首页 > 最新文献

Materials Today Physics最新文献

英文 中文
Significant magnon contribution to heat transfer in nickel nanowires 磁子对镍纳米线传热的重要贡献
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-06 DOI: 10.1016/j.mtphys.2024.101585
Wei-Tsu Peng , Jiun-Hung Yi , Chih-Cheng Cheng , Kuan-Ju Yu , Tien-Kan Chung , Ming-Chang Lu
Magnons, quantized spin waves arising from collective excitations of spins, are typically considered negligible contributors to heat transfer. However, recent studies on low-dimensional magnetic materials have challenged this notion, revealing significant magnon-mediated heat transport. The underlying physics behind this phenomenon, however, remains poorly understood. In this study, we observed a significant reduction in heat transfer in nickel nanowires under the influence of a magnetic field. Our theoretical model revealed a substantial magnon contribution of up to 30 % to nanowire heat transfer. The reduction in heat transfer under a magnetic field stemmed from a drastic decrease in the magnon mean free path (MFP). This decrease in MFP was primarily attributed to suppressing long wavelength magnons with a longer MFP. Our findings provide deeper insights into heat transfer mechanisms in nanoscale ferromagnetic materials and offer valuable guidance for the design of future spintronic devices.
磁子是由自旋集体激发产生的量子化自旋波,通常被认为对热传递的贡献可以忽略不计。然而,最近对低维磁性材料的研究对这一观点提出了挑战,揭示了磁子介导热传递的重要作用。然而,人们对这一现象背后的基本物理学原理仍然知之甚少。在这项研究中,我们观察到镍纳米线在磁场影响下的热传递显著减少。我们的理论模型显示,磁子对纳米线传热的贡献率高达 30%。磁场下传热的减少源于磁子平均自由路径(MFP)的急剧下降。MFP的降低主要归因于抑制了具有较长MFP的长波长磁子。我们的研究结果使人们对纳米级铁磁材料的传热机制有了更深入的了解,并为未来自旋电子器件的设计提供了宝贵的指导。
{"title":"Significant magnon contribution to heat transfer in nickel nanowires","authors":"Wei-Tsu Peng ,&nbsp;Jiun-Hung Yi ,&nbsp;Chih-Cheng Cheng ,&nbsp;Kuan-Ju Yu ,&nbsp;Tien-Kan Chung ,&nbsp;Ming-Chang Lu","doi":"10.1016/j.mtphys.2024.101585","DOIUrl":"10.1016/j.mtphys.2024.101585","url":null,"abstract":"<div><div>Magnons, quantized spin waves arising from collective excitations of spins, are typically considered negligible contributors to heat transfer. However, recent studies on low-dimensional magnetic materials have challenged this notion, revealing significant magnon-mediated heat transport. The underlying physics behind this phenomenon, however, remains poorly understood. In this study, we observed a significant reduction in heat transfer in nickel nanowires under the influence of a magnetic field. Our theoretical model revealed a substantial magnon contribution of up to 30 % to nanowire heat transfer. The reduction in heat transfer under a magnetic field stemmed from a drastic decrease in the magnon mean free path (MFP). This decrease in MFP was primarily attributed to suppressing long wavelength magnons with a longer MFP. Our findings provide deeper insights into heat transfer mechanisms in nanoscale ferromagnetic materials and offer valuable guidance for the design of future spintronic devices.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"49 ","pages":"Article 101585"},"PeriodicalIF":10.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinitely rugged intra-cage potential energy landscape in metallic glasses caused by many-body interaction 多体相互作用导致金属玻璃中无限坚固的笼内势能景观
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-06 DOI: 10.1016/j.mtphys.2024.101582
Haoyu Li , Hongyi Xiao , Takeshi Egami , Yue Fan
The absence of translational symmetry in glassy materials poses a significant challenge in establishing effective structure-property relationships in real space. Consequently, the potential energy landscape (PEL) in phase space is widely utilized to comprehend the complex phenomena in glasses. The classical PEL features a two-scale profile comprising mega-basins and sub-basins, corresponding to α-relaxations (e.g. glass transition) and β-relaxations (e.g. local cage-breaking atomic rearrangements), respectively. Recent studies, however, reveal that sub-basins are not smooth and contain finer structures, the origins of which remain elusive. Here we probe the smoothness of sub-basin bottoms in glasses' PEL by introducing small intra-cage cyclic loading and then measuring the net changes in atomic-level stresses. Compared to glasses with pair interaction, glasses with many-body interaction exhibit orders-of-magnitude larger and loading-dependent stress changes even before the first cage-breaking event takes place, which reflect much more feature-rich sub-basins. We further demonstrate this stark contrast stems from the spatial distribution of individual atom's constraining force field. Specifically, at vanishing perturbations, many-body interactions disrupt the positive-definite synchrony in energy variations of the perturbed atom and the whole system, causing inherently less confined atomic responses and infinitely rugged sub-basins. The implications of these findings for the selective addition or removal of fine structures in the PEL and the subsequent tuning of glassy materials' responses to external stimuli are also explored.
玻璃材料不存在平移对称性,这给在实际空间中建立有效的结构-性能关系带来了巨大挑战。因此,相空间势能图(PEL)被广泛用于理解玻璃中的复杂现象。经典的势能图具有双尺度剖面,包括巨盆地和子盆地,分别对应于α-松弛(如玻璃转变)和β-松弛(如局部破笼原子重排)。然而,最近的研究发现,亚盆地并不光滑,它包含更精细的结构,而这些结构的起源仍然难以捉摸。在此,我们通过引入小的笼内循环加载,然后测量原子级应力的净变化,来探究玻璃 PEL 中子盆地底部的平滑性。与具有配对相互作用的玻璃相比,具有多体相互作用的玻璃甚至在第一次破笼事件发生之前就表现出了数量级更大且与加载相关的应力变化,这反映了特征更为丰富的子盆地。我们进一步证明,这种鲜明对比源于单个原子约束力场的空间分布。具体来说,在扰动消失时,多体相互作用会破坏受扰动原子和整个系统能量变化的正无限同步性,从而导致原子反应的内在约束性降低和子盆地的无限崎岖。此外,还探讨了这些发现对选择性添加或去除 PEL 中的精细结构以及随后调整玻璃材料对外部刺激的反应的影响。
{"title":"Infinitely rugged intra-cage potential energy landscape in metallic glasses caused by many-body interaction","authors":"Haoyu Li ,&nbsp;Hongyi Xiao ,&nbsp;Takeshi Egami ,&nbsp;Yue Fan","doi":"10.1016/j.mtphys.2024.101582","DOIUrl":"10.1016/j.mtphys.2024.101582","url":null,"abstract":"<div><div>The absence of translational symmetry in glassy materials poses a significant challenge in establishing effective structure-property relationships in real space. Consequently, the potential energy landscape (PEL) in phase space is widely utilized to comprehend the complex phenomena in glasses. The classical PEL features a two-scale profile comprising mega-basins and sub-basins, corresponding to α-relaxations (<em>e.g.</em> glass transition) and β-relaxations (<em>e.g.</em> local cage-breaking atomic rearrangements), respectively. Recent studies, however, reveal that sub-basins are not smooth and contain finer structures, the origins of which remain elusive. Here we probe the smoothness of sub-basin bottoms in glasses' PEL by introducing small intra-cage cyclic loading and then measuring the net changes in atomic-level stresses. Compared to glasses with pair interaction, glasses with many-body interaction exhibit orders-of-magnitude larger and loading-dependent stress changes even before the first cage-breaking event takes place, which reflect much more feature-rich sub-basins. We further demonstrate this stark contrast stems from the spatial distribution of individual atom's constraining force field. Specifically, at vanishing perturbations, many-body interactions disrupt the positive-definite synchrony in energy variations of the perturbed atom and the whole system, causing inherently less confined atomic responses and infinitely rugged sub-basins. The implications of these findings for the selective addition or removal of fine structures in the PEL and the subsequent tuning of glassy materials' responses to external stimuli are also explored.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"49 ","pages":"Article 101582"},"PeriodicalIF":10.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reversing band bending at grain boundaries enables high-efficiency Cu2ZnSn(S,Se)4 solar cells 扭转晶界带弯曲实现高效 Cu2ZnSn(S,Se)4 太阳能电池
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.mtphys.2024.101580
Rutao Meng , Xuejun Xu , Yue Huang , Li Wu , Jianpeng Li , Han Xu , Jiabin Dong , Yue Liu , Xuewen Fu , Hongling Guo , Gang Wang , Yi Zhang
Kesterite solar cells show great potential for sustainable photovoltaic technology, attributed to their excellent semiconductor properties and earth abundant composition. However, undesirable band bending at the grain boundaries (GBs) in Cu2ZnSn(S,Se)4 (CZTSSe) films induces serious carrier recombination because of inhomogeneous distribution of S and Se in the grain interiors (GIs) and at GBs, which results in large open-circuit voltage deficit and overall poor performance of CZTSSe solar cells. Here, a robust hydrothermal sulfurization design has successfully inverted the band bending at the GBs, with advanced cathodoluminescence measurement confirming the transition of carrier collection pathways from the GBs to the GIs, thereby achieving efficient carrier collection within the GIs. Simultaneously, this design has effectively passivated the non-radiative recombination in the GIs, smoothing the way for carrier collection. Ultimately, a 13.7 % efficiency CZTSSe solar cell with 44 % improvement is realized by this process. This study discloses that reversing the band bending at GBs is practical to tailor the carrier collection, and thus pave the pathway for high-efficient photoelectronic devices.
钾长石太阳能电池因其优异的半导体特性和丰富的地球成分而在可持续光伏技术方面展现出巨大潜力。然而,在 Cu2ZnSn(S,Se)4(CZTSSe)薄膜的晶界(GBs)处,由于 S 和 Se 在晶粒内部(GIs)和晶界(GBs)处的分布不均匀,不理想的带弯曲诱发了严重的载流子重组,从而导致 CZTSSe 太阳能电池的开路电压严重不足,整体性能低下。在这里,一种稳健的水热硫化设计成功地逆转了 GBs 的带弯曲,先进的阴极发光测量证实了载流子收集途径从 GBs 到 GIs 的转变,从而实现了 GIs 内载流子的高效收集。同时,这种设计还有效地钝化了 GIs 中的非辐射重组,为载流子收集铺平了道路。通过这一工艺,最终实现了效率为 13.7% 的 CZTSSe 太阳能电池,并提高了 44%。这项研究揭示了在 GB 处反转带弯曲来定制载流子收集是切实可行的,从而为高效光电子器件铺平了道路。
{"title":"Reversing band bending at grain boundaries enables high-efficiency Cu2ZnSn(S,Se)4 solar cells","authors":"Rutao Meng ,&nbsp;Xuejun Xu ,&nbsp;Yue Huang ,&nbsp;Li Wu ,&nbsp;Jianpeng Li ,&nbsp;Han Xu ,&nbsp;Jiabin Dong ,&nbsp;Yue Liu ,&nbsp;Xuewen Fu ,&nbsp;Hongling Guo ,&nbsp;Gang Wang ,&nbsp;Yi Zhang","doi":"10.1016/j.mtphys.2024.101580","DOIUrl":"10.1016/j.mtphys.2024.101580","url":null,"abstract":"<div><div>Kesterite solar cells show great potential for sustainable photovoltaic technology, attributed to their excellent semiconductor properties and earth abundant composition. However, undesirable band bending at the grain boundaries (GBs) in Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> (CZTSSe) films induces serious carrier recombination because of inhomogeneous distribution of S and Se in the grain interiors (GIs) and at GBs, which results in large open-circuit voltage deficit and overall poor performance of CZTSSe solar cells. Here, a robust hydrothermal sulfurization design has successfully inverted the band bending at the GBs, with advanced cathodoluminescence measurement confirming the transition of carrier collection pathways from the GBs to the GIs, thereby achieving efficient carrier collection within the GIs. Simultaneously, this design has effectively passivated the non-radiative recombination in the GIs, smoothing the way for carrier collection. Ultimately, a 13.7 % efficiency CZTSSe solar cell with 44 % improvement is realized by this process. This study discloses that reversing the band bending at GBs is practical to tailor the carrier collection, and thus pave the pathway for high-efficient photoelectronic devices.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101580"},"PeriodicalIF":10.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Structural and electronic transformations in TiO2 induced by electric current” [Mater. Today Phys., 48 (November 2024), 101546] 对 "电流诱导 TiO2 中的结构和电子转变 "的更正[《今日材料物理》,48 (2024 年 11 月),101546]
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.mtphys.2024.101554
Tyler C. Sterling , Feng Ye , Seohyeon Jo , Anish Parulekar , Yu Zhang , Gang Cao , Rishi Raj , Dmitry Reznik
{"title":"Corrigendum to “Structural and electronic transformations in TiO2 induced by electric current” [Mater. Today Phys., 48 (November 2024), 101546]","authors":"Tyler C. Sterling ,&nbsp;Feng Ye ,&nbsp;Seohyeon Jo ,&nbsp;Anish Parulekar ,&nbsp;Yu Zhang ,&nbsp;Gang Cao ,&nbsp;Rishi Raj ,&nbsp;Dmitry Reznik","doi":"10.1016/j.mtphys.2024.101554","DOIUrl":"10.1016/j.mtphys.2024.101554","url":null,"abstract":"","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101554"},"PeriodicalIF":10.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effect of indium doping on thermoelectric performance of cubic GeTe-based thin films 掺杂铟对立方 GeTe 基薄膜热电性能的协同效应
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.mtphys.2024.101581
Suman Abbas , Bhawna Jarwal , Thi-Thong Ho , Suneesh Meledath Valiyaveettil , Cheng-Rong Hsing , Ta-Lei Chou , Ching-Ming Wei , Li-Chyong Chen , Kuei-Hsien Chen
Germanium Telluride (GeTe) has been widely explored as a promising lead-free thermoelectric material in its rhombohedral and cubic phases. However, the structural transition between these two phases at ∼700 K causes an abrupt change of thermal expansion coefficient, challenging its broader practical applications. Also, as characterized by multi-valence bands and strong anharmonic interaction, the high-temperature cubic phase exhibits a higher power factor, lower thermal conductivity, and ultimately superior thermoelectric performance than its rhombohedral counterpart. Prompted by these, in this work, the cubic phase of Ge0.9Sb0.1Te (presented as GeSbTe in the following content) nanocrystalline thin film is successfully realized by RF sputtering followed by post-annealing treatment. Additionally, indium, as an electron donor to the germanium site and an effective scattering center, further moderates carrier concentration, enhances the Seebeck coefficient and reduces thermal conductivity. The optimal composition achieves an estimated peak zT of ∼1.95 and an estimated average zT of ∼1.11 within the temperature range of 300 K–575 K, showcasing GeTe as a compelling candidate for applications close to room temperature.
碲化镉锗(GeTe)的斜方体相和立方体相作为一种前景广阔的无铅热电材料已被广泛探索。然而,这两种相在 ∼700 K 时的结构转变会导致热膨胀系数的突然变化,这对其更广泛的实际应用提出了挑战。此外,高温立方相具有多价带和强非谐相互作用的特点,与斜方体相相比,其功率因数更高,热导率更低,热电性能更优。有鉴于此,在这项工作中,通过射频溅射和退火后处理,成功实现了 Ge0.9Sb0.1Te(下文中称为 GeSbTe)纳米晶薄膜的立方相。此外,铟作为锗位点的电子供体和有效的散射中心,进一步缓和了载流子浓度,提高了塞贝克系数并降低了热导率。在 300 K 至 575 K 的温度范围内,最佳成分的峰值估计为 ∼ 1.95,平均值估计为 ∼ 1.11,这表明 GeTe 是接近室温应用的理想候选材料。
{"title":"Synergistic effect of indium doping on thermoelectric performance of cubic GeTe-based thin films","authors":"Suman Abbas ,&nbsp;Bhawna Jarwal ,&nbsp;Thi-Thong Ho ,&nbsp;Suneesh Meledath Valiyaveettil ,&nbsp;Cheng-Rong Hsing ,&nbsp;Ta-Lei Chou ,&nbsp;Ching-Ming Wei ,&nbsp;Li-Chyong Chen ,&nbsp;Kuei-Hsien Chen","doi":"10.1016/j.mtphys.2024.101581","DOIUrl":"10.1016/j.mtphys.2024.101581","url":null,"abstract":"<div><div>Germanium Telluride (GeTe) has been widely explored as a promising lead-free thermoelectric material in its rhombohedral and cubic phases. However, the structural transition between these two phases at ∼700 K causes an abrupt change of thermal expansion coefficient, challenging its broader practical applications. Also, as characterized by multi-valence bands and strong anharmonic interaction, the high-temperature cubic phase exhibits a higher power factor, lower thermal conductivity, and ultimately superior thermoelectric performance than its rhombohedral counterpart. Prompted by these, in this work, the cubic phase of Ge<sub>0.9</sub>Sb<sub>0.1</sub>Te (presented as GeSbTe in the following content) nanocrystalline thin film is successfully realized by RF sputtering followed by post-annealing treatment. Additionally, indium, as an electron donor to the germanium site and an effective scattering center, further moderates carrier concentration, enhances the Seebeck coefficient and reduces thermal conductivity. The optimal composition achieves an estimated peak <span><math><mrow><mi>z</mi><mi>T</mi></mrow></math></span> of ∼1.95 and an estimated average <span><math><mrow><mi>z</mi><mi>T</mi></mrow></math></span> of ∼1.11 within the temperature range of 300 K–575 K, showcasing GeTe as a compelling candidate for applications close to room temperature.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"49 ","pages":"Article 101581"},"PeriodicalIF":10.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linear dielectric ceramics for near-zero loss high-capacitance energy storage 用于近零损耗高电容储能的线性介质陶瓷
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-28 DOI: 10.1016/j.mtphys.2024.101579
Xuqing Zhang , Yongping Pu , Pan Gao , Xinye Huang , Jiahui Ma , Lei Zhang , Zenghui Liu
High energy-density (Wrec) dielectric capacitors have gained a focal point in the field of power electronic systems. In this study, high energy storage density materials with near-zero loss were obtained by constructing different types of defect dipoles in linear dielectric ceramics. Mg2+and Nb5+ are strategically chosen as acceptor/donor ions, effectively replacing Ti4+ within Ca0.5Sr0.5TiO3-based ceramics. The results indicate that under an applied electric field, specific defects such as [MgTiVO··] and [NbTi·Ti3+], can effectively regulate VO·· and electron movement, significantly reducing losses. Furthermore, high-density insulating grain boundaries, reduced VO·· concentrations and diminished carrier mobility contribute to enhanced resistivity, resulting in high Wrec ∼7.62 J/cm3 and η ∼92 % at 640 kV/cm, making it one of the most promising linear dielectrics to date. Notably, Wrec and η remain remarkably stable across a broad range of frequencies (1–500 Hz), temperatures (25–175 °C) and numerous cycles (up to 106). Additionally, finite element software was used to simulate the distribution of dielectric constant, electric potential, and local electric field, further verifying the correlation between microstructure and breakdown resistance. This innovative work provides a sustainable strategy to optimize the energy storage capacity of lead-free ceramics over a wide temperature range through strategic manipulation of defects.
高能量密度(Wrec)电介质电容器已成为电力电子系统领域的焦点。在这项研究中,通过在线性介电陶瓷中构建不同类型的缺陷偶极子,获得了近零损耗的高能量存储密度材料。在 Ca0.5Sr0.5TiO3 基陶瓷中,Mg2+ 和 Nb5+ 被战略性地选择为接受/捐赠离子,有效地取代了 Ti4+。结果表明,在外加电场作用下,特定的缺陷(如和)可以有效地调节和电子运动,从而显著降低损耗。此外,高密度绝缘晶界、浓度降低和载流子迁移率减小也有助于增强电阻率,从而在 640 kV/cm 时获得较高的 Wrec ∼ 7.62 J/cm3 和 η ∼ 92%,使其成为迄今最有前途的线性电介质之一。值得注意的是,Wrec 和 η 在广泛的频率(1-500 Hz)、温度(25-175 °C)和无数次循环(多达 106 次)中都保持着显著的稳定性。此外,还使用有限元软件模拟了介电常数、电动势和局部电场的分布,进一步验证了微观结构与击穿电阻之间的相关性。这项创新工作提供了一种可持续的策略,通过对缺陷的策略性处理,在宽温度范围内优化无铅陶瓷的储能能力。
{"title":"Linear dielectric ceramics for near-zero loss high-capacitance energy storage","authors":"Xuqing Zhang ,&nbsp;Yongping Pu ,&nbsp;Pan Gao ,&nbsp;Xinye Huang ,&nbsp;Jiahui Ma ,&nbsp;Lei Zhang ,&nbsp;Zenghui Liu","doi":"10.1016/j.mtphys.2024.101579","DOIUrl":"10.1016/j.mtphys.2024.101579","url":null,"abstract":"<div><div>High energy-density (<em>W</em><sub>rec</sub>) dielectric capacitors have gained a focal point in the field of power electronic systems. In this study, high energy storage density materials with near-zero loss were obtained by constructing different types of defect dipoles in linear dielectric ceramics. Mg<sup>2+</sup>and Nb<sup>5+</sup> are strategically chosen as acceptor/donor ions, effectively replacing Ti<sup>4+</sup> within Ca<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub>-based ceramics. The results indicate that under an applied electric field, specific defects such as <span><math><mrow><mo>[</mo><mrow><msubsup><mrow><mi>M</mi><mi>g</mi></mrow><mrow><mi>T</mi><mi>i</mi></mrow><mo>″</mo></msubsup><mo>−</mo><msubsup><mi>V</mi><mi>O</mi><mrow><mo>·</mo><mo>·</mo></mrow></msubsup></mrow><mo>]</mo></mrow></math></span> and <span><math><mrow><mrow><msubsup><mrow><mo>[</mo><mi>N</mi><mi>b</mi></mrow><mrow><mi>T</mi><mi>i</mi></mrow><mo>·</mo></msubsup><mo>−</mo><msup><mrow><mi>T</mi><mi>i</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></mrow><mo>]</mo></mrow></math></span>, can effectively regulate <span><math><mrow><msubsup><mi>V</mi><mi>O</mi><mrow><mo>·</mo><mo>·</mo></mrow></msubsup></mrow></math></span> and electron movement, significantly reducing losses. Furthermore, high-density insulating grain boundaries, reduced <span><math><mrow><msubsup><mi>V</mi><mi>O</mi><mrow><mo>·</mo><mo>·</mo></mrow></msubsup></mrow></math></span> concentrations and diminished carrier mobility contribute to enhanced resistivity, resulting in high <em>W</em><sub>rec</sub> ∼7.62 J/cm<sup>3</sup> and <em>η</em> ∼92 % at 640 kV/cm, making it one of the most promising linear dielectrics to date. Notably, <em>W</em><sub>rec</sub> and <em>η</em> remain remarkably stable across a broad range of frequencies (1–500 Hz), temperatures (25–175 °C) and numerous cycles (up to 10<sup>6</sup>). Additionally, finite element software was used to simulate the distribution of dielectric constant, electric potential, and local electric field, further verifying the correlation between microstructure and breakdown resistance. This innovative work provides a sustainable strategy to optimize the energy storage capacity of lead-free ceramics over a wide temperature range through strategic manipulation of defects.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"49 ","pages":"Article 101579"},"PeriodicalIF":10.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lightweight and highly heat-resistant copolymerized polyimide foams for superior thermal insulation and acoustic absorption 重量轻、耐热性高的共聚聚酰亚胺泡沫,具有出色的隔热和吸音效果
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-25 DOI: 10.1016/j.mtphys.2024.101578
Shuhuan Yun, Xianzhe Sheng, Zhenyu Xiong, Zhonglei Ma, Jianbing Qin, Guangcheng Zhang
The development of lightweight and highly heat-resistant polyimide foams (PIFs) remains a great challenge in areas of aerospace, military ships, transportation, and industries. Herein, a series of lightweight and highly thermal-resistant copolymerized PIFs are successfully fabricated by the “stepwise heating-holding” thermal foaming of the copolymerized polyester ammonium salts (C-PEAS), using 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BTDA) and 2,3,3′,4′-biphenyl tetracarboxylic acid dianhydride (α-BPDA) as codianhydride, and p-phenylenediamine (PDA) as diamine. The introduction of α-BPDA increases the rigidity of PI molecule chains and foamability of C-PEAS, and significantly improves the heat resistance of PIFs. The resultant copolymerized PIFs exhibit ultra-low densities (<10 kg m−3), excellent heat resistance (Tg ranging from 351.2 °C to 405.6 °C), and high thermal stability. Moreover, they possess high flame retardancies (LOI>44 %) and low thermal conductivities (as low as 0.0463 W m−1 K−1 at 20 °C and no more than 0.0825 W m−1 K−1 at 200 °C), demonstrating their excellent thermal insulation properties in a wide temperature range. After the continuous heating at 200 °C for 40 min, the upper surface of PIFs present low average temperatures less than 60 °C. Additionally, the copolymerized PIFs exhibit remarkable acoustic properties with average acoustic absorption coefficients above 0.6 and noise reduction coefficients (NRC) above 0.3. Therefore, the lightweight and highly heat-resistant copolymerized PIFs show great application potentials in the extreme environments of aerospace, military ships, transportation, and industries.
轻质高耐热聚酰亚胺泡沫(PIF)的开发在航空航天、军用舰船、交通运输和工业领域仍是一项巨大挑战。在本文中,通过对共聚聚酯铵盐(C-PEAS)进行 "分步加热-保温 "热发泡,成功制造出一系列轻质高耐热共聚聚酰亚胺泡沫、以 3,3′,4,4′-二苯甲酮四羧酸二酐(BTDA)和 2,3,3′,4′-联苯四羧酸二酐(α-BPDA)作为二酐,对苯二胺(PDA)作为二胺。α-BPDA 的引入增加了 PI 分子链的刚性和 C-PEAS 的发泡性,并显著提高了 PIF 的耐热性。共聚后的 PIF 具有超低密度(10 kg-m-3)、优异的耐热性(Tg 范围为 351.2°C 至 405.6°C)和高热稳定性。此外,它们还具有高阻燃性(LOI>44%)和低导热性(20°C 时低至 0.0463 W-m-1∙K-1,200°C 时不超过 0.0825 W-m-1∙K-1),这表明它们在宽温度范围内具有出色的隔热性能。在 200°C 温度下持续加热 40 分钟后,PIF 上表面的平均温度低于 60°C。此外,共聚 PIF 还具有显著的声学特性,平均吸声系数高于 0.6,降噪系数(NRC)高于 0.3。因此,重量轻、耐热性高的共聚 PIF 在航空航天、军用船舶、交通运输和工业等极端环境中具有巨大的应用潜力。
{"title":"Lightweight and highly heat-resistant copolymerized polyimide foams for superior thermal insulation and acoustic absorption","authors":"Shuhuan Yun,&nbsp;Xianzhe Sheng,&nbsp;Zhenyu Xiong,&nbsp;Zhonglei Ma,&nbsp;Jianbing Qin,&nbsp;Guangcheng Zhang","doi":"10.1016/j.mtphys.2024.101578","DOIUrl":"10.1016/j.mtphys.2024.101578","url":null,"abstract":"<div><div>The development of lightweight and highly heat-resistant polyimide foams (PIFs) remains a great challenge in areas of aerospace, military ships, transportation, and industries. Herein, a series of lightweight and highly thermal-resistant copolymerized PIFs are successfully fabricated by the “stepwise heating-holding” thermal foaming of the copolymerized polyester ammonium salts (C-PEAS), using 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BTDA) and 2,3,3′,4′-biphenyl tetracarboxylic acid dianhydride (α-BPDA) as codianhydride, and p-phenylenediamine (PDA) as diamine. The introduction of α-BPDA increases the rigidity of PI molecule chains and foamability of C-PEAS, and significantly improves the heat resistance of PIFs. The resultant copolymerized PIFs exhibit ultra-low densities (&lt;10 kg m<sup>−3</sup>), excellent heat resistance (<em>T</em><sub>g</sub> ranging from 351.2 °C to 405.6 °C), and high thermal stability. Moreover, they possess high flame retardancies (LOI&gt;44 %) and low thermal conductivities (as low as 0.0463 W m<sup>−1</sup> K<sup>−1</sup> at 20 °C and no more than 0.0825 W m<sup>−1</sup> K<sup>−1</sup> at 200 °C), demonstrating their excellent thermal insulation properties in a wide temperature range. After the continuous heating at 200 °C for 40 min, the upper surface of PIFs present low average temperatures less than 60 °C. Additionally, the copolymerized PIFs exhibit remarkable acoustic properties with average acoustic absorption coefficients above 0.6 and noise reduction coefficients (NRC) above 0.3. Therefore, the lightweight and highly heat-resistant copolymerized PIFs show great application potentials in the extreme environments of aerospace, military ships, transportation, and industries.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"49 ","pages":"Article 101578"},"PeriodicalIF":10.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances and new frontier of flexible pressure sensors: Structure engineering, performances and applications 柔性压力传感器的最新进展和新领域:结构工程、性能和应用
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-23 DOI: 10.1016/j.mtphys.2024.101576
Tianhui Jiang , Chunnan Wang , Tianyi Ling , Shuqing Sun , Lei Yang
Global research on flexible pressure sensors for evaluating human wellness and intelligent robotics is intensifying due to their advantages of excellent flexibility, lightweight design, high sensitivity and ease of integration. To facilitate practical applications, challenges associated with high-performance must be addressed, such as the trade-off between high sensitivity and a wide linear sensing range, fast response/recovery time, limited hysteresis, and stability under both dynamic and static pressure conditions. Moreover, ensuring the sensors’ reliability under various interferences and their multi-functionality to meet diverse usage requirements is essential for future applications. In this review, we summarize the latest advancements in multiple microstructures within the active layer and/or electrodes, which ensure excellent sensing performances, superior reliability and multifunctional features. Specifically, we focus on the design, working principles and sensing features of advanced micropattern, micropores, fiber-network, and hybrid microstructures in pressure sensors based on hierarchical micro-/nano-structure, conductive gradient coatings or multilayer structures. Additionally, the applications of microstructured pressure sensors in the fields of healthcare and human-machine interaction are summarized. Finally, we discuss the challenges and future prospects in the development of the next generation of flexible pressure sensors.
由于柔性压力传感器具有灵活性好、设计轻便、灵敏度高和易于集成等优点,全球对用于评估人体健康和智能机器人的柔性压力传感器的研究正在不断深入。为了促进实际应用,必须解决与高性能相关的挑战,例如在高灵敏度和宽线性传感范围、快速响应/恢复时间、有限滞后以及动态和静态压力条件下的稳定性之间进行权衡。此外,确保传感器在各种干扰下的可靠性及其多功能性,以满足不同的使用要求,对于未来的应用也至关重要。在本综述中,我们总结了活性层和/或电极内多重微结构的最新进展,这些微结构可确保优异的传感性能、卓越的可靠性和多功能特性。具体而言,我们将重点介绍基于分层微/纳米结构、导电梯度涂层或多层结构的压力传感器中先进的微图案、微孔、纤维网和混合微结构的设计、工作原理和传感功能。此外,我们还总结了微结构压力传感器在医疗保健和人机交互领域的应用。最后,我们讨论了开发下一代柔性压力传感器所面临的挑战和未来前景。
{"title":"Recent advances and new frontier of flexible pressure sensors: Structure engineering, performances and applications","authors":"Tianhui Jiang ,&nbsp;Chunnan Wang ,&nbsp;Tianyi Ling ,&nbsp;Shuqing Sun ,&nbsp;Lei Yang","doi":"10.1016/j.mtphys.2024.101576","DOIUrl":"10.1016/j.mtphys.2024.101576","url":null,"abstract":"<div><div>Global research on flexible pressure sensors for evaluating human wellness and intelligent robotics is intensifying due to their advantages of excellent flexibility, lightweight design, high sensitivity and ease of integration. To facilitate practical applications, challenges associated with high-performance must be addressed, such as the trade-off between high sensitivity and a wide linear sensing range, fast response/recovery time, limited hysteresis, and stability under both dynamic and static pressure conditions. Moreover, ensuring the sensors’ reliability under various interferences and their multi-functionality to meet diverse usage requirements is essential for future applications. In this review, we summarize the latest advancements in multiple microstructures within the active layer and/or electrodes, which ensure excellent sensing performances, superior reliability and multifunctional features. Specifically, we focus on the design, working principles and sensing features of advanced micropattern, micropores, fiber-network, and hybrid microstructures in pressure sensors based on hierarchical micro-/nano-structure, conductive gradient coatings or multilayer structures. Additionally, the applications of microstructured pressure sensors in the fields of healthcare and human-machine interaction are summarized. Finally, we discuss the challenges and future prospects in the development of the next generation of flexible pressure sensors.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101576"},"PeriodicalIF":10.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced nonlinear optical properties of MXene (Ti3C2Tx) via surface-covalent functionalization with porphyrin 通过卟啉表面共价功能化增强 MXene(Ti3C2Tx)的非线性光学特性
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-22 DOI: 10.1016/j.mtphys.2024.101577
Yang Zhao , Zihao Guan , Zhiyuan Wei , Lulu Fu , Lu Chen , Zhipeng Huang , Mark G. Humphrey , Chi Zhang
The surface terminations (=O, -OH, and -F) play a key role in determining the physical and chemical properties of MXenes, which have been demonstrated with significant potential in field-effect transistors, humidity sensors, energy storage, and photocatalysis, etc. It is therefore crucial to modify these active functional groups on the surface of MXenes in order to optimize the applicability of these materials. In this study, we introduce a covalent modification strategy to successfully construct a porphyrin-functionalized Ti3C2Tx organic-inorganic nanohybrid (TPP-Ti3C2Tx) by covalently attaching porphyrin molecules to the surface groups on Ti3C2Tx nanosheets for the first time. As revealed by steady-state fluorescence spectra, transient fluorescence spectra, and DFT calculations, the robust covalent bonds between TPP and Ti3C2Tx can effectively promote the photon-induced electron and/or energy transfer within the TPP-Ti3C2Tx nanohybrid. The investigation on the nonlinear optical (NLO) properties of TPP-Ti3C2Tx nanohybrid as well as its precursors, reveals that the TPP-Ti3C2Tx nanohybrid exhibits the highest nonlinear absorption coefficient and the lowest optical limiting threshold among the tested samples at both 532 and 1064 nm, indicating its great potential as a broadband optical limiter for visible and near-infrared wavelengths. This work not only demonstrates the significant promise of covalently-linked TPP-Ti3C2Tx nanohybrid in optical limiting applications but also provides a paradigm for engineering high-performance NLO MXenes-based materials through the covalent modification strategy.
表面端基(=O、-OH 和 -F)在决定二氧化二烯的物理和化学性质方面起着关键作用,二氧化二烯在场效应晶体管、湿度传感器、能量存储和光催化等方面具有巨大潜力。因此,为了优化这些材料的适用性,对 MXenes 表面的这些活性官能团进行修饰至关重要。在本研究中,我们首次将卟啉分子共价连接到 Ti3C2Tx 纳米片的表面基团上,采用共价修饰策略成功构建了卟啉功能化 Ti3C2Tx 有机-无机纳米杂化物(TPP-Ti3C2Tx)。稳态荧光光谱、瞬态荧光光谱和 DFT 计算表明,TPP 与 Ti3C2Tx 之间的共价键能有效促进 TPP-Ti3C2Tx 纳米杂化材料中光子诱导的电子和/或能量转移。对 TPP-Ti3C2Tx 纳米杂化物及其前驱体的非线性光学(NLO)特性的研究表明,TPP-Ti3C2Tx 纳米杂化物在 532 纳米和 1064 纳米波长的测试样品中表现出最高的非线性吸收系数和最低的光学限制阈值,这表明其作为可见光和近红外波长的宽带光学限制器的巨大潜力。这项工作不仅证明了共价连接的 TPP-Ti3C2Tx 纳米杂化材料在光限制应用中的巨大潜力,而且为通过共价修饰策略设计高性能 NLO MXenes 基材料提供了范例。
{"title":"Enhanced nonlinear optical properties of MXene (Ti3C2Tx) via surface-covalent functionalization with porphyrin","authors":"Yang Zhao ,&nbsp;Zihao Guan ,&nbsp;Zhiyuan Wei ,&nbsp;Lulu Fu ,&nbsp;Lu Chen ,&nbsp;Zhipeng Huang ,&nbsp;Mark G. Humphrey ,&nbsp;Chi Zhang","doi":"10.1016/j.mtphys.2024.101577","DOIUrl":"10.1016/j.mtphys.2024.101577","url":null,"abstract":"<div><div>The surface terminations (=O, -OH, and -F) play a key role in determining the physical and chemical properties of MXenes, which have been demonstrated with significant potential in field-effect transistors, humidity sensors, energy storage, and photocatalysis, etc. It is therefore crucial to modify these active functional groups on the surface of MXenes in order to optimize the applicability of these materials. In this study, we introduce a covalent modification strategy to successfully construct a porphyrin-functionalized Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> organic-inorganic nanohybrid (TPP-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) by covalently attaching porphyrin molecules to the surface groups on Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> nanosheets for the first time. As revealed by steady-state fluorescence spectra, transient fluorescence spectra, and DFT calculations, the robust covalent bonds between TPP and Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> can effectively promote the photon-induced electron and/or energy transfer within the TPP-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> nanohybrid. The investigation on the nonlinear optical (NLO) properties of TPP-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> nanohybrid as well as its precursors, reveals that the TPP-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> nanohybrid exhibits the highest nonlinear absorption coefficient and the lowest optical limiting threshold among the tested samples at both 532 and 1064 nm, indicating its great potential as a broadband optical limiter for visible and near-infrared wavelengths. This work not only demonstrates the significant promise of covalently-linked TPP-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> nanohybrid in optical limiting applications but also provides a paradigm for engineering high-performance NLO MXenes-based materials through the covalent modification strategy.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101577"},"PeriodicalIF":10.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revealing the pinning landscape and related vortex pattern evolution in granular superconducting films 揭示粒状超导薄膜中的引脚分布及相关涡旋模式演化
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-22 DOI: 10.1016/j.mtphys.2024.101575
Tian He , Kang-Hong Yin , Xin-Sheng Gao , Han-Xi Ren , Ya-Xun He , Jia-Ying Zhang , Hao-Hao Shi , Cun Xue , Jun-Yi Ge
Most superconducting electronics based on films exhibit granular structures. It has been suggested that grain boundaries form a network with relatively weak superconductivity, potentially acting as pinning centers. Yet, so far, detailed microscopic studies of the pinning landscape and its relation to vortex behavior remain scarce. Here, we imaged the vortex lattices (VL) in granular Nb films using magnetic force microscopy over large scanning areas at various magnetic fields. A non-monotonic evolution in the degree of vortex lattice ordering was observed with increasing vortex density, driven by a combination of vortex-vortex interactions and pinning effects. The spatial distribution of pinning potential within the film was directly mapped using a recently developed scanning quantum vortex microscope (SQVM). Instead of the network formed by grain boundaries, the pinning landscape presents a network-like structure, yet with domains significantly larger than the individual grains. The results of numerical simulations based on pinning landscape revealed by SQVM well reproduce our experiments. The pinning force per unit length at low magnetic fields was calculated. The critical current density, estimated from the relative positions of vortices, aligns well with the critical state model. Our work illustrates the relationship between the evolution of the vortex lattice with magnetic field and the structural features of granular Nb film, providing new insights into the design of high-performance superconducting electronic devices.
大多数基于薄膜的超导电子器件都呈现颗粒状结构。有人认为,晶界形成的网络具有相对较弱的超导性,有可能成为引脚中心。然而,迄今为止,有关引脚景观及其与涡旋行为关系的详细微观研究仍然很少。在这里,我们使用磁力显微镜在不同磁场下对粒状铌薄膜中的涡旋晶格(VL)进行了大面积扫描成像。在涡旋-涡旋相互作用和针刺效应的共同作用下,随着涡旋密度的增加,我们观察到涡旋晶格有序度的非单调演化。我们使用最近开发的扫描量子涡旋显微镜(SQVM)直接绘制了薄膜内针扎电位的空间分布图。与晶粒边界形成的网络结构不同,引脚分布呈现出类似网络的结构,但其域明显大于单个晶粒。基于 SQVM 所揭示的针刺图的数值模拟结果很好地再现了我们的实验。我们计算了低磁场下单位长度上的针刺力。根据涡旋的相对位置估算出的临界电流密度与临界状态模型非常吻合。我们的工作说明了涡流晶格随磁场的演变与粒状铌薄膜结构特征之间的关系,为高性能超导电子器件的设计提供了新的见解。
{"title":"Revealing the pinning landscape and related vortex pattern evolution in granular superconducting films","authors":"Tian He ,&nbsp;Kang-Hong Yin ,&nbsp;Xin-Sheng Gao ,&nbsp;Han-Xi Ren ,&nbsp;Ya-Xun He ,&nbsp;Jia-Ying Zhang ,&nbsp;Hao-Hao Shi ,&nbsp;Cun Xue ,&nbsp;Jun-Yi Ge","doi":"10.1016/j.mtphys.2024.101575","DOIUrl":"10.1016/j.mtphys.2024.101575","url":null,"abstract":"<div><div>Most superconducting electronics based on films exhibit granular structures. It has been suggested that grain boundaries form a network with relatively weak superconductivity, potentially acting as pinning centers. Yet, so far, detailed microscopic studies of the pinning landscape and its relation to vortex behavior remain scarce. Here, we imaged the vortex lattices (VL) in granular Nb films using magnetic force microscopy over large scanning areas at various magnetic fields. A non-monotonic evolution in the degree of vortex lattice ordering was observed with increasing vortex density, driven by a combination of vortex-vortex interactions and pinning effects. The spatial distribution of pinning potential within the film was directly mapped using a recently developed scanning quantum vortex microscope (SQVM). Instead of the network formed by grain boundaries, the pinning landscape presents a network-like structure, yet with domains significantly larger than the individual grains. The results of numerical simulations based on pinning landscape revealed by SQVM well reproduce our experiments. The pinning force per unit length at low magnetic fields was calculated. The critical current density, estimated from the relative positions of vortices, aligns well with the critical state model. Our work illustrates the relationship between the evolution of the vortex lattice with magnetic field and the structural features of granular Nb film, providing new insights into the design of high-performance superconducting electronic devices.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101575"},"PeriodicalIF":10.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Materials Today Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1