Breast augmentations, commonly performed for aesthetic or medical reasons, often use silicone (polydimethylsiloxane [PDMS]) implants. Some patients develop complications like capsular contracture, where scar tissue forms around the implant. Previously, we used stimulated Raman scattering (SRS) microscopy to detect and quantify silicone in stained capsule tissue, finding a correlation between silicone amount and contracture severity. However, we suspected silicone loss during histological preparation, which includes multiple steps like formalin fixation and paraffin embedding. In this study, we assessed silicone loss by comparing adjacent tissue samples from the same capsule: one prepared conventionally and the other snap-frozen. SRS microscopy revealed that snap-frozen samples had roughly five times more silicone, indicating significant silicone loss during conventional preparation. Thus, measuring silicone in histologically prepared samples likely underestimates PDMS content.
{"title":"Silicone Loss During Histological Preparation of Breast Implant Tissue From Capsular Contracture, Quantified by Stimulated Raman Scattering Microscopy","authors":"Robert W. Schmidt, Erik de Bakker, Freek Ariese","doi":"10.1002/jbio.202400415","DOIUrl":"10.1002/jbio.202400415","url":null,"abstract":"<p>Breast augmentations, commonly performed for aesthetic or medical reasons, often use silicone (polydimethylsiloxane [PDMS]) implants. Some patients develop complications like capsular contracture, where scar tissue forms around the implant. Previously, we used stimulated Raman scattering (SRS) microscopy to detect and quantify silicone in stained capsule tissue, finding a correlation between silicone amount and contracture severity. However, we suspected silicone loss during histological preparation, which includes multiple steps like formalin fixation and paraffin embedding. In this study, we assessed silicone loss by comparing adjacent tissue samples from the same capsule: one prepared conventionally and the other snap-frozen. SRS microscopy revealed that snap-frozen samples had roughly five times more silicone, indicating significant silicone loss during conventional preparation. Thus, measuring silicone in histologically prepared samples likely underestimates PDMS content.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400415","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142883777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sanjay Kumar, Hana Maskova, Anna Kuzminova, Paval Curda, Lenka Doudova, Jan Sterba, Ondřej Kylián, Ryan O. M. Rego, Vítězslav Straňák
We report here on the development of tailored plasmonic AgNPs/C:H:N:O plasma polymer nanocomposites for the detection of the pathogenic bacterium Borrelia afzelii , with high selectivity and sensitivity. Silver (Ag) nanoparticles, generated by a gas aggregation source, are incorporated onto a C:H:N:O plasma polymer matrix, which is deposited by magnetron sputtering of a nylon 6.6. These anchored Ag nanoparticles propagate localized surface plasmon resonance (LSPR), optically responding to changes caused by immobilized pathogens near the nanoparticles. The tailored functionalization of AgNPs/C:H:N:O nanocomposite surface allows both high selectivity for the pathogen and high sensitivity with an LSPR red-shift Δλ > (4.20 ± 0.71) nm for 50 Borrelia per area 0.785 cm2. The results confirmed the ability of LSPR modulation for the rapid and early detection of (not only) tested pathogens.
{"title":"Tailored Functionalization of Plasmonic AgNPs/C:H:N:O Nanocomposite for Sensitive and Selective Detection","authors":"Sanjay Kumar, Hana Maskova, Anna Kuzminova, Paval Curda, Lenka Doudova, Jan Sterba, Ondřej Kylián, Ryan O. M. Rego, Vítězslav Straňák","doi":"10.1002/jbio.202400353","DOIUrl":"10.1002/jbio.202400353","url":null,"abstract":"<p>We report here on the development of tailored plasmonic AgNPs/C:H:N:O plasma polymer nanocomposites for the detection of the pathogenic bacterium \u0000 <i>Borrelia afzelii</i>\u0000 , with high selectivity and sensitivity. Silver (Ag) nanoparticles, generated by a gas aggregation source, are incorporated onto a C:H:N:O plasma polymer matrix, which is deposited by magnetron sputtering of a nylon 6.6. These anchored Ag nanoparticles propagate localized surface plasmon resonance (LSPR), optically responding to changes caused by immobilized pathogens near the nanoparticles. The tailored functionalization of AgNPs/C:H:N:O nanocomposite surface allows both high selectivity for the pathogen and high sensitivity with an LSPR red-shift Δλ > (4.20 ± 0.71) nm for 50 Borrelia per area 0.785 cm<sup>2</sup>. The results confirmed the ability of LSPR modulation for the rapid and early detection of (not only) tested pathogens.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400353","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142883802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oscar Cipolato, Matthias Fauconneau, Paige J. LeValley, Robert Nißler, Benjamin Suter, Inge K. Herrmann
Fluorescence-guided surgeries, including tumor resection and tissue soldering, are advancing the frontiers of surgical precision by offering enhanced control that minimizes tissue damage, improving recovery and outcomes. However, integrating fluorescence visualization with real-time temperature monitoring remains a challenge, limiting broader clinical use. We address this issue with an augmented reality (AR) visor that combines nanomaterial excitation, fluorescence detection, and temperature monitoring. Using advanced fluorescent nanoparticles like indocyanine green-doped particles and carbon nanotubes, the visor provides a comprehensive view of both the surgical field and sub-surface conditions invisible to the naked eye. This integration improves the safety and efficacy of fluorescence-guided surgeries, including laser tissue soldering, by ensuring optimal temperatures and laser guidance in real time. The presented technology enhances existing surgical techniques and supports the development of new strategies and sensing technologies in areas where traditional methods fall short, marking significant progress in precision surgery and potentially improving patient care.
{"title":"An Augmented Reality Visor for Intraoperative Visualization, Guidance, and Temperature Monitoring Using Fluorescence","authors":"Oscar Cipolato, Matthias Fauconneau, Paige J. LeValley, Robert Nißler, Benjamin Suter, Inge K. Herrmann","doi":"10.1002/jbio.202400417","DOIUrl":"10.1002/jbio.202400417","url":null,"abstract":"<p>Fluorescence-guided surgeries, including tumor resection and tissue soldering, are advancing the frontiers of surgical precision by offering enhanced control that minimizes tissue damage, improving recovery and outcomes. However, integrating fluorescence visualization with real-time temperature monitoring remains a challenge, limiting broader clinical use. We address this issue with an augmented reality (AR) visor that combines nanomaterial excitation, fluorescence detection, and temperature monitoring. Using advanced fluorescent nanoparticles like indocyanine green-doped particles and carbon nanotubes, the visor provides a comprehensive view of both the surgical field and sub-surface conditions invisible to the naked eye. This integration improves the safety and efficacy of fluorescence-guided surgeries, including laser tissue soldering, by ensuring optimal temperatures and laser guidance in real time. The presented technology enhances existing surgical techniques and supports the development of new strategies and sensing technologies in areas where traditional methods fall short, marking significant progress in precision surgery and potentially improving patient care.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400417","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142883775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bingchen Yu, Yuxi Zhu, Fan Zhang, Da Sun, Rui Xu, Chenzheng Wang, Kai Pang
Metastasis is the leading cause of death in tumor patients, with circulating tumor cells (CTCs) serving as key biomarkers for tumor progression, metastasis, and recurrence. CTC quantity is closely linked to tumor dynamics, which are influenced by biological rhythms. Studying CTC distribution under various physiological conditions provides insights into metastasis mechanisms. However, due to the low abundance of CTCs, detection accuracy is limited, especially with small blood samples, making continuous data collection challenging. To address this, we developed a dual-channel miniaturized in vivo fluorescence microscopy system for real-time monitoring of CTCs in experimental animals. This system, which can be fixed to the head or back, enables dynamic, quantitative analysis of CTCs in the circulatory system. It offers a valuable tool for investigating tumor metastasis rhythms, drug evaluation, and prognostic assessment in freely moving animals, advancing research in metastasis mechanisms and cancer treatment.
{"title":"A Miniaturized In Vivo Fluorescence Microscopy Method for Monitoring Circulating Tumor Cells in Freely Moving Animals","authors":"Bingchen Yu, Yuxi Zhu, Fan Zhang, Da Sun, Rui Xu, Chenzheng Wang, Kai Pang","doi":"10.1002/jbio.202400496","DOIUrl":"10.1002/jbio.202400496","url":null,"abstract":"<div>\u0000 \u0000 <p>Metastasis is the leading cause of death in tumor patients, with circulating tumor cells (CTCs) serving as key biomarkers for tumor progression, metastasis, and recurrence. CTC quantity is closely linked to tumor dynamics, which are influenced by biological rhythms. Studying CTC distribution under various physiological conditions provides insights into metastasis mechanisms. However, due to the low abundance of CTCs, detection accuracy is limited, especially with small blood samples, making continuous data collection challenging. To address this, we developed a dual-channel miniaturized in vivo fluorescence microscopy system for real-time monitoring of CTCs in experimental animals. This system, which can be fixed to the head or back, enables dynamic, quantitative analysis of CTCs in the circulatory system. It offers a valuable tool for investigating tumor metastasis rhythms, drug evaluation, and prognostic assessment in freely moving animals, advancing research in metastasis mechanisms and cancer treatment.</p>\u0000 </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142883771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hao Wang, Shuyu Chen, Sisi Guo, Jing Gao, Xudong Zhou, Qian Chen, Houpu Yang, Fei Xie, Shu Wang, Kun Gao, Lihui Liu, Ruoyu Zhang, Jianfeng Wang
A visible–near infrared (VIS–NIR) projected multispectral imaging (Proj-MSI) system consisting of an MSI subsystem and a compact projector for intraoperative breast tumor margin assessment was developed. MSI with an average spectral resolution of 24 nm was realized through sequential illumination of 26 sets of VIS–NIR light-emitting diodes and synchronized single NIR-sensitive camera image capture. Rapid (~1 min) tumor margin delineation revealed significantly (p < 0.01, Student's t-test) reduced reflectivity associated with breast tumor. Speeded-up robust features algorithm-based field of view calibration allowed the MSI identified tumor margins to be projected directly onto the breast-conserving surgery (BCS) surgical cavity with a projection error of < 1 mm. Besides, the projected tumor margin boundaries were outlined using Indian ink to simulate breast tumor removal, demonstrating the potential of the Proj-MSI system developed for intraoperative tumor margin assessment during BCS.
{"title":"Development of a Visible–Near Infrared Projected Multispectral Imaging System for Intraoperative Breast Tumor Margin Assessment","authors":"Hao Wang, Shuyu Chen, Sisi Guo, Jing Gao, Xudong Zhou, Qian Chen, Houpu Yang, Fei Xie, Shu Wang, Kun Gao, Lihui Liu, Ruoyu Zhang, Jianfeng Wang","doi":"10.1002/jbio.202400370","DOIUrl":"10.1002/jbio.202400370","url":null,"abstract":"<div>\u0000 \u0000 <p>A visible–near infrared (VIS–NIR) projected multispectral imaging (Proj-MSI) system consisting of an MSI subsystem and a compact projector for intraoperative breast tumor margin assessment was developed. MSI with an average spectral resolution of 24 nm was realized through sequential illumination of 26 sets of VIS–NIR light-emitting diodes and synchronized single NIR-sensitive camera image capture. Rapid (~1 min) tumor margin delineation revealed significantly (<i>p</i> < 0.01, Student's <i>t</i>-test) reduced reflectivity associated with breast tumor. Speeded-up robust features algorithm-based field of view calibration allowed the MSI identified tumor margins to be projected directly onto the breast-conserving surgery (BCS) surgical cavity with a projection error of < 1 mm. Besides, the projected tumor margin boundaries were outlined using Indian ink to simulate breast tumor removal, demonstrating the potential of the Proj-MSI system developed for intraoperative tumor margin assessment during BCS.</p>\u0000 </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142840682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiqi Fu, Jiali Yang, Hui Jiang, Yi Ren, Longfei Huo, Muqing Liu
Increasing evidence has underscored the pivotal role of red photobiomodulation (R-PBM) in analgesic and anti-inflammatory processes; nonetheless, research concerning the effects of pulsed wave on primary dysmenorrhea (PD) remains sparse. This study found that pulsed R-PBM significantly diminished pain responses and levels of PGF2α/PGE2, mitigated uterine swelling, augmented antioxidant capacity, and lowered MDA concentrations, which outperformed continuous wave at the same average irradiance. Furthermore, PW treatment substantially reduced ROS levels and enhanced cell viability in PGF2α induced HUSM cells. NOS levels, especially iNOS, were markedly diminished in the uteri of PD mice, accompanied by significant alterations in inflammation-related genes (Jun, Fos, IL1rn, IL17b) and protein levels, along with pronounced downregulation of calcium ion concentrations after pulsed R-PBM intervention. These findings indicated that pulsed R-PBM may mitigate pain by modulating ROS and NO/NOS, mediated oxidative stress and inflammatory responses. Consequently, pulsed R-PBM emerges as a promising therapeutic strategy for PD.
{"title":"Pulsed Red Photobiomodulation Boosts the Inhibition of Oxytocin-Induced Primary Dysmenorrhea in Mice by Suppressing Oxidative Stress and Inflammation","authors":"Qiqi Fu, Jiali Yang, Hui Jiang, Yi Ren, Longfei Huo, Muqing Liu","doi":"10.1002/jbio.202400398","DOIUrl":"10.1002/jbio.202400398","url":null,"abstract":"<div>\u0000 \u0000 <p>Increasing evidence has underscored the pivotal role of red photobiomodulation (R-PBM) in analgesic and anti-inflammatory processes; nonetheless, research concerning the effects of pulsed wave on primary dysmenorrhea (PD) remains sparse. This study found that pulsed R-PBM significantly diminished pain responses and levels of PGF<sub>2α</sub>/PGE<sub>2</sub>, mitigated uterine swelling, augmented antioxidant capacity, and lowered MDA concentrations, which outperformed continuous wave at the same average irradiance. Furthermore, PW treatment substantially reduced ROS levels and enhanced cell viability in PGF<sub>2α</sub> induced HUSM cells. NOS levels, especially iNOS, were markedly diminished in the uteri of PD mice, accompanied by significant alterations in inflammation-related genes (<i>Jun</i>, <i>Fos</i>, <i>IL1rn</i>, <i>IL17b</i>) and protein levels, along with pronounced downregulation of calcium ion concentrations after pulsed R-PBM intervention. These findings indicated that pulsed R-PBM may mitigate pain by modulating ROS and NO/NOS, mediated oxidative stress and inflammatory responses. Consequently, pulsed R-PBM emerges as a promising therapeutic strategy for PD.</p>\u0000 </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142831521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marco Lombardo, Giuseppe Massimo Bernava, Sebastiano Serrao, Giuseppe Lombardo
This study investigated the effect of a theranostic-guided UV-A light corneal photo-reshaping technique on corneal elevation and wavefront aberration (WA) in human donor eyes. A specialized platform, combining UV-A light with corneal iontophoresis for controlled, patterned, riboflavin delivery, was used for both distribution assessment and concentration-driven photopolymerization of corneal proteins. In all cases, a consistent riboflavin concentration gradient, with lower levels in the central prepupillary zone, was recorded. Corneal topography and WA measurements showed significant corneal steepening and smooth wavefront shaping, respectively, with a delay in the central 2.0 mm of the WA and advancement in the surrounding zone, as well as a 50% reduction in corneal spherical aberration over a 5.0 mm pupil size. Notably, the corneal optical quality, measured via modulation transfer function (MTF), remained stable. This incision-free approach demonstrated the potential to extend focal range without compromising distance vision, presenting a new solution for presbyopia correction.
{"title":"Theranostic-Guided UV-A Light Corneal Wavefront Photo-Reshaping for Presbyopia Correction: A Preclinical Study","authors":"Marco Lombardo, Giuseppe Massimo Bernava, Sebastiano Serrao, Giuseppe Lombardo","doi":"10.1002/jbio.202400462","DOIUrl":"10.1002/jbio.202400462","url":null,"abstract":"<p>This study investigated the effect of a theranostic-guided UV-A light corneal photo-reshaping technique on corneal elevation and wavefront aberration (WA) in human donor eyes. A specialized platform, combining UV-A light with corneal iontophoresis for controlled, patterned, riboflavin delivery, was used for both distribution assessment and concentration-driven photopolymerization of corneal proteins. In all cases, a consistent riboflavin concentration gradient, with lower levels in the central prepupillary zone, was recorded. Corneal topography and WA measurements showed significant corneal steepening and smooth wavefront shaping, respectively, with a delay in the central 2.0 mm of the WA and advancement in the surrounding zone, as well as a 50% reduction in corneal spherical aberration over a 5.0 mm pupil size. Notably, the corneal optical quality, measured via modulation transfer function (MTF), remained stable. This incision-free approach demonstrated the potential to extend focal range without compromising distance vision, presenting a new solution for presbyopia correction.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400462","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jacob Kocher, Nicole Jandick, Derry Spragion, P. Joseph DeSena Jr, T. Matthew Womble, Katelyn Crizer, Nathan Stasko
Androgenetic alopecia (AGA) causes balding in approximately 50% of adults. One primary cause of AGA is synthesis of dihydrotestosterone from testosterone by 5-α reductase. Systemic pharmaceutical interventions have potentially serious side effects, necessitating development of localized interventions. One such approach is administration of red light via low level light therapy (LLLT), which has promising clinical data. However, the LLLT mechanism of action remains unclear. We investigated the ability of LLLT to stimulate nitric oxide (NO) and the role of NO in inhibition of DHT synthesis. Our results show that red and red-orange light induce NO release in a cell-free platform. In A549 and HEK293T cells, we demonstrate 620 and 660 nm LED-emitted light stimulates the production of NO, reactive oxygen species (ROS), and decreases DHT synthesis. These results provide a plausible mechanism of action for LLLT employing LED-emitted red and red-orange wavelengths of light to treat AGA.
雄激素性脱发(AGA)会导致约 50% 的成年人秃顶。导致雄激素性脱发的一个主要原因是 5-α 还原酶从睾酮合成双氢睾酮。全身性药物干预可能会产生严重的副作用,因此有必要开发局部干预措施。其中一种方法是通过低强度光疗法(LLLT)照射红光,其临床数据前景看好。然而,LLLT 的作用机制仍不清楚。我们研究了低强度光疗法刺激一氧化氮(NO)的能力以及 NO 在抑制 DHT 合成中的作用。我们的研究结果表明,在无细胞平台上,红光和橘红光可诱导一氧化氮的释放。在 A549 和 HEK293T 细胞中,我们证明 620 和 660 纳米 LED 发射的光刺激了一氧化氮和活性氧(ROS)的产生,并减少了 DHT 的合成。这些结果为采用 LED 发射的红色和橘红色波长的 LLLT 治疗 AGA 提供了一种合理的作用机制。
{"title":"Dual Wavelength LEDs Induce Reactive Oxygen Species and Nitric Oxide That Inhibit the Production of Dihydrotestosterone by 5-α Reductase","authors":"Jacob Kocher, Nicole Jandick, Derry Spragion, P. Joseph DeSena Jr, T. Matthew Womble, Katelyn Crizer, Nathan Stasko","doi":"10.1002/jbio.202400388","DOIUrl":"10.1002/jbio.202400388","url":null,"abstract":"<div>\u0000 \u0000 <p>Androgenetic alopecia (AGA) causes balding in approximately 50% of adults. One primary cause of AGA is synthesis of dihydrotestosterone from testosterone by 5-α reductase. Systemic pharmaceutical interventions have potentially serious side effects, necessitating development of localized interventions. One such approach is administration of red light via low level light therapy (LLLT), which has promising clinical data. However, the LLLT mechanism of action remains unclear. We investigated the ability of LLLT to stimulate nitric oxide (NO) and the role of NO in inhibition of DHT synthesis. Our results show that red and red-orange light induce NO release in a cell-free platform. In A549 and HEK293T cells, we demonstrate 620 and 660 nm LED-emitted light stimulates the production of NO, reactive oxygen species (ROS), and decreases DHT synthesis. These results provide a plausible mechanism of action for LLLT employing LED-emitted red and red-orange wavelengths of light to treat AGA.</p>\u0000 </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Huang, Yanyu Li, Mintao Yan, Tongyu Xu, Kehong Wang
Blood vessels are an important part of the human circulatory system. In clinical surgery, the common method for treating ruptured blood vessels is suturing, but this method can cause inflammatory reactions. With the popularization of lasers, they have been widely used in the medical field. However, due to the poor absorption of laser energy by tissues, the tensile strength of tissues after joining is low. To further improve the tensile strength after laser joining, this study analyzed the law of the effect of pre-dressing-assisted laser on the tensile strength and thermal denaturation of vascular tissues after joining with different components and concentrations by designing experiments. The experimental results showed that the tensile strength of the joined tissues could reach 50.978 KPa, and the degree of thermal denaturation was only 0.025, which is of great significance for the study of laser-joined vascular tissues.
{"title":"Experimental Study on the Process and Performance of Pre-Dressing-Assisted Laser Joining of Vascular Tissues","authors":"Jun Huang, Yanyu Li, Mintao Yan, Tongyu Xu, Kehong Wang","doi":"10.1002/jbio.202400480","DOIUrl":"10.1002/jbio.202400480","url":null,"abstract":"<div>\u0000 \u0000 <p>Blood vessels are an important part of the human circulatory system. In clinical surgery, the common method for treating ruptured blood vessels is suturing, but this method can cause inflammatory reactions. With the popularization of lasers, they have been widely used in the medical field. However, due to the poor absorption of laser energy by tissues, the tensile strength of tissues after joining is low. To further improve the tensile strength after laser joining, this study analyzed the law of the effect of pre-dressing-assisted laser on the tensile strength and thermal denaturation of vascular tissues after joining with different components and concentrations by designing experiments. The experimental results showed that the tensile strength of the joined tissues could reach 50.978 KPa, and the degree of thermal denaturation was only 0.025, which is of great significance for the study of laser-joined vascular tissues.</p>\u0000 </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alzheimer's disease (AD) is a public health concern, for which an early diagnosis is essential. Biomass-derived carbon fibres with surface-decorated silver nanoparticles (Ag@CFs) have been utilized as surface enhanced raman spectroscopy (SERS) sensor platform for the detection of the amyloid beta Aβ (25–35) for the pre-diagnosis of Alzheimer's disease. Structural and morphological characterizations confirmed the distribution of plasmonic silver nanoparticles over the surface of carbon fibres. The SERS sensor performance of Ag@CFs was evaluated using rhodamine 6G, which showed an enhancement of the order of 106 which proved the effectiveness of the developed SERS sensor towards trace level detection of analyte. A range of amyloid beta concentrations, from 100uM to 10pM, have been analyzed as a proof-of concept for this study, showcasing the efficacy of the Ag@CFs based SERS sensor to detect trace level concentrations of amyloid beta, even as low as 10 pM. This investigation is a promising development in the field of AD diagnostics since it may turn out to be a non-invasive, economical and early diagnostic tool.
{"title":"Label-Free Surface-Enhanced Raman Spectroscopy Detection of Amyloid Beta on Silver Nanostructured Substrates for Alzheimer's Diagnosis","authors":"Navami Sunil, Ashma Shikkandar, Baby Roselin Rajan Durai, Rajesh Unnathpadi, Veintramuthu Sankar, Biji Pullithadathil","doi":"10.1002/jbio.202400314","DOIUrl":"10.1002/jbio.202400314","url":null,"abstract":"<div>\u0000 \u0000 <p>Alzheimer's disease (AD) is a public health concern, for which an early diagnosis is essential. Biomass-derived carbon fibres with surface-decorated silver nanoparticles (Ag@CFs) have been utilized as surface enhanced raman spectroscopy (SERS) sensor platform for the detection of the amyloid beta Aβ (25–35) for the pre-diagnosis of Alzheimer's disease. Structural and morphological characterizations confirmed the distribution of plasmonic silver nanoparticles over the surface of carbon fibres. The SERS sensor performance of Ag@CFs was evaluated using rhodamine 6G, which showed an enhancement of the order of 10<sup>6</sup> which proved the effectiveness of the developed SERS sensor towards trace level detection of analyte. A range of amyloid beta concentrations, from 100uM to 10pM, have been analyzed as a proof-of concept for this study, showcasing the efficacy of the Ag@CFs based SERS sensor to detect trace level concentrations of amyloid beta, even as low as 10 pM. This investigation is a promising development in the field of AD diagnostics since it may turn out to be a non-invasive, economical and early diagnostic tool.</p>\u0000 </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}