首页 > 最新文献

Micromachines最新文献

英文 中文
Metasurface-Coated Liquid Microlens for Super Resolution Imaging.
IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-12-27 DOI: 10.3390/mi16010025
Tongkai Gu, Kang Wang, Anjiang Cai, Fan Wu, Yasheng Chang, Haiyan Zhao, Lanlan Wang

Inspired by metasurfaces' control over light fields, this study created a liquid microlens coated with a layer of Au@TiO2, Core-Shell nanospheres. Utilizing the surface plasmon resonance (SPR) effect of Au@TiO2, Core-Shell nanospheres, and the formation of photonic nanojets (PNJs), this study aimed to extend the imaging system's cutoff frequency, improve microlens focusing, enhance the capture capability of evanescent waves, and utilize nanospheres to improve the conversion of evanescent waves into propagating waves, thus boosting the liquid microlens's super-resolution capabilities. The finite difference time domain (FDTD) method analyzed the impact of parameters including nanosphere size, microlens sample contact width, and droplet's initial contact angle on super-resolution imaging. The results indicate that the full width at half maximum (FWHM) of the field distribution produced by the uncoated microlens is 1.083 times that of the field distribution produced by the Au@TiO2, Core-Shell nanospheres coated microlens. As the nanosphere radius, droplet contact angle, and droplet base diameter increased, the microlens's light intensity correspondingly increased. These findings confirm that metasurface coating enhances the super-resolution capabilities of the microlens.

{"title":"Metasurface-Coated Liquid Microlens for Super Resolution Imaging.","authors":"Tongkai Gu, Kang Wang, Anjiang Cai, Fan Wu, Yasheng Chang, Haiyan Zhao, Lanlan Wang","doi":"10.3390/mi16010025","DOIUrl":"10.3390/mi16010025","url":null,"abstract":"<p><p>Inspired by metasurfaces' control over light fields, this study created a liquid microlens coated with a layer of Au@TiO<sub>2</sub>, Core-Shell nanospheres. Utilizing the surface plasmon resonance (SPR) effect of Au@TiO<sub>2</sub>, Core-Shell nanospheres, and the formation of photonic nanojets (PNJs), this study aimed to extend the imaging system's cutoff frequency, improve microlens focusing, enhance the capture capability of evanescent waves, and utilize nanospheres to improve the conversion of evanescent waves into propagating waves, thus boosting the liquid microlens's super-resolution capabilities. The finite difference time domain (FDTD) method analyzed the impact of parameters including nanosphere size, microlens sample contact width, and droplet's initial contact angle on super-resolution imaging. The results indicate that the full width at half maximum (FWHM) of the field distribution produced by the uncoated microlens is 1.083 times that of the field distribution produced by the Au@TiO<sub>2</sub>, Core-Shell nanospheres coated microlens. As the nanosphere radius, droplet contact angle, and droplet base diameter increased, the microlens's light intensity correspondingly increased. These findings confirm that metasurface coating enhances the super-resolution capabilities of the microlens.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767574/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Vitro Model of Vascular Remodeling Under Microfluidic Perfusion.
IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-12-26 DOI: 10.3390/mi16010014
Kotaro Nishikata, Kimisato Doi, Nobuyoshi Kaneoya, Masataka Nakamura, Nobuyuki Futai

We developed a portable microfluidic system that combines spontaneous lumen formation from human umbilical endothelial cells (HUVECs) in fibrin-collagen hydrogels with active perfusion controlled by a braille actuator. Adaptive interstitial flow and feedthrough perfusion switching enabled the successful culture of spontaneously formed naturally branched lumens for more than one month. We obtained many large-area (2 mm × 3 mm) long-term (more than 30 days per run) time-lapse image datasets of the in vitro luminal network using this microfluidic system. We also developed an automatic image analysis pipeline to extract the morphology of the lumen network and node-edge network structure weighted with segmentwise flow parameters. The automatic lumen area measurements revealed that almost all lumens were successfully cultured in this system for approximately 50 days, following the meshwork, sprouting, remodeling, stability, and erosion stages. We found that the optimization of the lumen network during the remodeling stage can be explained by the decrease in the betweenness centrality of the WSS-weighted network and the increase in the strength centrality of the flow-rate-weighted network.

{"title":"In Vitro Model of Vascular Remodeling Under Microfluidic Perfusion.","authors":"Kotaro Nishikata, Kimisato Doi, Nobuyoshi Kaneoya, Masataka Nakamura, Nobuyuki Futai","doi":"10.3390/mi16010014","DOIUrl":"10.3390/mi16010014","url":null,"abstract":"<p><p>We developed a portable microfluidic system that combines spontaneous lumen formation from human umbilical endothelial cells (HUVECs) in fibrin-collagen hydrogels with active perfusion controlled by a braille actuator. Adaptive interstitial flow and feedthrough perfusion switching enabled the successful culture of spontaneously formed naturally branched lumens for more than one month. We obtained many large-area (2 mm × 3 mm) long-term (more than 30 days per run) time-lapse image datasets of the in vitro luminal network using this microfluidic system. We also developed an automatic image analysis pipeline to extract the morphology of the lumen network and node-edge network structure weighted with segmentwise flow parameters. The automatic lumen area measurements revealed that almost all lumens were successfully cultured in this system for approximately 50 days, following the meshwork, sprouting, remodeling, stability, and erosion stages. We found that the optimization of the lumen network during the remodeling stage can be explained by the decrease in the betweenness centrality of the WSS-weighted network and the increase in the strength centrality of the flow-rate-weighted network.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767722/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Substrate Integrated Waveguide on Glass with Vacuum-Filled Tin Through Glass Vias for Millimeter-Wave Applications.
IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-12-26 DOI: 10.3390/mi16010012
Seung-Han Chung, Ho-Sun Yeom, Che-Heung Kim, Yong-Kweon Kim, Seung-Ki Lee, Chang-Wook Baek, Jae-Hyoung Park

This paper presents a novel approach to fabricate substrate integrated waveguides (SIWs) on glass substrates with tin (Sn) through glass vias (TGVs) tailored for millimeter-wave applications. The fabrication process employs a custom-designed vacuum suctioning system to rapidly fill precise TGV holes in the glass substrate, which are formed by wafer-level glass reflow micromachining techniques with molten tin in a minute. This method offers a very fast and cost-effective alternative for complete via filling without voids compared to the conventional metallization techniques such as electroplating or sputtering. An SIW with a 3-dB cutoff frequency of 17.2 GHz was fabricated using the proposed process. The fabricated SIW shows an average insertion loss of 1.65 ± 0.54 dB across the 20-35 GHz range. These results highlight the potential of glass substrates with tin TGVs for fabricating millimeter-wave devices.

{"title":"Substrate Integrated Waveguide on Glass with Vacuum-Filled Tin Through Glass Vias for Millimeter-Wave Applications.","authors":"Seung-Han Chung, Ho-Sun Yeom, Che-Heung Kim, Yong-Kweon Kim, Seung-Ki Lee, Chang-Wook Baek, Jae-Hyoung Park","doi":"10.3390/mi16010012","DOIUrl":"10.3390/mi16010012","url":null,"abstract":"<p><p>This paper presents a novel approach to fabricate substrate integrated waveguides (SIWs) on glass substrates with tin (Sn) through glass vias (TGVs) tailored for millimeter-wave applications. The fabrication process employs a custom-designed vacuum suctioning system to rapidly fill precise TGV holes in the glass substrate, which are formed by wafer-level glass reflow micromachining techniques with molten tin in a minute. This method offers a very fast and cost-effective alternative for complete via filling without voids compared to the conventional metallization techniques such as electroplating or sputtering. An SIW with a 3-dB cutoff frequency of 17.2 GHz was fabricated using the proposed process. The fabricated SIW shows an average insertion loss of 1.65 ± 0.54 dB across the 20-35 GHz range. These results highlight the potential of glass substrates with tin TGVs for fabricating millimeter-wave devices.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767805/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143040068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Miniaturization Potential of Additive-Manufactured 3D Mechatronic Integrated Device Components Produced by Stereolithography.
IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-12-26 DOI: 10.3390/mi16010016
Niklas Piechulek, Lei Xu, Jan Fröhlich, Patrick Bründl, Jörg Franke

Three-dimensional Mechatronic Integrated Devices (3D-MIDs) combine mechanical and electrical functions, enabling significant component miniaturization and enhanced functionality. However, their application in high-temperature environments remains limited due to material challenges. Existing research highlights the thermal stability of ceramic substrates; yet, their reliability under high-stress and complex mechanical loading conditions remains a challenge. In this study, 3D-MID components were fabricated using stereolithography (SLA) 3D-printing technology, and the feasibility of circuit miniaturization on high-temperature-resistant resin substrates was explored. Additionally, the influence of laser parameters on resistance values was analyzed using the Response Surface Methodology (RSM). The results demonstrate that SLA 3D-printing achieves substrates with low surface roughness, enabling the precise formation of fine features. Electric circuits are successfully formed on substrates printed with resin mixed with Laser Direct Structuring (LDS) additives, following laser structuring and metallization processes, with a minimum conductor spacing of 150 µm. Furthermore, through the integration of through-holes (vias) and the use of smaller package chips, such as Ball Grid Array (BGA) and Quad Flat No-lead (QFN), the circuits achieve further miniaturization and establish reliable electrical connections via soldering. Taken together, our results demonstrate that thermoset plastics serve as substrates for 3D-MID components, broadening the application scope of 3D-MID technology and providing a framework for circuit miniaturization on SLA-printed substrates.

{"title":"Miniaturization Potential of Additive-Manufactured 3D Mechatronic Integrated Device Components Produced by Stereolithography.","authors":"Niklas Piechulek, Lei Xu, Jan Fröhlich, Patrick Bründl, Jörg Franke","doi":"10.3390/mi16010016","DOIUrl":"10.3390/mi16010016","url":null,"abstract":"<p><p>Three-dimensional Mechatronic Integrated Devices (3D-MIDs) combine mechanical and electrical functions, enabling significant component miniaturization and enhanced functionality. However, their application in high-temperature environments remains limited due to material challenges. Existing research highlights the thermal stability of ceramic substrates; yet, their reliability under high-stress and complex mechanical loading conditions remains a challenge. In this study, 3D-MID components were fabricated using stereolithography (SLA) 3D-printing technology, and the feasibility of circuit miniaturization on high-temperature-resistant resin substrates was explored. Additionally, the influence of laser parameters on resistance values was analyzed using the Response Surface Methodology (RSM). The results demonstrate that SLA 3D-printing achieves substrates with low surface roughness, enabling the precise formation of fine features. Electric circuits are successfully formed on substrates printed with resin mixed with Laser Direct Structuring (LDS) additives, following laser structuring and metallization processes, with a minimum conductor spacing of 150 µm. Furthermore, through the integration of through-holes (vias) and the use of smaller package chips, such as Ball Grid Array (BGA) and Quad Flat No-lead (QFN), the circuits achieve further miniaturization and establish reliable electrical connections via soldering. Taken together, our results demonstrate that thermoset plastics serve as substrates for 3D-MID components, broadening the application scope of 3D-MID technology and providing a framework for circuit miniaturization on SLA-printed substrates.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767917/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser Welding of Micro-Wire Stent Electrode as a Minimally Invasive Endovascular Neural Interface.
IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-12-26 DOI: 10.3390/mi16010021
Bo Wen, Liang Shen, Xiaoyang Kang

Minimally invasive endovascular stent electrodes are an emerging technology in neural engineering, designed to minimize the damage to neural tissue. However, conventional stent electrodes often rely on resistive welding and are relatively bulky, restricting their use primarily to large animals or thick blood vessels. In this study, the feasibility is explored of fabricating a laser welding stent electrode as small as 300 μm. A high-precision laser welding technique was developed to join micro-wire electrodes without compromising structural integrity or performance. To ensure consistent results, a novel micro-wire welding with platinum pad method was introduced during the welding process. The fabricated electrodes were integrated with stent structures and subjected to detailed electrochemical performance testing to evaluate their potential as neural interface components. The laser-welded endovascular stent electrodes exhibited excellent electrochemical properties, including low impedance and stable charge transfer capabilities. At the same time, in this study, a simulation is conducted of the electrode distribution and arrangement on the stent structure, optimizing the utilization of the available surface area for enhanced functionality. These results demonstrate the potential of the fabricated electrodes for high-performance neural interfacing in endovascular applications. The approach provided a promising solution for advancing endovascular neural engineering technologies, particularly in applications requiring compact electrode designs.

{"title":"Laser Welding of Micro-Wire Stent Electrode as a Minimally Invasive Endovascular Neural Interface.","authors":"Bo Wen, Liang Shen, Xiaoyang Kang","doi":"10.3390/mi16010021","DOIUrl":"10.3390/mi16010021","url":null,"abstract":"<p><p>Minimally invasive endovascular stent electrodes are an emerging technology in neural engineering, designed to minimize the damage to neural tissue. However, conventional stent electrodes often rely on resistive welding and are relatively bulky, restricting their use primarily to large animals or thick blood vessels. In this study, the feasibility is explored of fabricating a laser welding stent electrode as small as 300 μm. A high-precision laser welding technique was developed to join micro-wire electrodes without compromising structural integrity or performance. To ensure consistent results, a novel micro-wire welding with platinum pad method was introduced during the welding process. The fabricated electrodes were integrated with stent structures and subjected to detailed electrochemical performance testing to evaluate their potential as neural interface components. The laser-welded endovascular stent electrodes exhibited excellent electrochemical properties, including low impedance and stable charge transfer capabilities. At the same time, in this study, a simulation is conducted of the electrode distribution and arrangement on the stent structure, optimizing the utilization of the available surface area for enhanced functionality. These results demonstrate the potential of the fabricated electrodes for high-performance neural interfacing in endovascular applications. The approach provided a promising solution for advancing endovascular neural engineering technologies, particularly in applications requiring compact electrode designs.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comparative Review: Biological Safety and Sustainability of Metal Nanomaterials Without and with Machine Learning Assistance.
IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-12-26 DOI: 10.3390/mi16010015
Na Xiao, Yonghui Li, Peiyan Sun, Peihua Zhu, Hongyan Wang, Yin Wu, Mingyu Bai, Ansheng Li, Wuyi Ming

In recent years, metal nanomaterials and nanoproducts have been developed intensively, and they are now widely applied across various sectors, including energy, aerospace, agriculture, industry, and biomedicine. However, nanomaterials have been identified as potentially toxic, with the toxicity of metal nanoparticles posing significant risks to both human health and the environment. Therefore, the toxicological risk assessment of metal nanomaterials is essential to identify and mitigate potential adverse effects. This review provides a comprehensive analysis of the safety and sustainability of metallic nanoparticles (such as Au NPs, Ag NPs, etc.) in key domains such as medicine, energy, and environmental protection. Using a dual-perspective analysis approach, it highlights the unique advantages of machine learning in data processing, predictive modeling, and optimization. At the same time, it underscores the importance of traditional methods, particularly their ability to offer greater interpretability and more intuitive results in specific contexts. Finally, a comparative analysis of traditional methods and machine learning techniques for detecting the toxicity of metal nanomaterials is presented, emphasizing the key challenges that need to be addressed in future research.

{"title":"A Comparative Review: Biological Safety and Sustainability of Metal Nanomaterials Without and with Machine Learning Assistance.","authors":"Na Xiao, Yonghui Li, Peiyan Sun, Peihua Zhu, Hongyan Wang, Yin Wu, Mingyu Bai, Ansheng Li, Wuyi Ming","doi":"10.3390/mi16010015","DOIUrl":"10.3390/mi16010015","url":null,"abstract":"<p><p>In recent years, metal nanomaterials and nanoproducts have been developed intensively, and they are now widely applied across various sectors, including energy, aerospace, agriculture, industry, and biomedicine. However, nanomaterials have been identified as potentially toxic, with the toxicity of metal nanoparticles posing significant risks to both human health and the environment. Therefore, the toxicological risk assessment of metal nanomaterials is essential to identify and mitigate potential adverse effects. This review provides a comprehensive analysis of the safety and sustainability of metallic nanoparticles (such as Au NPs, Ag NPs, etc.) in key domains such as medicine, energy, and environmental protection. Using a dual-perspective analysis approach, it highlights the unique advantages of machine learning in data processing, predictive modeling, and optimization. At the same time, it underscores the importance of traditional methods, particularly their ability to offer greater interpretability and more intuitive results in specific contexts. Finally, a comparative analysis of traditional methods and machine learning techniques for detecting the toxicity of metal nanomaterials is presented, emphasizing the key challenges that need to be addressed in future research.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767896/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling and Characterization of Multilayer Piezoelectric Stacks via Dynamic Stiffness Method.
IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-12-26 DOI: 10.3390/mi16010020
Wenxiang Ding, Zhaofeng Liang, Wei Zhao, Hongmei Zhong, Dan Chen, Maxime Bavencoffe, Marc Lethiecq

Multilayer piezoelectric stacks, which are multiple layers of piezoelectric materials placed on top of each other, are widely used to achieve precise linear movement and high-force generation. In this paper, a dynamic stiffness (DS) method for the dynamic vibration analysis of multilayer piezoelectric stacks is presented. First, the general solutions for all physical quantities of the three vibration contributions (i.e., pure vibration, symmetrically coupled vibration, and anti-symmetrically coupled vibration) are derived from the governing equations of motion. Then, the DS matrices of each layer of the piezoelectric stack are obtained, and they are assembled to form a global DS matrix. The electrical impedances and the mode shapes of a piezoelectric stack consisting of two piezoelectric disks connected in series and in parallel are calculated using our method as well as by the finite element method. The comparison shows good agreement. Finally, the effect of the number of layers on the dynamic responses of piezoelectric stacks is investigated. The DS method developed here provides an efficient and accurate analytical tool for the parametric and optimization analysis of the coupled vibrations of multilayer piezoelectric structures.

{"title":"Modeling and Characterization of Multilayer Piezoelectric Stacks via Dynamic Stiffness Method.","authors":"Wenxiang Ding, Zhaofeng Liang, Wei Zhao, Hongmei Zhong, Dan Chen, Maxime Bavencoffe, Marc Lethiecq","doi":"10.3390/mi16010020","DOIUrl":"10.3390/mi16010020","url":null,"abstract":"<p><p>Multilayer piezoelectric stacks, which are multiple layers of piezoelectric materials placed on top of each other, are widely used to achieve precise linear movement and high-force generation. In this paper, a dynamic stiffness (DS) method for the dynamic vibration analysis of multilayer piezoelectric stacks is presented. First, the general solutions for all physical quantities of the three vibration contributions (i.e., pure vibration, symmetrically coupled vibration, and anti-symmetrically coupled vibration) are derived from the governing equations of motion. Then, the DS matrices of each layer of the piezoelectric stack are obtained, and they are assembled to form a global DS matrix. The electrical impedances and the mode shapes of a piezoelectric stack consisting of two piezoelectric disks connected in series and in parallel are calculated using our method as well as by the finite element method. The comparison shows good agreement. Finally, the effect of the number of layers on the dynamic responses of piezoelectric stacks is investigated. The DS method developed here provides an efficient and accurate analytical tool for the parametric and optimization analysis of the coupled vibrations of multilayer piezoelectric structures.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767395/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Annealing Study on Praseodymium-Doped Indium Zinc Oxide Thin-Film Transistors and Fabrication of Flexible Devices.
IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-12-26 DOI: 10.3390/mi16010017
Zhenyu Wu, Honglong Ning, Han Li, Xiaoqin Wei, Dongxiang Luo, Dong Yuan, Zhihao Liang, Guoping Su, Rihui Yao, Junbiao Peng

The praseodymium-doped indium zinc oxide (PrIZO) thin-film transistor (TFT) is promising for applications in flat-panel displays, due to its high carrier mobility and stability. Nevertheless, there are few studies on the mechanism of annealing on PrIZO films and the fabrication of flexible devices. In this work, we first optimized the annealing-process parameters on the glass substrate. As the annealing temperature rises, the film tends to be denser and obtains a lower surface roughness, a narrower optical-band gap and less oxygen-vacancy content. However, the μ-PCD test shows the 250 °C-annealed film obtains the least defects. And the PrIZO TFT annealed at 250 °C exhibited a desired performance with a saturation mobility (μsat) of 14.26 cm2·V-1·s-1, a subthreshold swing (SS) of 0.14 V·dec-1, an interface trap density (Dit) of 3.17 × 1011, an Ion/Ioff ratio of 1.83 × 108 and a threshold voltage (Vth) of -1.15 V. The flexible devices were prepared using the optimized parameters on the Polyimide (PI) substrate and subjected to static bending tests. After bending at a radius of 5 mm, the mobility of devices decreases slightly from 12.48 to 10.87 cm2·V-1·s-1, demonstrating the great potential of PrIZO for flexible displays.

{"title":"Annealing Study on Praseodymium-Doped Indium Zinc Oxide Thin-Film Transistors and Fabrication of Flexible Devices.","authors":"Zhenyu Wu, Honglong Ning, Han Li, Xiaoqin Wei, Dongxiang Luo, Dong Yuan, Zhihao Liang, Guoping Su, Rihui Yao, Junbiao Peng","doi":"10.3390/mi16010017","DOIUrl":"10.3390/mi16010017","url":null,"abstract":"<p><p>The praseodymium-doped indium zinc oxide (PrIZO) thin-film transistor (TFT) is promising for applications in flat-panel displays, due to its high carrier mobility and stability. Nevertheless, there are few studies on the mechanism of annealing on PrIZO films and the fabrication of flexible devices. In this work, we first optimized the annealing-process parameters on the glass substrate. As the annealing temperature rises, the film tends to be denser and obtains a lower surface roughness, a narrower optical-band gap and less oxygen-vacancy content. However, the μ-PCD test shows the 250 °C-annealed film obtains the least defects. And the PrIZO TFT annealed at 250 °C exhibited a desired performance with a saturation mobility (μ<sub>sat</sub>) of 14.26 cm<sup>2</sup>·V<sup>-1</sup>·s<sup>-1</sup>, a subthreshold swing (SS) of 0.14 V·dec<sup>-1</sup>, an interface trap density (D<sub>it</sub>) of 3.17 × 10<sup>11</sup>, an I<sub>on</sub>/I<sub>off</sub> ratio of 1.83 × 10<sup>8</sup> and a threshold voltage (Vth) of -1.15 V. The flexible devices were prepared using the optimized parameters on the Polyimide (PI) substrate and subjected to static bending tests. After bending at a radius of 5 mm, the mobility of devices decreases slightly from 12.48 to 10.87 cm<sup>2</sup>·V<sup>-1</sup>·s<sup>-1</sup>, demonstrating the great potential of PrIZO for flexible displays.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767878/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inchworm Robots Utilizing Friction Changes in Magnetorheological Elastomer Footpads Under Magnetic Field Influence.
IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-12-26 DOI: 10.3390/mi16010019
Yun Xue, Chul-Hee Lee

The application of smart materials in robots has attracted considerable research attention. This study developed an inchworm robot that integrates smart materials and a bionic design, using the unique properties of magnetorheological elastomers (MREs) to improve the performance of robots in complex environments, as well as their adaptability and movement efficiency. This research stems from solving the problem of the insufficient adaptability of traditional bionic robots on different surfaces. A robot that combines an MRE foot, an electromagnetic control system, and a bionic motion mechanism was designed and manufactured. The MRE foot was made from silicone rubber mixed with carbonyl iron particles at a specific ratio. Systematic experiments were conducted on three typical surfaces, PMMA, wood, and copper plates, to test the friction characteristics and motion performance of the robot. On all tested surfaces, the friction force of the MRE foot was reduced significantly after applying a magnetic field. For example, on the PMMA surface, the friction force of the front leg dropped from 2.09 N to 1.90 N, and that of the hind leg decreased from 3.34 N to 1.75 N. The robot movement speed increased by 1.79, 1.76, and 1.13 times on PMMA, wooden, and copper plate surfaces, respectively. The MRE-based intelligent foot design improved the environmental adaptability and movement efficiency of the inchworm robot significantly, providing new ideas for the application of intelligent materials in the field of bionic robots and solutions to movement challenges in complex environments.

{"title":"Inchworm Robots Utilizing Friction Changes in Magnetorheological Elastomer Footpads Under Magnetic Field Influence.","authors":"Yun Xue, Chul-Hee Lee","doi":"10.3390/mi16010019","DOIUrl":"10.3390/mi16010019","url":null,"abstract":"<p><p>The application of smart materials in robots has attracted considerable research attention. This study developed an inchworm robot that integrates smart materials and a bionic design, using the unique properties of magnetorheological elastomers (MREs) to improve the performance of robots in complex environments, as well as their adaptability and movement efficiency. This research stems from solving the problem of the insufficient adaptability of traditional bionic robots on different surfaces. A robot that combines an MRE foot, an electromagnetic control system, and a bionic motion mechanism was designed and manufactured. The MRE foot was made from silicone rubber mixed with carbonyl iron particles at a specific ratio. Systematic experiments were conducted on three typical surfaces, PMMA, wood, and copper plates, to test the friction characteristics and motion performance of the robot. On all tested surfaces, the friction force of the MRE foot was reduced significantly after applying a magnetic field. For example, on the PMMA surface, the friction force of the front leg dropped from 2.09 N to 1.90 N, and that of the hind leg decreased from 3.34 N to 1.75 N. The robot movement speed increased by 1.79, 1.76, and 1.13 times on PMMA, wooden, and copper plate surfaces, respectively. The MRE-based intelligent foot design improved the environmental adaptability and movement efficiency of the inchworm robot significantly, providing new ideas for the application of intelligent materials in the field of bionic robots and solutions to movement challenges in complex environments.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767633/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-Distance Passive Sensing Tag Design Based on Multi-Source Energy Harvesting and Reflection Amplification.
IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-12-26 DOI: 10.3390/mi16010018
Gang Li, Chong Pan, Bo Wu, Zhiliang Xu, Shihua Li, Yehua Zhang, Yongjun Yang, Zhuohang Zou, Chang Shi, Muze Wang

Wireless sensor networks often rely on battery power, which incurs high costs, considerable volume, and a limited lifespan. Additionally, the communication range of existing passive sensor tags remains short, which challenges their suitability for evolving Internet of Things (IoT) applications. This paper, therefore, presents a long-distance passive RFID sensing tag that integrates multi-source energy harvesting and reflection amplification. Multi-source energy harvesting enhances tag receiving sensitivity and extends the system's downlink communication distance, while reflection amplification increases tag reflection power and improves the uplink communication distance, thereby significantly expanding the overall communication range. The test results show that the tag achieves a receiving sensitivity of -45 dBm, a reflection gain of 44 dB, and a communication distance of up to 96 m.

{"title":"Long-Distance Passive Sensing Tag Design Based on Multi-Source Energy Harvesting and Reflection Amplification.","authors":"Gang Li, Chong Pan, Bo Wu, Zhiliang Xu, Shihua Li, Yehua Zhang, Yongjun Yang, Zhuohang Zou, Chang Shi, Muze Wang","doi":"10.3390/mi16010018","DOIUrl":"10.3390/mi16010018","url":null,"abstract":"<p><p>Wireless sensor networks often rely on battery power, which incurs high costs, considerable volume, and a limited lifespan. Additionally, the communication range of existing passive sensor tags remains short, which challenges their suitability for evolving Internet of Things (IoT) applications. This paper, therefore, presents a long-distance passive RFID sensing tag that integrates multi-source energy harvesting and reflection amplification. Multi-source energy harvesting enhances tag receiving sensitivity and extends the system's downlink communication distance, while reflection amplification increases tag reflection power and improves the uplink communication distance, thereby significantly expanding the overall communication range. The test results show that the tag achieves a receiving sensitivity of -45 dBm, a reflection gain of 44 dB, and a communication distance of up to 96 m.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768074/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143039789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Micromachines
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1