":"Composition and temporal dynamics of the phytoplankton community in Laizhou Bay revealed by microscopic observation and rbcL gene sequencing","authors":"Huihui Zhang , Nan Wang , Di Zhang , Fei Wang , Shiji Xu , Xiaokun Ding , Yixuan Xie , Jinghuan Tian , Bin Li , Zhengguo Cui , Tao Jiang","doi":"10.1016/j.marenvres.2024.106734","DOIUrl":"10.1016/j.marenvres.2024.106734","url":null,"abstract":"<div><p>Laizhou Bay, a major breeding ground for economic marine organisms in the northern waters of China, is facing rapid environmental degradation. In this study, field surveys in this area were conducted in the spring, summer, and autumn of 2020. Microscopic observation and RuBisCO large subunit (<em>rbcL</em>) gene analysis were employed to understand the community structure and temporal dynamics of phytoplankton. The phytoplankton community structures detected by the two methods showed significant differences. Microscopic observation revealed the dominance of dinoflagellates in spring that shifted to the dominance of diatoms in summer and autumn. However, <em>rbcL</em> gene sequencing consistently identified diatoms as dominant throughout all three seasons, with their relative abundance showing an increasing trend. Conversely, the relative abundance of the second- and third-most abundant taxa, namely, haptophytes and ochrophytes, decreased as the seasons transitioned. <em>rbcL</em> gene sequencing annotated more species than microscopy. It could detect haptophytes and cryptophytes, which were overlooked by microscopy. In addition, <em>rbcL</em> gene sequencing detected a remarkable amount of <em>Thalassiosira profunda</em>, which was previously unidentified in this sea area. However, it appeared to underestimate the contribution of dinoflagellates considerably, with most taxa being only identified through microscopic identification. The two methods jointly identified 28 harmful algal bloom taxa with similar detection quantities but substantial differences in species composition. Phytoplankton communities were influenced by temperature, salinity, and nutrients. The results of this work suggest that a combination of multiple techniques is necessary for a comprehensive understanding of phytoplankton.</p></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"202 ","pages":"Article 106734"},"PeriodicalIF":3.0,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-07DOI: 10.1016/j.marenvres.2024.106743
Javier Jiménez Herrero , Andrea Desiderato , Pedro Emanuel Vieira , Ana Mafalda Tavares , Henrique Queiroga , Rui Santos
The ongoing combination of global warming and increased anthropogenic pressure is causing latitudinal shifts in marine species, potentially impacting community composition, local richness, and marine trophic webs. This study investigates the factors influencing the distribution and diversity of intertidal seaweed and associated peracarid communities, including their functional traits, and explores various facets of beta diversity (taxonomic and functional). We hypothesize that: 1) abiotic factors such as temperature and anthropogenic pressure significantly influence seaweed distribution and diversity shifts, and 2) changes in seaweed functional diversity have an impact on the diversity and functioning of its associated peracarid communities. The sampling was conducted along a wide latitudinal gradient in the NE Atlantic (27°N - 65°N), encompassing three distinct ecoregions: Northern European coasts, the Iberian Peninsula, and Macaronesia. The identified seaweed and peracarid species were classified functionally, and taxonomic and functional diversity were analysed on a large geographic scale. The northern region exhibited large brown canopy seaweeds and epibiotic isopods, while Macaronesia featured small red, highly branched, and calcareous crust seaweeds with burrower and tube-building tanaids. The Iberian Peninsula acted as a transitional zone, showcasing a mix of green, red, and brown seaweeds, along with Amphipoda peracarids found across all ecoregions. Our findings underscore the impact of geographic distance on total beta diversity, revealing distinct seaweed and peracarid communities across spatial gradients. Environmental variables, particularly pH and maximum sea surface temperature, emerged as significant factors influencing beta diversity patterns of seaweeds, indicating the potential impact of acidification and heat waves on community composition. In addition, seaweed functional traits were shown to be significant in shaping the diversity and abundance of associated peracarid assemblages, impacting both taxonomic and functional beta diversity. These findings provide crucial insights into the factors influencing the biogeography and biodiversity dynamics of intertidal seaweeds and associated peracarids, offering essential implications for conservation and management strategies amid ongoing environmental changes.
{"title":"Functional traits of ecosystem engineers as predictors of associated fauna","authors":"Javier Jiménez Herrero , Andrea Desiderato , Pedro Emanuel Vieira , Ana Mafalda Tavares , Henrique Queiroga , Rui Santos","doi":"10.1016/j.marenvres.2024.106743","DOIUrl":"10.1016/j.marenvres.2024.106743","url":null,"abstract":"<div><p>The ongoing combination of global warming and increased anthropogenic pressure is causing latitudinal shifts in marine species, potentially impacting community composition, local richness, and marine trophic webs. This study investigates the factors influencing the distribution and diversity of intertidal seaweed and associated peracarid communities, including their functional traits, and explores various facets of beta diversity (taxonomic and functional). We hypothesize that: 1) abiotic factors such as temperature and anthropogenic pressure significantly influence seaweed distribution and diversity shifts, and 2) changes in seaweed functional diversity have an impact on the diversity and functioning of its associated peracarid communities. The sampling was conducted along a wide latitudinal gradient in the NE Atlantic (27°N - 65°N), encompassing three distinct ecoregions: Northern European coasts, the Iberian Peninsula, and Macaronesia. The identified seaweed and peracarid species were classified functionally, and taxonomic and functional diversity were analysed on a large geographic scale. The northern region exhibited large brown canopy seaweeds and epibiotic isopods, while Macaronesia featured small red, highly branched, and calcareous crust seaweeds with burrower and tube-building tanaids. The Iberian Peninsula acted as a transitional zone, showcasing a mix of green, red, and brown seaweeds, along with Amphipoda peracarids found across all ecoregions. Our findings underscore the impact of geographic distance on total beta diversity, revealing distinct seaweed and peracarid communities across spatial gradients. Environmental variables, particularly pH and maximum sea surface temperature, emerged as significant factors influencing beta diversity patterns of seaweeds, indicating the potential impact of acidification and heat waves on community composition. In addition, seaweed functional traits were shown to be significant in shaping the diversity and abundance of associated peracarid assemblages, impacting both taxonomic and functional beta diversity. These findings provide crucial insights into the factors influencing the biogeography and biodiversity dynamics of intertidal seaweeds and associated peracarids, offering essential implications for conservation and management strategies amid ongoing environmental changes.</p></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"202 ","pages":"Article 106743"},"PeriodicalIF":3.0,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141113624004045/pdfft?md5=da0967cb3bd9dc243b553200ce634d3a&pid=1-s2.0-S0141113624004045-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1016/j.marenvres.2024.106741
A. Corzo , S. Haro , E. Gómez-Ramírez , C.J. González , S. Papaspyrou , E. Garcia-Robledo
Tidal flats are inhabited by benthic microalgae (microphytobenthos, MPB) supporting important ecosystem functions and services. Studies on MPB have been conducted mainly in temperate systems, despite that the majority of tidal flats on Earth are found in the tropical zone (∼55%). To fill this gap of knowledge and evaluate the contribution of tidal flat MPB in one of the most productive estuaries worldwide, sediment cores were collected from 14 stations along the inner Gulf of Nicoya (Costa Rica) at different tidal heights or sea levels (SL) from October 2013 to April 2014. MPB abundance, using chlorophyll a (Chla) biomass as a proxy, and net primary production (PN) and dark respiration (RD), using O2 microsensors, were measured together with other sediment biogeochemical variables in muddy and sandy sediments. Landsat-8 satellite images were used to map the extension of tidal flats and the abundance of MPB using Normalized Difference Vegetation Index (NDVI) as a proxy. Chla ranged from 0.45 to 7.45 μg cm−2, with higher concentrations observed closer to the river mouth. There was no significant correlation between Chla and SL nor with any other sediment physicochemical variable. MPB abundance estimated by remote sensing displayed considerable spatial heterogeneity, both within and among tidal flats, and clear seasonal differences with higher abundance during the rainy season. PN ranged between 0.8 and 8.6 mmol O2 m−2 h−1, being positively correlated to SL and to the accumulated rain during 30 days prior to the sampling date and inversely to the mean irradiance at noon during the previous month. Daily net community metabolism estimated from PN and RD data and converted to carbon fixation rates indicates that the unvegetated tidal flats of the gulf contribute as much as the total input of allochthonous C from the Tempisque River. However, the results presented here have to be confirmed with direct measurements of C transfer, including the contribution of the adjacent mangrove system. Such studies are crucial to assess the local, regional and global importance of production and other ecosystem services by MPB in tropical areas.
{"title":"Intertidal microphytobenthic primary production and net metabolism of a tropical estuary","authors":"A. Corzo , S. Haro , E. Gómez-Ramírez , C.J. González , S. Papaspyrou , E. Garcia-Robledo","doi":"10.1016/j.marenvres.2024.106741","DOIUrl":"10.1016/j.marenvres.2024.106741","url":null,"abstract":"<div><p>Tidal flats are inhabited by benthic microalgae (microphytobenthos, MPB) supporting important ecosystem functions and services. Studies on MPB have been conducted mainly in temperate systems, despite that the majority of tidal flats on Earth are found in the tropical zone (∼55%). To fill this gap of knowledge and evaluate the contribution of tidal flat MPB in one of the most productive estuaries worldwide, sediment cores were collected from 14 stations along the inner Gulf of Nicoya (Costa Rica) at different tidal heights or sea levels (SL) from October 2013 to April 2014. MPB abundance, using chlorophyll <em>a</em> (Chla) biomass as a proxy, and net primary production (P<sub>N</sub>) and dark respiration (R<sub>D</sub>), using O<sub>2</sub> microsensors, were measured together with other sediment biogeochemical variables in muddy and sandy sediments. Landsat-8 satellite images were used to map the extension of tidal flats and the abundance of MPB using Normalized Difference Vegetation Index (NDVI) as a proxy. Chla ranged from 0.45 to 7.45 μg cm<sup>−2</sup>, with higher concentrations observed closer to the river mouth. There was no significant correlation between Chla and SL nor with any other sediment physicochemical variable. MPB abundance estimated by remote sensing displayed considerable spatial heterogeneity, both within and among tidal flats, and clear seasonal differences with higher abundance during the rainy season. P<sub>N</sub> ranged between 0.8 and 8.6 mmol O<sub>2</sub> m<sup>−2</sup> h<sup>−1</sup>, being positively correlated to SL and to the accumulated rain during 30 days prior to the sampling date and inversely to the mean irradiance at noon during the previous month. Daily net community metabolism estimated from P<sub>N</sub> and R<sub>D</sub> data and converted to carbon fixation rates indicates that the unvegetated tidal flats of the gulf contribute as much as the total input of allochthonous C from the Tempisque River. However, the results presented here have to be confirmed with direct measurements of C transfer, including the contribution of the adjacent mangrove system. Such studies are crucial to assess the local, regional and global importance of production and other ecosystem services by MPB in tropical areas.</p></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"202 ","pages":"Article 106741"},"PeriodicalIF":3.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141113624004021/pdfft?md5=786f706c936f22f5cad21a7e19f79f6a&pid=1-s2.0-S0141113624004021-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1016/j.marenvres.2024.106742
Jae Woo Jung , Qikun Xing , Ji-Sook Park , Charles Yarish , Jang Kyun Kim
The objective of this study is to investigate the effect of nano-plastics (NPs) on the growth, photosynthesis, oxidative stress and antioxidant enzymes in Grateloupia turuturu and Chondrus ocellatus. Difference of surface characteristics between G. turuturu and C. ocellatus may affect adherence of plastics to their surface. The seaweed samples were cultivated at 5 different NP concentrations (0, 20, 200, 2000, 20000 ng/L) for 21 days. The accumulation of nano-plastics on surface of C. ocellatus was higher than that of G. turuturu. The highest concentration of NPs (20000 ng/L) inhibited the growth and photosynthesis activity of C. ocellatus. At the same concentrations, oxidative stress was caused with increase of antioxidant enzyme activities. G. turuturu was not affected by NPs at all tested concentrations. Based on these results, toxic effects of nano-plastics may be species specific. Toxicity is dependent on the capacity of macroalgae to accumulate nano-plastics on their surface.
本研究旨在探讨纳米塑料(NPs)对土鳖虫(Grateloupia turuturu)和软骨鱼(Chondrus ocellatus)的生长、光合作用、氧化应激和抗氧化酶的影响。G. turuturu 和 C. ocellatus 表面特征的差异可能会影响塑料在其表面的附着。在 5 种不同的 NP 浓度(0、20、200、2000、20000 ng/L)下培养海藻样品 21 天。纳米塑料在 C. ocellatus 表面的累积量高于 G. turuturu。最高浓度的纳米粒子(20000 ng/L)抑制了 C. ocellatus 的生长和光合作用活性。在相同浓度下,氧化应激导致抗氧化酶活性增加。在所有测试浓度下,G. turuturu 都不受 NPs 的影响。根据这些结果,纳米塑料的毒性效应可能具有物种特异性。毒性取决于大型藻类在其表面积累纳米塑料的能力。
{"title":"Physiological responses of Grateloupia turuturu and Chondrus ocellatus to nano-plastics","authors":"Jae Woo Jung , Qikun Xing , Ji-Sook Park , Charles Yarish , Jang Kyun Kim","doi":"10.1016/j.marenvres.2024.106742","DOIUrl":"10.1016/j.marenvres.2024.106742","url":null,"abstract":"<div><p>The objective of this study is to investigate the effect of nano-plastics (NPs) on the growth, photosynthesis, oxidative stress and antioxidant enzymes in <em>Grateloupia turuturu</em> and <em>Chondrus ocellatus</em>. Difference of surface characteristics between <em>G. turuturu</em> and <em>C. ocellatus</em> may affect adherence of plastics to their surface. The seaweed samples were cultivated at 5 different NP concentrations (0, 20, 200, 2000, 20000 ng/L) for 21 days. The accumulation of nano-plastics on surface of <em>C. ocellatus</em> was higher than that of <em>G. turuturu</em>. The highest concentration of NPs (20000 ng/L) inhibited the growth and photosynthesis activity of <em>C. ocellatus</em>. At the same concentrations, oxidative stress was caused with increase of antioxidant enzyme activities. <em>G. turuturu</em> was not affected by NPs at all tested concentrations. Based on these results, toxic effects of nano-plastics may be species specific. Toxicity is dependent on the capacity of macroalgae to accumulate nano-plastics on their surface.</p></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"202 ","pages":"Article 106742"},"PeriodicalIF":3.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}