首页 > 最新文献

Materials Today Physics最新文献

英文 中文
Full-shell d-orbitals of interstitial Ni and anomalous electrical transport in Ni-based half-Heusler thermoelectric semiconductors 镍基半休斯勒热电半导体中间隙镍的全壳 d 轨道和反常电输运
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-21 DOI: 10.1016/j.mtphys.2024.101558
We systematically investigate the anomalous electronic properties and electrical transport induced by full-shell d10-orbitals of the extra interstitial Nii in Ni-based half-Heusler XNi1+xZ semiconductors. The orbitals from the interstitial Nii have the unique d10 configuration, split into high-energy eg4 orbitals and low-energy t2g6 orbitals under the octahedral crystal field. In XIVNi1+xZIV (XIV=Ti, Zr, Hf; ZIV=Sn, Pb), the localized Nii-eg4 states fall within the intrinsic bandgap leading to a reduced bandgap. In XIIINi1+xZV (XIII=Sc, Y; ZV=Sb, Bi), the Nii-eg4 states overlap with the intrinsic valence bands. Additionally, the interstitial Nii perturb the nearest neighbor X atomic coordination, leading to the splitting of degenerate conduction band minimum, which is stronger in XIIINi1+xZV than XIVNi1+xZIV. Trace amounts of interstitial Nii significantly impact the electrical transport properties. The introduction of the extra interstitial Nii reduces the density of states effective mass, the electron group velocity, and the relaxation time, leading to a decrease of the Seebeck coefficient and electrical conductivity at low and medium temperatures. Nevertheless, the introduction of localized Nii-eg4 states within the bandgap as new valence band maximum attenuate the high-temperature bipolar effect at low carrier concentration intervals, thus maintaining a high thermopower at elevated temperatures. Furthermore, the tuning of the Nii-d10 orbitals by solid solution of both XIVNi1+xZIV and XIIINi1+xZV is expected to further optimize the electrical transport.
我们系统地研究了镍基半休斯勒 XNi1+xZ 半导体中额外间隙 Nii 的全壳 d10 轨道诱导的异常电子特性和电输运。间隙 Nii 的轨道具有独特的 d10 构型,在八面体晶场下分为高能 eg4 轨道和低能 t2g6 轨道。在 XIVNi1+xZIV (XIV=钛、锆、铪;ZIV=硒、铅)中,局部 Nii-eg4 态落在本征带隙内,导致带隙减小。在 XIIINi1+xZV (XIII=Sc、Y;ZV=Sb、Bi)中,Nii-eg4 态与本征价带重叠。此外,间隙 Nii 会扰动近邻 X 原子的配位,导致退行导带最小值的分裂,XIIINi1+xZV 中的分裂比 XIVNi1+xZIV 中的更强。微量的间隙 Nii 会显著影响电传输特性。引入额外的间隙 Nii 会降低态密度的有效质量、电子群速度和弛豫时间,从而导致低温和中温下的塞贝克系数和电导率下降。不过,在带隙内引入局部 Nii-eg4 态作为新的价带最大值,可以减弱低载流子浓度区间的高温双极效应,从而在高温下保持较高的热功率。此外,通过固溶 XIVNi1+xZIV 和 XIIINi1+xZV 来调整 Nii-d10 轨道,有望进一步优化电传输。
{"title":"Full-shell d-orbitals of interstitial Ni and anomalous electrical transport in Ni-based half-Heusler thermoelectric semiconductors","authors":"","doi":"10.1016/j.mtphys.2024.101558","DOIUrl":"10.1016/j.mtphys.2024.101558","url":null,"abstract":"<div><div>We systematically investigate the anomalous electronic properties and electrical transport induced by full-shell <em>d</em><sup>10</sup>-orbitals of the extra interstitial Ni<sub><em>i</em></sub> in Ni-based half-Heusler XNi<sub>1+<em>x</em></sub>Z semiconductors. The orbitals from the interstitial Ni<sub><em>i</em></sub> have the unique <em>d</em><sup>10</sup> configuration, split into high-energy <em>e</em><sub><em>g</em></sub><sup>4</sup> orbitals and low-energy <em>t</em><sub><em>2g</em></sub><sup>6</sup> orbitals under the octahedral crystal field. In X<sup>IV</sup>Ni<sub>1+<em>x</em></sub>Z<sup>IV</sup> (X<sup>IV</sup>=Ti, Zr, Hf; Z<sup>IV</sup>=Sn, Pb), the localized Ni<sub><em>i</em></sub>-<em>e</em><sub><em>g</em></sub><sup>4</sup> states fall within the intrinsic bandgap leading to a reduced bandgap. In X<sup>III</sup>Ni<sub>1+<em>x</em></sub>Z<sup>V</sup> (X<sup>III</sup>=Sc, Y; Z<sup>V</sup>=Sb, Bi), the Ni<sub><em>i</em></sub>-<em>e</em><sub><em>g</em></sub><sup>4</sup> states overlap with the intrinsic valence bands. Additionally, the interstitial Ni<sub><em>i</em></sub> perturb the nearest neighbor X atomic coordination, leading to the splitting of degenerate conduction band minimum, which is stronger in X<sup>III</sup>Ni<sub>1+<em>x</em></sub>Z<sup>V</sup> than X<sup>IV</sup>Ni<sub>1+<em>x</em></sub>Z<sup>IV</sup>. Trace amounts of interstitial Ni<sub><em>i</em></sub> significantly impact the electrical transport properties. The introduction of the extra interstitial Ni<sub><em>i</em></sub> reduces the density of states effective mass, the electron group velocity, and the relaxation time, leading to a decrease of the Seebeck coefficient and electrical conductivity at low and medium temperatures. Nevertheless, the introduction of localized Ni<sub><em>i</em></sub>-<em>e</em><sub><em>g</em></sub><sup>4</sup> states within the bandgap as new valence band maximum attenuate the high-temperature bipolar effect at low carrier concentration intervals, thus maintaining a high thermopower at elevated temperatures. Furthermore, the tuning of the Ni<sub><em>i</em></sub>-<em>d</em><sup>10</sup> orbitals by solid solution of both X<sup>IV</sup>Ni<sub>1+<em>x</em></sub>Z<sup>IV</sup> and X<sup>III</sup>Ni<sub>1+<em>x</em></sub>Z<sup>V</sup> is expected to further optimize the electrical transport.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-performance, superhydrophobic, durable photonic structure coating for efficient passive daytime radiative cooling 高性能、超疏水、耐用的光子结构涂层,可实现高效的日间被动辐射冷却
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-20 DOI: 10.1016/j.mtphys.2024.101556
Passive daytime radiative cooling (PDRC) is an innovative and energy-free cooling technology that automatically cools the surface of an object by reflecting sunlight and emitting heat into outer space without the need for external energy inputs. However, PDRC materials often face issues such as surface contamination and poor long-term outdoor durability. Herein, a photonic structure coating with high PDRC performance, superhydrophobic property, and high outdoor durability was designed and prepared using a phase separation strategy. The photonic structure coating achieves a solar reflectance ∼97.6 % and an average atmospheric window (AW) emissivity of ∼93 %. Under direct sunlight (800 W/m2), the coating exhibits good PDRC performance, with an average temperature drop of ∼13 °C and a maximum temperature drop of up to ∼20 °C. The rough and porous surface of the coating can adsorb air, reducing the solid-liquid adhesion and endowing the coating with super-hydrophobic properties. The incorporation of a small amount of fluoroalkyl silanes into the coating provides water resistance, resulting in a water contact angle (WCA) of ∼155.1° and sliding angle (SA) of ∼2.3°, meeting the need for self-cleaning. Furthermore, the coating exhibits superior durability, including resistance to acid and alkali, UV aging, abrasion, and scratching. All these merits render this photonic structure coating great potential for real-world applications.
被动式日间辐射冷却(PDRC)是一种创新的无能源冷却技术,它通过反射太阳光并将热量散发到外层空间来自动冷却物体表面,而无需外部能源输入。然而,PDRC 材料经常面临表面污染和长期户外耐久性差等问题。在此,我们采用相分离策略设计并制备了一种具有高 PDRC 性能、超疏水性和高户外耐久性的光子结构涂层。该光子结构涂层的太阳反射率达到 97.6%,平均大气窗(AW)发射率达到 93%。在直射阳光(800 W/m2)下,涂层具有良好的 PDRC 性能,平均温降为∼13 °C,最大温降可达∼20 °C。涂层表面粗糙多孔,可吸附空气,降低固液粘附性,使涂层具有超疏水特性。在涂层中加入少量氟烷基硅烷可提供防水性,使水接触角(WCA)达到 155.1°,滑动角(SA)达到 2.3°,满足了自清洁的需要。此外,涂层还具有卓越的耐久性,包括耐酸碱、耐紫外线老化、耐磨损和耐刮擦。所有这些优点都使这种光子结构涂层在实际应用中大有可为。
{"title":"High-performance, superhydrophobic, durable photonic structure coating for efficient passive daytime radiative cooling","authors":"","doi":"10.1016/j.mtphys.2024.101556","DOIUrl":"10.1016/j.mtphys.2024.101556","url":null,"abstract":"<div><div>Passive daytime radiative cooling (PDRC) is an innovative and energy-free cooling technology that automatically cools the surface of an object by reflecting sunlight and emitting heat into outer space without the need for external energy inputs. However, PDRC materials often face issues such as surface contamination and poor long-term outdoor durability. Herein, a photonic structure coating with high PDRC performance, superhydrophobic property, and high outdoor durability was designed and prepared using a phase separation strategy. The photonic structure coating achieves a solar reflectance ∼97.6 % and an average atmospheric window (AW) emissivity of ∼93 %. Under direct sunlight (800 W/m<sup>2</sup>), the coating exhibits good PDRC performance, with an average temperature drop of ∼13 °C and a maximum temperature drop of up to ∼20 °C. The rough and porous surface of the coating can adsorb air, reducing the solid-liquid adhesion and endowing the coating with super-hydrophobic properties. The incorporation of a small amount of fluoroalkyl silanes into the coating provides water resistance, resulting in a water contact angle (WCA) of ∼155.1° and sliding angle (SA) of ∼2.3°, meeting the need for self-cleaning. Furthermore, the coating exhibits superior durability, including resistance to acid and alkali, UV aging, abrasion, and scratching. All these merits render this photonic structure coating great potential for real-world applications.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterogeneous wafer bonding of ultra-wide bandgap Ga2O3: A review 超宽带隙 Ga2O3 的异质晶片键合:综述
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-20 DOI: 10.1016/j.mtphys.2024.101557
Gallium oxide (Ga2O3), with its ultra-wide bandgap (∼4.8 eV) and high theoretical breakdown field (8 MV/cm), holds significant research value and promising application in power electronics and microwave radio-frequency (RF) devices. However, the extremely low thermal conductivity of Ga2O3 severely impedes the fabrication of complicated structures and the optimization of device performance. The wafer bonding technology, as a method to fabricate heterogeneous structures materials, newly applied on Ga2O3 to fabricate Ga2O3 hybrid materials. This paper reviews the wafer bonding technology for ultra-wide bandgap Ga2O3 material based on plasma activation and room-temperature surface activation, as well as the heterogeneous integration with silicon (Si), silicon carbide (SiC), and diamond. The effects of various wafer bonding methods on the bonding quality, thermal, and electrical properties are systematically summarized. Finally, the advancements of Ga2O3-based heterogeneous structures in the applications of power, RF, and optoelectronic devices are summarized. This review aims to address the key challenges in Ga2O3 material through an understanding of principles and development of bonding technology, thereby facilitating the practical application of Ga2O3-based devices.
氧化镓(Ga2O3)具有超宽带隙(∼4.8 eV)和高理论击穿场(8 MV/cm),在电力电子和微波射频(RF)器件领域具有重要的研究价值和应用前景。然而,Ga2O3 极低的热导率严重阻碍了复杂结构的制造和器件性能的优化。晶圆键合技术作为一种制造异质结构材料的方法,新近被应用到 Ga2O3 上,以制造 Ga2O3 混合材料。本文综述了基于等离子体活化和室温表面活化的超宽带隙 Ga2O3 材料晶圆键合技术,以及与硅(Si)、碳化硅(SiC)和金刚石的异质集成。系统地总结了各种晶片键合方法对键合质量、热性能和电性能的影响。最后,总结了基于 Ga2O3 的异质结构在功率、射频和光电器件应用方面的进展。本综述旨在通过对原理的理解和键合技术的发展来解决 Ga2O3 材料所面临的关键挑战,从而促进基于 Ga2O3 的器件的实际应用。
{"title":"Heterogeneous wafer bonding of ultra-wide bandgap Ga2O3: A review","authors":"","doi":"10.1016/j.mtphys.2024.101557","DOIUrl":"10.1016/j.mtphys.2024.101557","url":null,"abstract":"<div><div>Gallium oxide (Ga<sub>2</sub>O<sub>3</sub>), with its ultra-wide bandgap (∼4.8 eV) and high theoretical breakdown field (8 MV/cm), holds significant research value and promising application in power electronics and microwave radio-frequency (RF) devices. However, the extremely low thermal conductivity of Ga<sub>2</sub>O<sub>3</sub> severely impedes the fabrication of complicated structures and the optimization of device performance. The wafer bonding technology, as a method to fabricate heterogeneous structures materials, newly applied on Ga<sub>2</sub>O<sub>3</sub> to fabricate Ga<sub>2</sub>O<sub>3</sub> hybrid materials. This paper reviews the wafer bonding technology for ultra-wide bandgap Ga<sub>2</sub>O<sub>3</sub> material based on plasma activation and room-temperature surface activation, as well as the heterogeneous integration with silicon (Si), silicon carbide (SiC), and diamond. The effects of various wafer bonding methods on the bonding quality, thermal, and electrical properties are systematically summarized. Finally, the advancements of Ga<sub>2</sub>O<sub>3</sub>-based heterogeneous structures in the applications of power, RF, and optoelectronic devices are summarized. This review aims to address the key challenges in Ga<sub>2</sub>O<sub>3</sub> material through an understanding of principles and development of bonding technology, thereby facilitating the practical application of Ga<sub>2</sub>O<sub>3</sub>-based devices.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142310701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transport and electronic structure properties of MBE grown Sn doped Ga2O3 homo-epitaxial films MBE 生长的掺锡 Ga2O3 同外延薄膜的传输和电子结构特性
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-20 DOI: 10.1016/j.mtphys.2024.101555
In this work, we report the transport, defect state and electronic structure properties of unintentionally doped (UID) and Sn doped β-Ga2O3 homo-epitaxial thin films grown by molecular beam epitaxy (MBE) with electron density ranging from 2.1 × 1016 to 2.8 × 1019 cm−3. The UID film with an electron density of 2.1 × 1016 cm−3 exhibits a notable RT mobility of 129 cm2/Vs and a peak mobility of 900 cm2/Vs at 80 K, achieving the state-of-the-art level for MBE-grown Ga2O3 films. Temperature dependent Hall measurement reveal that Sn dopants have an activation energy of 56.7 meV. Synchrotron-based photoemission spectroscopy were further used to study insights into the evolution of electronic properties induced by Sn doping. An in-gap defect state was observed at the 1.5 eV above the valence band maximum for the Sn-doped Ga2O3 film. The in-gap state acts as self-compensating centers affecting the overall doping efficiency and mobility. Furthermore, photoemission spectroscopic study also reveals an upward surface band bending existing at the surface region of Sn doped Ga2O3 films. The identification of the in-gap state and surface upward band bending have significant implications for understanding the doping mechanisms in Ga2O3 and its electronic device applications.
在这项工作中,我们报告了通过分子束外延(MBE)技术生长的无意掺杂(UID)和掺锡的β-Ga2O3同外延薄膜的输运、缺陷态和电子结构特性,其电子密度范围为 2.1 × 1016 至 2.8 × 1019 cm-3。电子密度为 2.1 × 1016 cm-3 的 UID 薄膜的实时迁移率高达 129 cm2/Vs,在 80 K 时的峰值迁移率为 900 cm2/Vs,达到了 MBE 生长的 Ga2O3 薄膜的最新水平。与温度相关的霍尔测量显示,锡掺杂剂的活化能为 56.7 meV。同步辐射光发射光谱被进一步用于研究掺入锡后电子特性的演变。在掺杂了锡的 Ga2O3 薄膜价带最大值上方 1.5 eV 处观察到一个内隙缺陷态。隙内缺陷态作为自补偿中心影响着整体掺杂效率和迁移率。此外,光发射光谱研究还揭示了掺杂锡的 Ga2O3 薄膜表面区域存在向上的表面带弯曲。内隙态和表面向上带弯曲的确定对于理解 Ga2O3 的掺杂机制及其电子器件应用具有重要意义。
{"title":"Transport and electronic structure properties of MBE grown Sn doped Ga2O3 homo-epitaxial films","authors":"","doi":"10.1016/j.mtphys.2024.101555","DOIUrl":"10.1016/j.mtphys.2024.101555","url":null,"abstract":"<div><div>In this work, we report the transport, defect state and electronic structure properties of unintentionally doped (UID) and Sn doped <em>β</em>-Ga<sub>2</sub>O<sub>3</sub> homo-epitaxial thin films grown by molecular beam epitaxy (MBE) with electron density ranging from 2.1 × 10<sup>16</sup> to 2.8 × 10<sup>19</sup> cm<sup>−3</sup>. The UID film with an electron density of 2.1 × 10<sup>16</sup> cm<sup>−3</sup> exhibits a notable RT mobility of 129 cm<sup>2</sup>/Vs and a peak mobility of 900 cm<sup>2</sup>/Vs at 80 K, achieving the state-of-the-art level for MBE-grown Ga<sub>2</sub>O<sub>3</sub> films. Temperature dependent Hall measurement reveal that Sn dopants have an activation energy of 56.7 meV. Synchrotron-based photoemission spectroscopy were further used to study insights into the evolution of electronic properties induced by Sn doping. An in-gap defect state was observed at the 1.5 eV above the valence band maximum for the Sn-doped Ga<sub>2</sub>O<sub>3</sub> film. The in-gap state acts as self-compensating centers affecting the overall doping efficiency and mobility. Furthermore, photoemission spectroscopic study also reveals an upward surface band bending existing at the surface region of Sn doped Ga<sub>2</sub>O<sub>3</sub> films. The identification of the in-gap state and surface upward band bending have significant implications for understanding the doping mechanisms in Ga<sub>2</sub>O<sub>3</sub> and its electronic device applications.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhomogeneous fan-shaped surface state induced by isolated Weyl points in acoustic crystals and the associated multi-frequency sound-wave filters 声学晶体中孤立韦尔点诱导的非均质扇形表面状态及相关多频声波滤波器
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-19 DOI: 10.1016/j.mtphys.2024.101553
The nontrivial surface states excited by isolated Weyl points (IWPs) have been scarcely studied to date, primarily due to their circumvention from the Nielsen-Ninomiya no-go theorem. In a groundbreaking study on this topic [Adv. Sci., 10, 2207508 (2023)], we discovered that IWPs can generate a novel nontrivial surface state, namely the multi-fold fan-shaped surface state, which we named. Here, we report another type of fan-shaped surface state generated by an IWP surrounded by a closed Weyl nodal wall (WNW). Unlike previous findings, the fan-shaped surface state discovered here exhibits inhomogeneous in spatial distribution, with significantly varying sizes of the fan blades. Moreover, this surface state can be generated by a charge-four IWP protected by the rotation symmetries {C31+|000}, {C2z|12012}, {C2x|01212} and the time-reversal symmetry in the space group (SG) No. 198. Importantly, our simulation results of the acoustic crystals in this SG revel that the inhomogeneous fan-shaped surface state can provide multiple channels for acoustic wave transmission without energy dissipation, demonstrating that this kind of nontrivial surface state offers an effective mechanism for designing multi-frequency acoustic wave filters and selectors.
迄今为止,对孤立韦尔点(IWPs)激发的非难表面态的研究很少,主要原因是它们规避了尼尔森-二宫禁区定理。在对这一课题的开创性研究[Adv. Sci.,10, 2207508 (2023)]中,我们发现 IWPs 可以产生一种新的非小面态,即我们命名的多折扇形面态。在此,我们报告了由封闭的韦尔结点壁(WNW)包围的 IWP 产生的另一种扇形表面态。与之前的发现不同,这里发现的扇形表面态在空间分布上表现出不均匀性,扇叶的大小差异显著。此外,这种表面态可以由电荷四IWP产生,并受到空间群(SG)第198号中的旋转对称性{C31+|000}、{C2z|12012}、{C2x|01212}和时间反转对称性的保护。重要的是,我们对该空间群中声学晶体的模拟结果表明,不均匀的扇形表面态可以在不耗散能量的情况下为声波传输提供多个通道,这表明这种非对称表面态为设计多频声波滤波器和选择器提供了一种有效的机制。
{"title":"Inhomogeneous fan-shaped surface state induced by isolated Weyl points in acoustic crystals and the associated multi-frequency sound-wave filters","authors":"","doi":"10.1016/j.mtphys.2024.101553","DOIUrl":"10.1016/j.mtphys.2024.101553","url":null,"abstract":"<div><div>The nontrivial surface states excited by isolated Weyl points (IWPs) have been scarcely studied to date, primarily due to their circumvention from the Nielsen-Ninomiya no-go theorem. In a groundbreaking study on this topic [Adv. Sci., 10, 2207508 (2023)], we discovered that IWPs can generate a novel nontrivial surface state, namely the multi-fold fan-shaped surface state, which we named. Here, we report another type of fan-shaped surface state generated by an IWP surrounded by a closed Weyl nodal wall (WNW). Unlike previous findings, the fan-shaped surface state discovered here exhibits inhomogeneous in spatial distribution, with significantly varying sizes of the fan blades. Moreover, this surface state can be generated by a charge-four IWP protected by the rotation symmetries {<span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>31</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>|</mo></math></span>000}, {<span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>z</mi></mrow></msub><mo>|</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>0<span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>}, {<em>C</em><sub>2<em>x</em></sub>|0<span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>} and the time-reversal symmetry in the space group (SG) No. 198. Importantly, our simulation results of the acoustic crystals in this SG revel that the inhomogeneous fan-shaped surface state can provide multiple channels for acoustic wave transmission without energy dissipation, demonstrating that this kind of nontrivial surface state offers an effective mechanism for designing multi-frequency acoustic wave filters and selectors.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superconducting thin films of (Cu,C)Ba2Ca2Cu3O9±δ with zero-resistance transition temperature close to 100 K 零电阻转变温度接近 100 K 的[式略][式略][式略][式略]超导薄膜
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-18 DOI: 10.1016/j.mtphys.2024.101551
High superconducting transition temperature is favorable for the applications of superconductors. Some cuprate superconductors have the transition temperatures above 100 K, such as the Hg- or Tl-based 1223 and 1234 phases, but many of them contain the toxic elements, like Hg and Tl. Meanwhile, the anisotropy of upper critical field or the effective mass of above mentioned Hg-, Tl-based systems, or the non-toxic Bi2Sr2Ca2Cu3O10 with Tc = 110 K is high, which makes the vortices easy to move and the irreversibility magnetic field is very low in the liquid nitrogen temperature region. Here we report the successful synthesis of the c-axis oriented (Cu,C)Ba2Ca2Cu3O9±δ superconducting thin film with the zero-resistance transition temperature reaching 99.7 K. The superconducting transitions are rather sharp as revealed by both resistivity and magnetization measurements. Temperature dependent resistivity has been measured under different magnetic fields, and the irreversibility lines have been achieved. The resistivity was also measured with the magnetic field rotated in the ac-plane, and the data can be nicely scaled by using the anisotropic Ginzburg-Landau model, yielding a temperature dependent anisotropy which varies from 17 at 110 K to 4 at 77 K. Additionally, the critical current density calculated from the magnetization-hysteresis-loops reaches about 6×105 A/cm2 (zero field) at 77 K. Thus the film may be a good candidate for the applications of superconducting cables or high frequency superconducting filters in liquid nitrogen temperature region.
高超导转变温度有利于超导体的应用。一些铜氧化物超导体的转变温度高于 100 K,如基于 Hg 或 Tl 的 1223 和 1234 相,但其中许多含有有毒元素,如 Hg 和 Tl。同时,上述 Hg-、Tl 基体系或 Tc = 110 K 的无毒 Bi2Sr2Ca2Cu3O10 的上临界磁场或有效质量的各向异性很高,这使得涡旋容易移动,在液氮温度区域的不可逆磁场很低。我们在此报告成功合成了 c 轴取向的 (Cu,C)Ba2Ca2Cu3O9±δ超导薄膜,其零电阻转变温度达到 99.7 K。在不同磁场下测量了随温度变化的电阻率,并得到了不可逆线。电阻率也是在磁场沿交流平面旋转的情况下测量的,使用各向异性的金兹堡-朗道模型可以很好地对数据进行缩放,得出随温度变化的各向异性,从 110 K 时的 17 到 77 K 时的 4。此外,根据磁化-磁滞环计算出的临界电流密度在 77 K 时达到约 6×105A/cm2 (零磁场)。因此,该薄膜可能是在液氮温度区域应用超导电缆或高频超导过滤器的良好候选材料。
{"title":"Superconducting thin films of (Cu,C)Ba2Ca2Cu3O9±δ with zero-resistance transition temperature close to 100 K","authors":"","doi":"10.1016/j.mtphys.2024.101551","DOIUrl":"10.1016/j.mtphys.2024.101551","url":null,"abstract":"<div><div>High superconducting transition temperature is favorable for the applications of superconductors. Some cuprate superconductors have the transition temperatures above 100 K, such as the Hg- or Tl-based 1223 and 1234 phases, but many of them contain the toxic elements, like Hg and Tl. Meanwhile, the anisotropy of upper critical field or the effective mass of above mentioned Hg-, Tl-based systems, or the non-toxic <span><math><msub><mi>Bi</mi><mn>2</mn></msub></math></span><span><math><msub><mi>Sr</mi><mn>2</mn></msub></math></span><span><math><msub><mi>Ca</mi><mrow><mn>2</mn></mrow></msub></math></span><span><math><msub><mi>Cu</mi><mrow><mn>3</mn></mrow></msub></math></span><span><math><msub><mi>O</mi><mn>10</mn></msub></math></span> with <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> = 110 K is high, which makes the vortices easy to move and the irreversibility magnetic field is very low in the liquid nitrogen temperature region. Here we report the successful synthesis of the <span><math><mi>c</mi></math></span>-axis oriented <span><math><mrow><mo>(</mo><mi>C</mi><mi>u</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow><msub><mrow><mi>B</mi><mi>a</mi></mrow><mn>2</mn></msub></math></span><span><math><msub><mi>Ca</mi><mrow><mn>2</mn></mrow></msub></math></span><span><math><msub><mi>Cu</mi><mrow><mn>3</mn></mrow></msub></math></span><span><math><msub><mi>O</mi><mrow><mn>9</mn><mo>±</mo><mi>δ</mi></mrow></msub></math></span> superconducting thin film with the zero-resistance transition temperature reaching 99.7 K. The superconducting transitions are rather sharp as revealed by both resistivity and magnetization measurements. Temperature dependent resistivity has been measured under different magnetic fields, and the irreversibility lines have been achieved. The resistivity was also measured with the magnetic field rotated in the ac-plane, and the data can be nicely scaled by using the anisotropic Ginzburg-Landau model, yielding a temperature dependent anisotropy which varies from 17 at 110 K to 4 at 77 K. Additionally, the critical current density calculated from the magnetization-hysteresis-loops reaches about <span><math><mn>6</mn><mo>×</mo></math></span><span><math><msup><mn>10</mn><mrow><mn>5</mn></mrow></msup></math></span> <span><math><msup><mrow><mi>A</mi><mo>/</mo><mi>c</mi><mi>m</mi></mrow><mn>2</mn></msup></math></span> (zero field) at 77 K. Thus the film may be a good candidate for the applications of superconducting cables or high frequency superconducting filters in liquid nitrogen temperature region.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Near stoichiometric-ratio Mg3Sb2 thermoelectric thin films fabricated via multi-step annealing strategies 通过多步退火策略制造的接近化学计量比的 Mg3Sb2 热电薄膜
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-14 DOI: 10.1016/j.mtphys.2024.101552

Recently, Zintl Mg3Sb2-based compounds have attracted attention due to high thermoelectric performance, but most studies are concentrated on bulk materials with few on films and devices, limiting their applications for microelectronics. Here, p-type Mg3Sb2 films near stoichiometric-ratio are successfully fabricated using the multi-step experimental strategies based on the magnetron sputtering method. By tuning the energy structure and carrier transport, their thermoelectric performance is significantly improved, with a power factor up to 258.64 μW m−1 K−2 at ∼623 K. A Mg3Sb2-based generator is fabricated using these films, representing the first report of such a device. The output performance of this generator is evaluated and its power density is found to reach 9.4 μW cm−2 at ΔT of 40 K, showing good potential for powering electronics. Furthermore, the generator shows good stability with no significant change in output properties after storage in air for 40 days or over periodic cycles of high- and room-temperature operation.

近年来,基于 Zintl Mg3Sb2 的化合物因其热电性能高而备受关注,但大多数研究都集中在块体材料上,很少涉及薄膜和器件,从而限制了其在微电子领域的应用。本文采用基于磁控溅射法的多步骤实验策略,成功制备了接近化学计量比的 p 型 Mg3Sb2 薄膜。通过调整能量结构和载流子传输,这些薄膜的热电性能得到了显著提高,在 623 K 时功率因数高达 258.64 μW m-1 K-2。对这种发生器的输出性能进行了评估,发现其功率密度在ΔT为40 K时达到9.4 μW cm-2,显示出为电子设备供电的良好潜力。此外,这种发生器还显示出良好的稳定性,在空气中储存 40 天或在高温和室温运行的周期性循环中,其输出特性没有发生显著变化。
{"title":"Near stoichiometric-ratio Mg3Sb2 thermoelectric thin films fabricated via multi-step annealing strategies","authors":"","doi":"10.1016/j.mtphys.2024.101552","DOIUrl":"10.1016/j.mtphys.2024.101552","url":null,"abstract":"<div><p>Recently, Zintl Mg<sub>3</sub>Sb<sub>2</sub>-based compounds have attracted attention due to high thermoelectric performance, but most studies are concentrated on bulk materials with few on films and devices, limiting their applications for microelectronics. Here, p-type Mg<sub>3</sub>Sb<sub>2</sub> films near stoichiometric-ratio are successfully fabricated using the multi-step experimental strategies based on the magnetron sputtering method. By tuning the energy structure and carrier transport, their thermoelectric performance is significantly improved, with a power factor up to 258.64 μW m<sup>−1</sup> K<sup>−2</sup> at ∼623 K. A Mg<sub>3</sub>Sb<sub>2</sub>-based generator is fabricated using these films, representing the first report of such a device. The output performance of this generator is evaluated and its power density is found to reach 9.4 μW cm<sup>−2</sup> at Δ<em>T</em> of 40 K, showing good potential for powering electronics. Furthermore, the generator shows good stability with no significant change in output properties after storage in air for 40 days or over periodic cycles of high- and room-temperature operation.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural and electronic transformations in TiO2 induced by electric current 电流诱导的二氧化钛结构和电子变化
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-12 DOI: 10.1016/j.mtphys.2024.101546

In-situ diffuse neutron scattering experiments revealed that when electric current is passed through single crystals of rutile TiO2 under conditions conducive to flash sintering, it induces the formation of parallel planes of oxygen vacancies. Specifically, a current perpendicular to the c-axis generates planes normal to the (132) reciprocal lattice vector, whereas currents aligned with the c-axis form planes normal to the (132) and to the (225) vector. The concentration of defects increases with incresing current. The structural modifications are linked to the appearance of signatures of interacting Ti3+ moments in magnetic susceptibility, signifying a structural collapse around the vacancy planes. Electrical conductivity measurements of the modified material reveal several electronic transitions between semiconducting states (via a metal-like intermediate state) with the smallest gap being 27 meV. Pristine TiO2 can be restored by heating followed by slow cooling in air. Our work suggests a novel paradigm for achieving switching of electrical conductivity related to the flash phenomenon.

原位弥散中子散射实验表明,在有利于闪烁烧结的条件下,当电流通过金红石二氧化钛单晶体时,会诱导氧空位平行平面的形成。具体来说,垂直于 c 轴的电流会产生与(132)倒易点阵矢量法线平行的平面,而与 c 轴对齐的电流则会形成与(132)和(225)矢量法线平行的平面。缺陷的浓度随着电流的增大而增加。结构的改变与磁感应强度中出现的相互作用 Ti3+ 矩的特征有关,这标志着空缺平面周围的结构坍塌。对改性材料的电导率测量显示了半导体态(通过类金属中间态)之间的若干电子跃迁,最小间隙为 27 meV。通过在空气中加热并缓慢冷却,可以恢复原始二氧化钛。我们的工作为实现与闪烁现象有关的导电性切换提供了一种新的范例。
{"title":"Structural and electronic transformations in TiO2 induced by electric current","authors":"","doi":"10.1016/j.mtphys.2024.101546","DOIUrl":"10.1016/j.mtphys.2024.101546","url":null,"abstract":"<div><p>In-situ diffuse neutron scattering experiments revealed that when electric current is passed through single crystals of rutile TiO<sub>2</sub> under conditions conducive to flash sintering, it induces the formation of parallel planes of oxygen vacancies. Specifically, a current perpendicular to the <em>c</em>-axis generates planes normal to the (132) reciprocal lattice vector, whereas currents aligned with the <em>c</em>-axis form planes normal to the (132) and to the (225) vector. The concentration of defects increases with incresing current. The structural modifications are linked to the appearance of signatures of interacting Ti<sup>3+</sup> moments in magnetic susceptibility, signifying a structural collapse around the vacancy planes. Electrical conductivity measurements of the modified material reveal several electronic transitions between semiconducting states (via a metal-like intermediate state) with the smallest gap being 27 meV. Pristine TiO<sub>2</sub> can be restored by heating followed by slow cooling in air. Our work suggests a novel paradigm for achieving switching of electrical conductivity related to the flash phenomenon.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An interpretable formula for lattice thermal conductivity of crystals 晶体晶格热导率的可解释公式
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-07 DOI: 10.1016/j.mtphys.2024.101549

Lattice thermal conductivity (κL) is a crucial physical property of crystals with applications in thermal management, such as heat dissipation, insulation, and thermoelectric energy conversion. However, accurately and rapidly determining κL poses a considerable challenge. In this study, we introduce a formula that achieves high precision (mean relative error = 8.97 %) and provides fast predictions, taking less than 1 min, for κL across a wide range of inorganic binary and ternary materials. Our interpretable, dimensionally aligned and physical grounded formula forecasts κL values for 4601 binary and 6995 ternary materials in the Materials Project database. Notably, we predict undiscovered high κL values for AlBN2 (κL = 101 W m−1 K−1) and the undetected low κL Cs2Se (κL = 0.98 W m−1 K−1) at room temperature. This method for determining κL streamlines the traditionally time-consuming process associated with complex phonon physics. It provides insights into microscopic heat transport and facilitates the design and screening of materials with targeted and extreme κL values through the application of phonon engineering. Our findings offer opportunities for controlling and optimizing macroscopic transport properties of materials by engineering their bulk modulus, shear modulus, and Grüneisen parameter.

晶格热导率(κL)是晶体的一项重要物理特性,可应用于散热、绝缘和热电能量转换等热管理领域。然而,准确、快速地测定 κL 是一项相当大的挑战。在本研究中,我们介绍了一种公式,它能实现高精度(平均相对误差 = 8.97 %),并能在 1 分钟内快速预测各种无机二元和三元材料的 κL 值。我们的公式具有可解释性、尺寸对齐性和物理基础性,可预测材料项目数据库中 4601 种二元材料和 6995 种三元材料的 κL 值。值得注意的是,我们预测了 AlBN2 在室温下尚未发现的高 κL 值(κL = 101 W m-1 K-1)和尚未发现的低 κL Cs2Se(κL = 0.98 W m-1 K-1)。这种确定 κL 的方法简化了与复杂声子物理学相关的传统耗时过程。它提供了对微观热传输的深入了解,并通过声子工程的应用,促进了具有目标和极端 κL 值的材料的设计和筛选。我们的研究结果为通过对材料的体积模量、剪切模量和格鲁尼森参数进行工程设计来控制和优化材料的宏观传输特性提供了机会。
{"title":"An interpretable formula for lattice thermal conductivity of crystals","authors":"","doi":"10.1016/j.mtphys.2024.101549","DOIUrl":"10.1016/j.mtphys.2024.101549","url":null,"abstract":"<div><p>Lattice thermal conductivity (<em>κ</em><sub><em>L</em></sub>) is a crucial physical property of crystals with applications in thermal management, such as heat dissipation, insulation, and thermoelectric energy conversion. However, accurately and rapidly determining <em>κ</em><sub><em>L</em></sub> poses a considerable challenge. In this study, we introduce a formula that achieves high precision (mean relative error = 8.97 %) and provides fast predictions, taking less than 1 min, for <em>κ</em><sub><em>L</em></sub> across a wide range of inorganic binary and ternary materials. Our interpretable, dimensionally aligned and physical grounded formula forecasts <em>κ</em><sub><em>L</em></sub> values for 4601 binary and 6995 ternary materials in the Materials Project database. Notably, we predict undiscovered high <em>κ</em><sub><em>L</em></sub> values for AlBN<sub>2</sub> (<em>κ</em><sub><em>L</em></sub> = 101 W m<sup>−1</sup> K<sup>−1</sup>) and the undetected low <em>κ</em><sub><em>L</em></sub> Cs<sub>2</sub>Se (<em>κ</em><sub><em>L</em></sub> = 0.98 W m<sup>−1</sup> K<sup>−1</sup>) at room temperature. This method for determining <em>κ</em><sub><em>L</em></sub> streamlines the traditionally time-consuming process associated with complex phonon physics. It provides insights into microscopic heat transport and facilitates the design and screening of materials with targeted and extreme <em>κ</em><sub><em>L</em></sub> values through the application of phonon engineering. Our findings offer opportunities for controlling and optimizing macroscopic transport properties of materials by engineering their bulk modulus, shear modulus, and Grüneisen parameter.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid growth of CO2 hydrate as a promising way to mitigate the greenhouse effect 二氧化碳水合物的快速增长是缓解温室效应的有效途径
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-05 DOI: 10.1016/j.mtphys.2024.101548

Hydrate method to capture and store CO2 under sea floor as one of the most novel and promising methods to deal with the greenhouse effect and reduce carbon emission has gained increasing attention nowadays. But how to grow CO2 hydrate under promotion in confinement has rarely been exploited. Here the growth of CO2 hydrate with tetrahydrofuran (THF) promoter in confinement was systematically investigated by molecular dynamics simulations, with the counterpart growth but without promoter as a comparison. With promoter, an obviously more rapid growth of CO2 hydrate was observed and CO2 molecules went inside water cages along with the THF ones but not gathered into bubbles during the formation of clathrate. However, the gathering of CO2 bubbles in the system without promotion hindered the obvious formation of clathrate. The vivid movies and physical quantities were analyzed in detail in order to further unravel the physical mechanism of the growth process and the promotion effect of THF. The obtained simulation results proved that THF could indeed promote the confined growth of CO2 hydrate by preventing the formation of large CO2 bubbles, providing a theoretical foundation for the geological storage of CO2 hydrate in permafrost areas and marine sediments.

作为应对温室效应和减少碳排放的最新颖、最有前景的方法之一,水合物法在海底捕获和储存二氧化碳日益受到关注。但如何在密闭条件下促进二氧化碳水合物的生长却鲜有人问津。在此,我们通过分子动力学模拟系统地研究了有四氢呋喃(THF)促进剂的二氧化碳水合物在封闭条件下的生长情况,并与无促进剂的对应生长情况进行了比较。在使用促进剂的情况下,二氧化碳水合物的生长速度明显更快,二氧化碳分子与四氢呋喃分子一起进入水笼,但在凝块形成过程中没有聚集成气泡。然而,在没有促进剂的体系中,二氧化碳气泡的聚集阻碍了凝块的明显形成。为了进一步揭示生长过程的物理机制和四氢呋喃的促进作用,我们详细分析了生动的图像和物理量。所得到的模拟结果证明,THF 确实可以通过阻止大的 CO2 气泡形成来促进 CO2 水合物的封闭生长,为在永久冻土区和海洋沉积物中进行 CO2 水合物地质封存提供了理论依据。
{"title":"Rapid growth of CO2 hydrate as a promising way to mitigate the greenhouse effect","authors":"","doi":"10.1016/j.mtphys.2024.101548","DOIUrl":"10.1016/j.mtphys.2024.101548","url":null,"abstract":"<div><p>Hydrate method to capture and store CO<sub>2</sub> under sea floor as one of the most novel and promising methods to deal with the greenhouse effect and reduce carbon emission has gained increasing attention nowadays. But how to grow CO<sub>2</sub> hydrate under promotion in confinement has rarely been exploited. Here the growth of CO<sub>2</sub> hydrate with tetrahydrofuran (THF) promoter in confinement was systematically investigated by molecular dynamics simulations, with the counterpart growth but without promoter as a comparison. With promoter, an obviously more rapid growth of CO<sub>2</sub> hydrate was observed and CO<sub>2</sub> molecules went inside water cages along with the THF ones but not gathered into bubbles during the formation of clathrate. However, the gathering of CO<sub>2</sub> bubbles in the system without promotion hindered the obvious formation of clathrate. The vivid movies and physical quantities were analyzed in detail in order to further unravel the physical mechanism of the growth process and the promotion effect of THF. The obtained simulation results proved that THF could indeed promote the confined growth of CO<sub>2</sub> hydrate by preventing the formation of large CO<sub>2</sub> bubbles, providing a theoretical foundation for the geological storage of CO<sub>2</sub> hydrate in permafrost areas and marine sediments.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Materials Today Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1