8Cr4Mo4V bearing steel is a critical material for main shaft bearings in aero-engine applications. However, the current understanding of the micro-mechanical properties of its matrix and primary carbide phases (vanadium-rich and molybdenum-rich carbides) remains insufficient. This knowledge gap readily induces various forms of deformation damage during grinding, severely compromising the surface integrity of the workpiece. To address this, nanoindentation and nano-scratch techniques were employed to systematically quantify the micro-mechanical properties of each phase and investigate the deformation damage behavior of the steel under load. Results showed that MC carbides exhibited the highest elastic modulus and microhardness, which made them more susceptible to becoming crack initiation sites during grinding. Nano-scratch testing further revealed that crack initiation at carbide edges and localized spalling were the primary damage mechanisms. This study provides a micro-mechanical foundation for controlling the grinding surface quality of 8Cr4Mo4V bearing steel, holding significant implications for optimizing grinding processes, suppressing crack initiation, and elucidating the grinding damage mechanism.
{"title":"Micro-Mechanical Properties and Deformation Damage Behavior of the Matrix and Primary Carbides in 8Cr4Mo4V Bearing Steel.","authors":"Chenhui Sun, Xubo Fan, Xiaoquan Shi, Junjun Liu, Zhihu Zhang, Bohan Zhang, Haitao Liu","doi":"10.3390/mi17010113","DOIUrl":"10.3390/mi17010113","url":null,"abstract":"<p><p>8Cr4Mo4V bearing steel is a critical material for main shaft bearings in aero-engine applications. However, the current understanding of the micro-mechanical properties of its matrix and primary carbide phases (vanadium-rich and molybdenum-rich carbides) remains insufficient. This knowledge gap readily induces various forms of deformation damage during grinding, severely compromising the surface integrity of the workpiece. To address this, nanoindentation and nano-scratch techniques were employed to systematically quantify the micro-mechanical properties of each phase and investigate the deformation damage behavior of the steel under load. Results showed that MC carbides exhibited the highest elastic modulus and microhardness, which made them more susceptible to becoming crack initiation sites during grinding. Nano-scratch testing further revealed that crack initiation at carbide edges and localized spalling were the primary damage mechanisms. This study provides a micro-mechanical foundation for controlling the grinding surface quality of 8Cr4Mo4V bearing steel, holding significant implications for optimizing grinding processes, suppressing crack initiation, and elucidating the grinding damage mechanism.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"17 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12843668/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146064799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengqiu Li, Zhiyuan Hu, Fengming Ye, Jiaxiang Wang, Zhuoqing Yang
Strain gauges play a crucial role in numerous fields such as bridge and building structural health monitoring. However, traditional strain gauges generate spurious signals due to the temperature effect, which in turn affects their measurement accuracy. Herein, we propose a resistance strain gauge based on a double-layer composite film, which is characterized by an adjustable resistance temperature coefficient (TCR), an ultra-near-zero temperature effect, and good TCR repeatability. It is precisely through the combination of materials with positive and negative TCR, leveraging their opposing temperature resistance characteristics, that a low temperature effect has been achieved. Compared with the single-layer alloy-based strain gauge, the developed strain gauge based on double-layer composite film has greatly reduced sensitivity to temperature interference, and its TCR can be reduced to a ultra-near-zero value, approximately 0.8 ppm/°C, while the stability of TCR is excellent. In addition, the gauge factor of the strain gauge is 1.83, and it maintains excellent linearity. This work fully highlights the potential application value of the developed strain gauge in stress monitoring of bridges and building structures.
{"title":"Low Temperature Effect of Resistance Strain Gauge Based on Double-Layer Composite Film.","authors":"Mengqiu Li, Zhiyuan Hu, Fengming Ye, Jiaxiang Wang, Zhuoqing Yang","doi":"10.3390/mi17010114","DOIUrl":"10.3390/mi17010114","url":null,"abstract":"<p><p>Strain gauges play a crucial role in numerous fields such as bridge and building structural health monitoring. However, traditional strain gauges generate spurious signals due to the temperature effect, which in turn affects their measurement accuracy. Herein, we propose a resistance strain gauge based on a double-layer composite film, which is characterized by an adjustable resistance temperature coefficient (TCR), an ultra-near-zero temperature effect, and good TCR repeatability. It is precisely through the combination of materials with positive and negative TCR, leveraging their opposing temperature resistance characteristics, that a low temperature effect has been achieved. Compared with the single-layer alloy-based strain gauge, the developed strain gauge based on double-layer composite film has greatly reduced sensitivity to temperature interference, and its TCR can be reduced to a ultra-near-zero value, approximately 0.8 ppm/°C, while the stability of TCR is excellent. In addition, the gauge factor of the strain gauge is 1.83, and it maintains excellent linearity. This work fully highlights the potential application value of the developed strain gauge in stress monitoring of bridges and building structures.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"17 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12843963/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146064832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Real-time monitoring of hazardous gas emissions in open environments remains a critical challenge. Conventional spectrometers and filter wheel systems acquire spectral and spatial information sequentially, which limits their ability to capture multiple gas species and dynamic dispersion patterns rapidly. A High-Resolution Snapshot Multispectral Imaging System (HRSMIS) is proposed to integrate high spatial fidelity with multispectral capability for near real-time plume visualization, gas species identification, and concentration retrieval. Operating across the 7-14 μm spectral range, the system employs a dual-path optical configuration in which a high-resolution imaging path and a multispectral snapshot path share a common telescope, allowing for the simultaneous acquisition of fine two-dimensional spatial morphology and comprehensive spectral fingerprint information. Within the multispectral path, two 5×5 microlens arrays (MLAs) combined with a corresponding narrowband filter array generate 25 distinct spectral channels, allowing concurrent detection of up to 25 gas species in a single snapshot. The high-resolution imaging path provides detailed spatial information, facilitating spatio-spectral super-resolution fusion for multispectral data without complex image registration. The HRSMIS demonstrates modulation transfer function (MTF) values of at least 0.40 in the high-resolution channel and 0.29 in the multispectral channel. Monte Carlo tolerance analysis confirms imaging stability, enabling the real-time visualization of gas plumes and the accurate quantification of dispersion dynamics and temporal concentration variations.
{"title":"High-Resolution Snapshot Multispectral Imaging System for Hazardous Gas Classification and Dispersion Quantification.","authors":"Zhi Li, Hanyuan Zhang, Qiang Li, Yuxin Song, Mengyuan Chen, Shijie Liu, Dongjing Li, Chunlai Li, Jianyu Wang, Renbiao Xie","doi":"10.3390/mi17010112","DOIUrl":"10.3390/mi17010112","url":null,"abstract":"<p><p>Real-time monitoring of hazardous gas emissions in open environments remains a critical challenge. Conventional spectrometers and filter wheel systems acquire spectral and spatial information sequentially, which limits their ability to capture multiple gas species and dynamic dispersion patterns rapidly. A High-Resolution Snapshot Multispectral Imaging System (HRSMIS) is proposed to integrate high spatial fidelity with multispectral capability for near real-time plume visualization, gas species identification, and concentration retrieval. Operating across the 7-14 μm spectral range, the system employs a dual-path optical configuration in which a high-resolution imaging path and a multispectral snapshot path share a common telescope, allowing for the simultaneous acquisition of fine two-dimensional spatial morphology and comprehensive spectral fingerprint information. Within the multispectral path, two 5×5 microlens arrays (MLAs) combined with a corresponding narrowband filter array generate 25 distinct spectral channels, allowing concurrent detection of up to 25 gas species in a single snapshot. The high-resolution imaging path provides detailed spatial information, facilitating spatio-spectral super-resolution fusion for multispectral data without complex image registration. The HRSMIS demonstrates modulation transfer function (MTF) values of at least 0.40 in the high-resolution channel and 0.29 in the multispectral channel. Monte Carlo tolerance analysis confirms imaging stability, enabling the real-time visualization of gas plumes and the accurate quantification of dispersion dynamics and temporal concentration variations.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"17 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12843991/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146064714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to the Von Neumann bottleneck of traditional CMOS computing, there is an urgent need to develop in-memory logic devices with low power consumption. In this work, we demonstrate ferroelectric diode devices based on the TiN/Hf0.5Zr0.5O2/HfO2/TiN structure, implementing 16 Boolean logic operations through single-step or multi-step (2-3 steps) cascade and achieving attojoule-level one-bit full-adder computation. The TiN/Hf0.5Zr0.5O2/HfO2/TiN ferroelectric diode exhibits non-destructive readout and bidirectional rectification characteristics, with the conduction mechanism following Schottky emission behavior in the on-state. Based on its bidirectional rectification characteristics, we designed and simulated the circuit scheme of 16 Boolean logic and one-bit full-adder through cascaded operations. Both the input and output logic values are represented in the form of resistance, without the need for additional form conversion circuits. The state writing is performed by pulse-controlled polarization flipping, and the state reading is non-destructive. The logic circuits in this work demonstrate superior performance with ultralow computing power consumption in simulation. This breakthrough establishes a foundation for developing energy-efficient and scalable in-memory computing systems.
{"title":"Hafnium-Based Ferroelectric Diodes for Logic-in-Memory Application.","authors":"Shuo Han, Yefan Zhang, Xi Wang, Peiwen Tong, Chuanzhi Liu, Qimiao Zeng, Jindong Liu, Xiao Huang, Qingjiang Li, Rongrong Cao, Wei Wang","doi":"10.3390/mi17010108","DOIUrl":"10.3390/mi17010108","url":null,"abstract":"<p><p>Due to the Von Neumann bottleneck of traditional CMOS computing, there is an urgent need to develop in-memory logic devices with low power consumption. In this work, we demonstrate ferroelectric diode devices based on the TiN/Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub>/HfO<sub>2</sub>/TiN structure, implementing 16 Boolean logic operations through single-step or multi-step (2-3 steps) cascade and achieving attojoule-level one-bit full-adder computation. The TiN/Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub>/HfO<sub>2</sub>/TiN ferroelectric diode exhibits non-destructive readout and bidirectional rectification characteristics, with the conduction mechanism following Schottky emission behavior in the on-state. Based on its bidirectional rectification characteristics, we designed and simulated the circuit scheme of 16 Boolean logic and one-bit full-adder through cascaded operations. Both the input and output logic values are represented in the form of resistance, without the need for additional form conversion circuits. The state writing is performed by pulse-controlled polarization flipping, and the state reading is non-destructive. The logic circuits in this work demonstrate superior performance with ultralow computing power consumption in simulation. This breakthrough establishes a foundation for developing energy-efficient and scalable in-memory computing systems.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"17 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146063972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yibin Chen, Jiayi He, Zhuohao Shi, Yisong Pan, Weicheng Ou
In semiconductor packaging and microelectronic manufacturing, inkjet printing technology is widely employed in critical processes such as conductive line fabrication and encapsulant dot deposition. However, dynamic printing defects, such as missing droplets and splashing can severely compromise circuit continuity and device reliability. Traditional inspection methods struggle to detect such subtle and low-contrast defects. To address this challenge, we propose MCHB-DETR, a novel lightweight defect detection framework based on RT-DETR, aimed at improving product yield in inkjet printing for semiconductor packaging. MCHB-DETR features a lightweight backbone with enhanced multi-level feature extraction capabilities and a hybrid encoder designed to improve cross-scale and multi-frequency feature fusion. Experimental results on our inkjet dataset show a 29.1% reduction in parameters and a 36.7% reduction in FLOPs, along with improvements of 3.1% in mAP@50 and 3.5% in mAP@50:95. These results demonstrate its superior detection performance while maintaining efficient inference, highlighting its strong potential for enhancing yield in semiconductor packaging.
{"title":"MCHB-DETR: An Efficient and Lightweight Inspection Framework for Ink Jet Printing Defects in Semiconductor Packaging.","authors":"Yibin Chen, Jiayi He, Zhuohao Shi, Yisong Pan, Weicheng Ou","doi":"10.3390/mi17010109","DOIUrl":"10.3390/mi17010109","url":null,"abstract":"<p><p>In semiconductor packaging and microelectronic manufacturing, inkjet printing technology is widely employed in critical processes such as conductive line fabrication and encapsulant dot deposition. However, dynamic printing defects, such as missing droplets and splashing can severely compromise circuit continuity and device reliability. Traditional inspection methods struggle to detect such subtle and low-contrast defects. To address this challenge, we propose MCHB-DETR, a novel lightweight defect detection framework based on RT-DETR, aimed at improving product yield in inkjet printing for semiconductor packaging. MCHB-DETR features a lightweight backbone with enhanced multi-level feature extraction capabilities and a hybrid encoder designed to improve cross-scale and multi-frequency feature fusion. Experimental results on our inkjet dataset show a 29.1% reduction in parameters and a 36.7% reduction in FLOPs, along with improvements of 3.1% in mAP@50 and 3.5% in mAP@50:95. These results demonstrate its superior detection performance while maintaining efficient inference, highlighting its strong potential for enhancing yield in semiconductor packaging.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"17 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844001/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146064776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a compact four-beam dual-polarized phased array with the high performance front-end module based on system-in-package (SiP) technology. By employing high-temperature co-fired ceramic (HTCC) substrates, the proposed design achieves efficient thermal management and high level of integration within a tile-type architecture. The front-end module based on SiP can simultaneously generate four independent beams with switchable left- and right-hand circular polarizations, providing flexible beam control. To verify the proposed method, a Ku-band 256-element phased array receiver with four beams has been designed and experimentally verified using HTCC and SiP process. Operating in 14-14.5 GHz, the proposed low-profile array demonstrates stable radiation characteristics, beam pointing accuracy and excellent beam consistency across the entire frequency range. The measurement results confirm that the SiP-based phased array maintains efficient thermal management, high polarization purity and robust beam-scanning capability, validating its suitability for mobile satellite communication.
{"title":"A Multi-Beam Phased Array Receiver Front-End with High Performance Ceramic SiP.","authors":"Haifu Zhang, Li-Xin Guo, Shubo Dun, Xiaoming Li, Xiaolong Xu","doi":"10.3390/mi17010110","DOIUrl":"10.3390/mi17010110","url":null,"abstract":"<p><p>This paper presents a compact four-beam dual-polarized phased array with the high performance front-end module based on system-in-package (SiP) technology. By employing high-temperature co-fired ceramic (HTCC) substrates, the proposed design achieves efficient thermal management and high level of integration within a tile-type architecture. The front-end module based on SiP can simultaneously generate four independent beams with switchable left- and right-hand circular polarizations, providing flexible beam control. To verify the proposed method, a Ku-band 256-element phased array receiver with four beams has been designed and experimentally verified using HTCC and SiP process. Operating in 14-14.5 GHz, the proposed low-profile array demonstrates stable radiation characteristics, beam pointing accuracy and excellent beam consistency across the entire frequency range. The measurement results confirm that the SiP-based phased array maintains efficient thermal management, high polarization purity and robust beam-scanning capability, validating its suitability for mobile satellite communication.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"17 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844136/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146064744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuexin Zhao, Jingjing Tan, Lin Chen, Hao Zhu, Qingqing Sun
The continued downscaling of transistors has exacerbated aging mechanisms such as bias temperature instability (BTI) and hot-carrier injection (HCI), posing significant reliability challenges for nanoscale integrated circuits. These effects are particularly critical to flip-flops operating at low supply voltages, which are essential for ultra-low-power applications including the Internet of Things (IoT) and biomedical implants. In this work, we address the aging issue in low-voltage Split-Controlled Flip-Flops (SCFFs) by proposing a novel transistor-level mitigation technique specifically tailored to this architecture within a domestic 14 nm process library. Through a detailed analysis of aging-critical transistors, three targeted enhancement strategies are introduced. Simulation results demonstrate that the improved SCFF achieves more than a 60% reduction in PMOS threshold voltage degradation and a 40% reduction in timing delay, while maintaining robust operation at a supply voltage as low as 0.4 V. These results highlight the effectiveness of the proposed approach in mitigating aging effects and enhancing reliability under low-voltage operation.
{"title":"Device and Circuit Co-Optimization of Split-Controlled Flip-Flops Against Aging Towards Low-Voltage Applications.","authors":"Yuexin Zhao, Jingjing Tan, Lin Chen, Hao Zhu, Qingqing Sun","doi":"10.3390/mi17010111","DOIUrl":"10.3390/mi17010111","url":null,"abstract":"<p><p>The continued downscaling of transistors has exacerbated aging mechanisms such as bias temperature instability (BTI) and hot-carrier injection (HCI), posing significant reliability challenges for nanoscale integrated circuits. These effects are particularly critical to flip-flops operating at low supply voltages, which are essential for ultra-low-power applications including the Internet of Things (IoT) and biomedical implants. In this work, we address the aging issue in low-voltage Split-Controlled Flip-Flops (SCFFs) by proposing a novel transistor-level mitigation technique specifically tailored to this architecture within a domestic 14 nm process library. Through a detailed analysis of aging-critical transistors, three targeted enhancement strategies are introduced. Simulation results demonstrate that the improved SCFF achieves more than a 60% reduction in PMOS threshold voltage degradation and a 40% reduction in timing delay, while maintaining robust operation at a supply voltage as low as 0.4 V. These results highlight the effectiveness of the proposed approach in mitigating aging effects and enhancing reliability under low-voltage operation.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"17 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844323/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146064778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pancreatic function tests are used to determine the presence of chronic pancreatitis, particularly in the early stage of the disease. Chymotrypsin is an indicator of pancreatic function and is thus related to pancreatic diseases. However, these methods often require specific equipment and cannot always meet on-site analysis requirements. Consequently, a highly sensitive detection method needs to be developed. This research employed graphene oxide modified with NHS sensors and peptides (RRHFFGC: Arginine-Arginine-Histidine-Phenylalanine-Phenylalanine-Glycine-Cysteine) tagged with gold nanoclusters (Au NCs) for the detection of chymotrypsin. The N-Hydroxysuccinimide-(Polyethylene Glycol)4-Dibenzocyclooctyne (NHS-PEG4-DBCO) and graphene oxide (GO)-N3 click reaction yielded GO-NHS material, appropriate for fluorescence quenching. The peptide chain was accurately broken with the introduction of chymotrypsin, and the Au NCs were situated far from the GO-NHS surface. The detection limit was 2.014 pg/mL. The results showed that the detection method had high sensitivity in comparison with the previous studies. This method is relevant to real samples due to its potential efficacy. Therefore, it is a promising method in the biomedical field.
{"title":"Highly Sensitive Detection of Chymotrypsin Using Gold Nanoclusters with Peptide Sensors.","authors":"Siyuan Zhou, Cheng Liu, Haixia Shi, Li Gao","doi":"10.3390/mi17010107","DOIUrl":"10.3390/mi17010107","url":null,"abstract":"<p><p>Pancreatic function tests are used to determine the presence of chronic pancreatitis, particularly in the early stage of the disease. Chymotrypsin is an indicator of pancreatic function and is thus related to pancreatic diseases. However, these methods often require specific equipment and cannot always meet on-site analysis requirements. Consequently, a highly sensitive detection method needs to be developed. This research employed graphene oxide modified with NHS sensors and peptides (RRHFFGC: Arginine-Arginine-Histidine-Phenylalanine-Phenylalanine-Glycine-Cysteine) tagged with gold nanoclusters (Au NCs) for the detection of chymotrypsin. The N-Hydroxysuccinimide-<i>(Polyethylene Glycol)</i><sub>4</sub>-Dibenzocyclooctyne (NHS-PEG<sub>4</sub>-DBCO) and graphene oxide (GO)-N<sub>3</sub> click reaction yielded GO-NHS material, appropriate for fluorescence quenching. The peptide chain was accurately broken with the introduction of chymotrypsin, and the Au NCs were situated far from the GO-NHS surface. The detection limit was 2.014 pg/mL. The results showed that the detection method had high sensitivity in comparison with the previous studies. This method is relevant to real samples due to its potential efficacy. Therefore, it is a promising method in the biomedical field.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"17 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844334/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146064594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, a substrate-integrated waveguide (SIW) filtering power divider with a modified complementary split-ring resonator (CSRR) is reported. Firstly, by integrating the meander-shaped slots with the conventional CSRR, the proposed inner-meander-slot CSRR (IMSCSRR) can enlarge the total length of the defected slot and increase the width of the split, thus enhancing the equivalent capacitance and inductance. In this way, the fundamental resonant frequency of the IMSCSRR can be effectively decreased without enlarging the circuit size, which can generally help to reduce the physical size by over 35%. Subsequently, to further reduce the circuit size, two IMSCSRRs are separately loaded on the top and bottom metal covers to constitute a broadside-coupled IMSCSRR, which is combined with the SIW. To verify the efficacy of the proposed SIW-IMSCSRR unit cell, a two-way filtering power divider is implemented. It combines the band-selection function of a filter and the power-distribution property of a power divider, thereby enhancing system integration and realizing size compactness. Experimental results show that the proposed filtering power divider achieves a center frequency of 3.53 GHz, a bandwidth of about 320 MHz, an in-band insertion loss of (3 + 1.3) dB, an in-band isolation of over 21 dB, and a size reduction of about 30% compared with the design without broadside-coupling, as well as good magnitude and phase variations. All the results indicate that the proposed filtering power divider achieves a good balance between low loss, high isolation, and compact size, which is suitable for system integration applications in microwave scenarios.
{"title":"A Substrate-Integrated Waveguide Filtering Power Divider with Broadside-Coupled Inner-Meander-Slot Complementary Split-Ring Resonator.","authors":"Jinjia Hu, Chen Wang, Yongmao Huang, Shuai Ding, Maurizio Bozzi","doi":"10.3390/mi17010103","DOIUrl":"10.3390/mi17010103","url":null,"abstract":"<p><p>In this work, a substrate-integrated waveguide (SIW) filtering power divider with a modified complementary split-ring resonator (CSRR) is reported. Firstly, by integrating the meander-shaped slots with the conventional CSRR, the proposed inner-meander-slot CSRR (IMSCSRR) can enlarge the total length of the defected slot and increase the width of the split, thus enhancing the equivalent capacitance and inductance. In this way, the fundamental resonant frequency of the IMSCSRR can be effectively decreased without enlarging the circuit size, which can generally help to reduce the physical size by over 35%. Subsequently, to further reduce the circuit size, two IMSCSRRs are separately loaded on the top and bottom metal covers to constitute a broadside-coupled IMSCSRR, which is combined with the SIW. To verify the efficacy of the proposed SIW-IMSCSRR unit cell, a two-way filtering power divider is implemented. It combines the band-selection function of a filter and the power-distribution property of a power divider, thereby enhancing system integration and realizing size compactness. Experimental results show that the proposed filtering power divider achieves a center frequency of 3.53 GHz, a bandwidth of about 320 MHz, an in-band insertion loss of (3 + 1.3) dB, an in-band isolation of over 21 dB, and a size reduction of about 30% compared with the design without broadside-coupling, as well as good magnitude and phase variations. All the results indicate that the proposed filtering power divider achieves a good balance between low loss, high isolation, and compact size, which is suitable for system integration applications in microwave scenarios.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"17 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146064819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thirukumaran Periyasamy, Shakila Parveen Asrafali, Jaewoong Lee
The field of electrochemical devices, encompassing energy storage, fuel cells, electrolysis, and sensing, is fundamentally reliant on the electrode materials that govern their performance, efficiency, and sustainability. Traditional materials, while foundational, often face limitations such as restricted reaction kinetics, structural deterioration, and dependence on costly or scarce elements, driving the need for continuous innovation. Emerging electrode materials are designed to overcome these challenges by delivering enhanced reaction activity, superior mechanical robustness, accelerated ion diffusion kinetics, and improved economic feasibility. In energy storage, for example, the shift from conventional graphite in lithium-ion batteries has led to the exploration of silicon-based anodes, offering a theoretical capacity more than tenfold higher despite the challenge of massive volume expansion, which is being mitigated through nanostructuring and carbon composites. Simultaneously, the rise of sodium-ion batteries, appealing due to sodium's abundance, necessitates materials like hard carbon for the anode, as sodium's larger ionic radius prevents efficient intercalation into graphite. In electrocatalysis, the high cost of platinum in fuel cells is being addressed by developing Platinum-Group-Metal-free (PGM-free) catalysts like metal-nitrogen-carbon (M-N-C) materials for the oxygen reduction reaction (ORR). Similarly, for the oxygen evolution reaction (OER) in water electrolysis, cost-effective alternatives such as nickel-iron hydroxides are replacing iridium and ruthenium oxides in alkaline environments. Furthermore, advancements in materials architecture, such as MXenes-two-dimensional transition metal carbides with metallic conductivity and high volumetric capacitance-and Single-Atom Catalysts (SACs)-which maximize metal utilization-are paving the way for significantly improved supercapacitor and catalytic performance. While significant progress has been made, challenges related to fundamental understanding, long-term stability, and the scalability of lab-based synthesis methods remain paramount for widespread commercial deployment. The future trajectory involves rational design leveraging advanced characterization, computational modeling, and machine learning to achieve holistic, system-level optimization for sustainable, next-generation electrochemical devices.
{"title":"Emerging Electrode Materials for Next-Generation Electrochemical Devices: A Comprehensive Review.","authors":"Thirukumaran Periyasamy, Shakila Parveen Asrafali, Jaewoong Lee","doi":"10.3390/mi17010106","DOIUrl":"10.3390/mi17010106","url":null,"abstract":"<p><p>The field of electrochemical devices, encompassing energy storage, fuel cells, electrolysis, and sensing, is fundamentally reliant on the electrode materials that govern their performance, efficiency, and sustainability. Traditional materials, while foundational, often face limitations such as restricted reaction kinetics, structural deterioration, and dependence on costly or scarce elements, driving the need for continuous innovation. Emerging electrode materials are designed to overcome these challenges by delivering enhanced reaction activity, superior mechanical robustness, accelerated ion diffusion kinetics, and improved economic feasibility. In energy storage, for example, the shift from conventional graphite in lithium-ion batteries has led to the exploration of silicon-based anodes, offering a theoretical capacity more than tenfold higher despite the challenge of massive volume expansion, which is being mitigated through nanostructuring and carbon composites. Simultaneously, the rise of sodium-ion batteries, appealing due to sodium's abundance, necessitates materials like hard carbon for the anode, as sodium's larger ionic radius prevents efficient intercalation into graphite. In electrocatalysis, the high cost of platinum in fuel cells is being addressed by developing Platinum-Group-Metal-free (PGM-free) catalysts like metal-nitrogen-carbon (M-N-C) materials for the oxygen reduction reaction (ORR). Similarly, for the oxygen evolution reaction (OER) in water electrolysis, cost-effective alternatives such as nickel-iron hydroxides are replacing iridium and ruthenium oxides in alkaline environments. Furthermore, advancements in materials architecture, such as MXenes-two-dimensional transition metal carbides with metallic conductivity and high volumetric capacitance-and Single-Atom Catalysts (SACs)-which maximize metal utilization-are paving the way for significantly improved supercapacitor and catalytic performance. While significant progress has been made, challenges related to fundamental understanding, long-term stability, and the scalability of lab-based synthesis methods remain paramount for widespread commercial deployment. The future trajectory involves rational design leveraging advanced characterization, computational modeling, and machine learning to achieve holistic, system-level optimization for sustainable, next-generation electrochemical devices.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"17 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12843734/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146064820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}