The effects of MgO on carbothermal reduction of Fe2TiO4 had been researched including the thermodynamic calculation in this paper. And, based on XRD and SEM-EDS, the effect mechanism of MgO on the direct reduction of Fe2TiO4 had been deeply dissected, systematically. The results showed that magnesium titanium phases including MgTi2O5, MgTiO3 and Mg2TiO4 were formatted after MgO added into Fe2TiO4, which was main reason to affect the reduction of Fe2TiO4. When the MgO content in Fe2TiO4 did not exceed 2%, there was the promoting effect on the reduction of Fe2TiO4. With the increase of MgO content from 2% to 8%, the magnesium titanium phases transformed from MgTi2O5, and through MgTiO3 to Mg2TiO4. The inhibition function appeared, and can be weaken in the high reduction temperature. When reduction temperature reaches to 1300 °C, the metallization rate of F-M-8 (the reduction sample of 8% MgO) can reach 80.62% from 56.43% at 1200 °C. However, the aggregation degree of iron particles became worse when MgO was added to the sample.
{"title":"Effects and mechanism of MgO on carbothermal reduction of Fe2TiO4","authors":"Yunfei Chen, Xiangdong Xing","doi":"10.1051/metal/2021059","DOIUrl":"https://doi.org/10.1051/metal/2021059","url":null,"abstract":"The effects of MgO on carbothermal reduction of Fe2TiO4 had been researched including the thermodynamic calculation in this paper. And, based on XRD and SEM-EDS, the effect mechanism of MgO on the direct reduction of Fe2TiO4 had been deeply dissected, systematically. The results showed that magnesium titanium phases including MgTi2O5, MgTiO3 and Mg2TiO4 were formatted after MgO added into Fe2TiO4, which was main reason to affect the reduction of Fe2TiO4. When the MgO content in Fe2TiO4 did not exceed 2%, there was the promoting effect on the reduction of Fe2TiO4. With the increase of MgO content from 2% to 8%, the magnesium titanium phases transformed from MgTi2O5, and through MgTiO3 to Mg2TiO4. The inhibition function appeared, and can be weaken in the high reduction temperature. When reduction temperature reaches to 1300 °C, the metallization rate of F-M-8 (the reduction sample of 8% MgO) can reach 80.62% from 56.43% at 1200 °C. However, the aggregation degree of iron particles became worse when MgO was added to the sample.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84121170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao-qian Pan, Jian Yang, Yinhui Zhang, Joo-Chang Park, H. Ono
The submicrometre and nanometre particle characteristics, soluble element contents, and austenite grain growth behaviors in heat-affected zone of offshore engineering steels with 0.0002 (2Mg) and 0.0042 (42Mg) wt.% Mg during the simulated welding process were studied. With increasing the Mg content in steel from 0.0002 to 0.0042 wt.%, the submicron particles are decreased in number and size with their compositions evolved from TiN to TiN + MgO capped with Mo carbides, and the number density of small-sized nanoparticles increases and large-sized nanoparticles decreases. When the temperature is below 1250 °C, the grain growth rate of two steels is not much different due to the larger Mo solute drag effect in 2Mg and larger pinning force in 42Mg. When the temperature is 1250–1300 °C, the small-sized nanoparticles in 42Mg is more than that in 2Mg, resulting in the larger pinning force and smaller grain growth rate in 42Mg. When heated to 1300–1350 °C and soaked at 1350 °C for 300 s, since large quantities of particles smaller than the critical size (dcr) are dissolved, the grain growth rate in 2Mg is smaller than that in 42Mg due to the greater amount of the effective pinning particles and larger pinning force in 2Mg.
{"title":"Influence of the Mg content on the austenite grain growth in heat-affected zone of offshore engineering steels considering TiN particle pinning and Mo solute drag effects","authors":"Xiao-qian Pan, Jian Yang, Yinhui Zhang, Joo-Chang Park, H. Ono","doi":"10.1051/metal/2021052","DOIUrl":"https://doi.org/10.1051/metal/2021052","url":null,"abstract":"The submicrometre and nanometre particle characteristics, soluble element contents, and austenite grain growth behaviors in heat-affected zone of offshore engineering steels with 0.0002 (2Mg) and 0.0042 (42Mg) wt.% Mg during the simulated welding process were studied. With increasing the Mg content in steel from 0.0002 to 0.0042 wt.%, the submicron particles are decreased in number and size with their compositions evolved from TiN to TiN + MgO capped with Mo carbides, and the number density of small-sized nanoparticles increases and large-sized nanoparticles decreases. When the temperature is below 1250 °C, the grain growth rate of two steels is not much different due to the larger Mo solute drag effect in 2Mg and larger pinning force in 42Mg. When the temperature is 1250–1300 °C, the small-sized nanoparticles in 42Mg is more than that in 2Mg, resulting in the larger pinning force and smaller grain growth rate in 42Mg. When heated to 1300–1350 °C and soaked at 1350 °C for 300 s, since large quantities of particles smaller than the critical size (dcr) are dissolved, the grain growth rate in 2Mg is smaller than that in 42Mg due to the greater amount of the effective pinning particles and larger pinning force in 2Mg.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"9 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84238078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tingsong Yang, Jiayang Liu, X. Ren, Yingwei Wang, F. Du
Roll profile electromagnetic control technology (RPECT) is a new strip flatness control technology. As the control element, electromagnetic sticks have a great effect on the control ability of RPECT. To improve control ability and extend service life, effective control ratio of electromagnetic stick is presented in this paper. The ratio is designed based on the structure character of electromagnetic stick, and can be used to evaluate the key parameter of electromagnetic stick. Based on the coupled FEM, the heat flux density of the roll inner hole and the temperature distribution of electromagnetic stick are analyzed for different effective control ratios; the average contact pressure between electromagnetic stick and electromagnetic control roll is studied to evaluate the change of force roll profile; the state of roll profile and the stress state of the roll are researched to analyze the comprehensive control ability. Through the verification on the roll profile electromagnetic control experimental platform, the reasonable selection range of effective control ratio, which can be used to expand the roll profile axial affected area, is from 0.5 to 0.583. In order to increase the roll crown, the selection of ηd needs to consider the current density and the optimal selection range of effective control ratio.
{"title":"Research on roll profile electromagnetic control ability in optimal electromagnetic stick parameter","authors":"Tingsong Yang, Jiayang Liu, X. Ren, Yingwei Wang, F. Du","doi":"10.1051/METAL/2021031","DOIUrl":"https://doi.org/10.1051/METAL/2021031","url":null,"abstract":"Roll profile electromagnetic control technology (RPECT) is a new strip flatness control technology. As the control element, electromagnetic sticks have a great effect on the control ability of RPECT. To improve control ability and extend service life, effective control ratio of electromagnetic stick is presented in this paper. The ratio is designed based on the structure character of electromagnetic stick, and can be used to evaluate the key parameter of electromagnetic stick. Based on the coupled FEM, the heat flux density of the roll inner hole and the temperature distribution of electromagnetic stick are analyzed for different effective control ratios; the average contact pressure between electromagnetic stick and electromagnetic control roll is studied to evaluate the change of force roll profile; the state of roll profile and the stress state of the roll are researched to analyze the comprehensive control ability. Through the verification on the roll profile electromagnetic control experimental platform, the reasonable selection range of effective control ratio, which can be used to expand the roll profile axial affected area, is from 0.5 to 0.583. In order to increase the roll crown, the selection of ηd needs to consider the current density and the optimal selection range of effective control ratio.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"25 6 1","pages":"305"},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82694448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Colmonoy 6 alloy has been regarded as an efficient overlay material for various grades of substrate materials. The PTAW process has been emerged as a very useful process to deposit such materials effectively. Torch oscillation may become an efficient PTAW parameter to achieve a desired microstructure due to its significant advantage over liner torch movement due to a faster cooling of the weld pool. Proposed work aims to analyse the influence of torch oscillation on the microstructure of Colmonoy 6 overlay surface on SS304 substrate. The structure of the surface deposited with PTAW torch oscillation shows increase in the Cr concentration in δ-Cr7C3, θ-(Cr, Fe)7C3 and μ-Cr23C7 phases upon characterization by SEM with EDS and XRD. This decreases the solidification temperature of Ni-based soft matrix which provides a higher hardness of the coating. These outcomes can also come handy for other grades of materials to control their metallurgical characteristics effectively.
{"title":"Influence of torch oscillation on the microstructure of Colmonoy 6 overlay deposition on SS304 substrate with PTA welding process","authors":"V. Kalyankar, Avishkar Bhoskar","doi":"10.1051/metal/2021045","DOIUrl":"https://doi.org/10.1051/metal/2021045","url":null,"abstract":"Colmonoy 6 alloy has been regarded as an efficient overlay material for various grades of substrate materials. The PTAW process has been emerged as a very useful process to deposit such materials effectively. Torch oscillation may become an efficient PTAW parameter to achieve a desired microstructure due to its significant advantage over liner torch movement due to a faster cooling of the weld pool. Proposed work aims to analyse the influence of torch oscillation on the microstructure of Colmonoy 6 overlay surface on SS304 substrate. The structure of the surface deposited with PTAW torch oscillation shows increase in the Cr concentration in δ-Cr7C3, θ-(Cr, Fe)7C3 and μ-Cr23C7 phases upon characterization by SEM with EDS and XRD. This decreases the solidification temperature of Ni-based soft matrix which provides a higher hardness of the coating. These outcomes can also come handy for other grades of materials to control their metallurgical characteristics effectively.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"19 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82722769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The surface tension of mold flux is an important parameter for controlling the quality of continuous billet, affected deeply by the compositions of mold flux and temperature, andclosed related with the structure of mold flux. In the present study, the effect of CaF2 and temperature on the surface tension of CaO-SiO2 -Al2 O3 -Na2 O-CaF2 mold flux melts is investigated by the pulling cylinder method; furthermore, the structure of melts is determined by FT-IR spectroscopy to analyze the change mechanism of surface tension. The results indicate that the variation of surface tension is in accord with that of structure of melts. The surface tension of melt decreases with the increase of CaF2 mass fraction, and this tendency becomes more apparent at higher temperature. The FT-IR spectra show thatboth the amount of Ob andthe degree of structural polymerization of melts decrease as the CaF2 content increases. This is because the Si-Ob bonds in the [SiO4 ]-tetrahedrons are broken by F− and transformed into Si-F bonds, and the silicon-oxygen anions with more complex structure were depolymerized into silicon-oxygen anions containing fluorine with simpler structure, resulting in an increase of Si-F saturated bonds on the melt surface, and thusreducing the surface tension of melts.
{"title":"Effect of fluorine on surface tension of CaO-SiO2-Al2O3-Na2O-CaF2 mold flux","authors":"Q. Gao, Longhu Cao","doi":"10.1051/METAL/2021040","DOIUrl":"https://doi.org/10.1051/METAL/2021040","url":null,"abstract":"The surface tension of mold flux is an important parameter for controlling the quality of continuous billet, affected deeply by the compositions of mold flux and temperature, andclosed related with the structure of mold flux. In the present study, the effect of CaF2 and temperature on the surface tension of CaO-SiO2 -Al2 O3 -Na2 O-CaF2 mold flux melts is investigated by the pulling cylinder method; furthermore, the structure of melts is determined by FT-IR spectroscopy to analyze the change mechanism of surface tension. The results indicate that the variation of surface tension is in accord with that of structure of melts. The surface tension of melt decreases with the increase of CaF2 mass fraction, and this tendency becomes more apparent at higher temperature. The FT-IR spectra show thatboth the amount of Ob andthe degree of structural polymerization of melts decrease as the CaF2 content increases. This is because the Si-Ob bonds in the [SiO4 ]-tetrahedrons are broken by F− and transformed into Si-F bonds, and the silicon-oxygen anions with more complex structure were depolymerized into silicon-oxygen anions containing fluorine with simpler structure, resulting in an increase of Si-F saturated bonds on the melt surface, and thusreducing the surface tension of melts.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"7 1","pages":"316"},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86991025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fei Li, Liwen Zhang, Chi Zhang, Qing Yang, Chaoqun Li, P. Mao
The static recrystallization (SRX) behavior of a low carbon Nb–V–Ti microalloyed steel X70 was investigated by two-pass hot compression tests. The compression tests were carried out at deformation temperatures of 1000–1150 °C, strain rates of 0.01–5 s−1 , pre-strains of 0.1–0.2 and interval times of 1–50 s. The effects of deformation parameters on SRX behavior were analyzed. The experimental results showed that deformation temperature, pre-strain and strain rate had significant influence on SRX fraction, while initial grain size had a smaller impact. The effects of deformation parameters on SRX microstructure were discussed, and the microstructure evolution process was analyzed. Higher deformation temperature, strain rate and pre-strain lead to larger SRX fraction. The kinetics and recrystallized grain size models for SRX of X70 pipeline steel were developed. Comparison between the predicted results and the experimental ones indicated that the established equations could give a reasonable description for SRX behavior of X70 pipeline steel.
{"title":"Experimental investigation on static recrystallization behavior of a low carbon Nb–V–Ti microalloyed steel","authors":"Fei Li, Liwen Zhang, Chi Zhang, Qing Yang, Chaoqun Li, P. Mao","doi":"10.1051/METAL/2021003","DOIUrl":"https://doi.org/10.1051/METAL/2021003","url":null,"abstract":"The static recrystallization (SRX) behavior of a low carbon Nb–V–Ti microalloyed steel X70 was investigated by two-pass hot compression tests. The compression tests were carried out at deformation temperatures of 1000–1150 °C, strain rates of 0.01–5 s−1 , pre-strains of 0.1–0.2 and interval times of 1–50 s. The effects of deformation parameters on SRX behavior were analyzed. The experimental results showed that deformation temperature, pre-strain and strain rate had significant influence on SRX fraction, while initial grain size had a smaller impact. The effects of deformation parameters on SRX microstructure were discussed, and the microstructure evolution process was analyzed. Higher deformation temperature, strain rate and pre-strain lead to larger SRX fraction. The kinetics and recrystallized grain size models for SRX of X70 pipeline steel were developed. Comparison between the predicted results and the experimental ones indicated that the established equations could give a reasonable description for SRX behavior of X70 pipeline steel.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"70 1","pages":"202"},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79271136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Q. Meng, G. Yu, Xue-ying Huang, Hong-Lei Sun, Jun-min Zhao
The straightness is a critical quality parameter of metal profiles, and straightening is a necessary process in metal profile production. Due to the limitations of the existing straightening methods, the straightening process by reciprocating bending for metal profiles is proposed. The curvature is unified by multiple reciprocating bending, and then the straightening is completed by reverse bending. The process has the advantages of high straightening efficiency, flexibility, and wide straightening range. In order to verify the feasibility of the process, numerical simulation and physical experiment are carried out with the rectangular section profile with “C” shape and “S” shape. The results show the profiles of different shapes are unified into arcs of the same size after multiple reciprocating bending. In addition, the smaller the elastic area ratio (ratio of elastic deformation to overall deformation) is, the better the effect of unification curvature is. The residual deflection is basically the same after straightening, and straightness is within 0.1%.
{"title":"Study on a straightening process by reciprocating bending for metal profiles","authors":"Q. Meng, G. Yu, Xue-ying Huang, Hong-Lei Sun, Jun-min Zhao","doi":"10.1051/metal/2021081","DOIUrl":"https://doi.org/10.1051/metal/2021081","url":null,"abstract":"The straightness is a critical quality parameter of metal profiles, and straightening is a necessary process in metal profile production. Due to the limitations of the existing straightening methods, the straightening process by reciprocating bending for metal profiles is proposed. The curvature is unified by multiple reciprocating bending, and then the straightening is completed by reverse bending. The process has the advantages of high straightening efficiency, flexibility, and wide straightening range. In order to verify the feasibility of the process, numerical simulation and physical experiment are carried out with the rectangular section profile with “C” shape and “S” shape. The results show the profiles of different shapes are unified into arcs of the same size after multiple reciprocating bending. In addition, the smaller the elastic area ratio (ratio of elastic deformation to overall deformation) is, the better the effect of unification curvature is. The residual deflection is basically the same after straightening, and straightness is within 0.1%.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"357 6","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72441363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jia-long Qiao, F. Guo, Jin-wen Hu, Chuanxin Liu, Qiu Shengtao
Microstructure, texture, inclusions and precipitates in Fe-2.97wt%Si non-oriented silicon steel during manufacture were investigated using Scanning Electron Microscopy (SEM), Organic Solvent Electrolysis and Electron Backscattered Diffraction(EBSD)techniques. The P10/400 , P15/50 and B50 of thin-gauge non-oriented silicon steel with 0.3 mm in thickness were 13.85 W/kg, 2.38 W/kg and 1.66 T, respectively. Due to annealing of hot rolled band, the size of precipitates increased. The precipitates are mostly located at the grain boundaries in the annealed sheet, the main and average size of the grain-boundary precipitates were in the range of 30 ∼ 500 nm and 63.2 nm, respectively. The pinning force caused by 100 ∼ 300 nm particles at the grain boundaries was the largest, 70 ∼ 100 nm was second. During annealing of hot rolled band, the α*-fiber texture significantly developed and γ -fiber dropped dramatically. The γ-fiber texture and α*-fiber texture composed the main textures of annealed sheet. The texture randomization would give rise to better magnetic properties compared to the γ -fiber.
{"title":"Development of thin-gauge low iron loss non-oriented silicon steel","authors":"Jia-long Qiao, F. Guo, Jin-wen Hu, Chuanxin Liu, Qiu Shengtao","doi":"10.1051/METAL/2020091","DOIUrl":"https://doi.org/10.1051/METAL/2020091","url":null,"abstract":"Microstructure, texture, inclusions and precipitates in Fe-2.97wt%Si non-oriented silicon steel during manufacture were investigated using Scanning Electron Microscopy (SEM), Organic Solvent Electrolysis and Electron Backscattered Diffraction(EBSD)techniques. The P10/400 , P15/50 and B50 of thin-gauge non-oriented silicon steel with 0.3 mm in thickness were 13.85 W/kg, 2.38 W/kg and 1.66 T, respectively. Due to annealing of hot rolled band, the size of precipitates increased. The precipitates are mostly located at the grain boundaries in the annealed sheet, the main and average size of the grain-boundary precipitates were in the range of 30 ∼ 500 nm and 63.2 nm, respectively. The pinning force caused by 100 ∼ 300 nm particles at the grain boundaries was the largest, 70 ∼ 100 nm was second. During annealing of hot rolled band, the α*-fiber texture significantly developed and γ -fiber dropped dramatically. The γ-fiber texture and α*-fiber texture composed the main textures of annealed sheet. The texture randomization would give rise to better magnetic properties compared to the γ -fiber.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"49 1","pages":"113"},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91279477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aims to investigate the effect of Mg treatment on the homogenized distribution of inclusions. Deoxidized experiments with Al (0.05%Al) and Al-Mg (0.05%Al + 0.03%Mg) were carried out at 1873 K respectively and the degree of homogeneity in inclusion dispersion, area density, average size and inter-surface distance of inclusions were studied. The attractive capillary force acts on inclusions was analyzed by in-situ observation by confocal laser scanning microscopy and Kralchevsky-Paunov model. The results show that the proportion of inclusions with inter-surface distance at the range of 10–100 µm is up to 60% after Al-Mg deoxidized 1800 s. Compared with Al2 O3 inclusion, the area density of MgAl2 O4 inclusions is generally more homogeneous. The in-situ observed results indicate that the inclusions in the steel deoxidized by Al are easy to aggregate and small size Al2 O3 inclusions tend to gather around large size Al2 O3 inclusions, while the inclusions in the steel deoxidized by Al-Mg tend to distribute more homogeneously. Moreover, the calculated results suggest that the attractive capillary force is larger between inclusions with larger size. The attractive capillary force is larger when the value of smaller size inclusions R1 is gradually close to the value of larger size inclusions R2 . The relationship between attractive capillary force and the degree of homogeneity in inclusion dispersion is discussed based on Kralchevsky-Paunov model.
{"title":"Effect of Mg treatment on distribution of inclusions in Fe-O-Al-Mg melt","authors":"Yutang Li, Linzhu Wang, Junqi Li, Shu-feng Yang, Chao-yi Chen, Changrong Li, Xiang Li","doi":"10.1051/METAL/2021030","DOIUrl":"https://doi.org/10.1051/METAL/2021030","url":null,"abstract":"This study aims to investigate the effect of Mg treatment on the homogenized distribution of inclusions. Deoxidized experiments with Al (0.05%Al) and Al-Mg (0.05%Al + 0.03%Mg) were carried out at 1873 K respectively and the degree of homogeneity in inclusion dispersion, area density, average size and inter-surface distance of inclusions were studied. The attractive capillary force acts on inclusions was analyzed by in-situ observation by confocal laser scanning microscopy and Kralchevsky-Paunov model. The results show that the proportion of inclusions with inter-surface distance at the range of 10–100 µm is up to 60% after Al-Mg deoxidized 1800 s. Compared with Al2 O3 inclusion, the area density of MgAl2 O4 inclusions is generally more homogeneous. The in-situ observed results indicate that the inclusions in the steel deoxidized by Al are easy to aggregate and small size Al2 O3 inclusions tend to gather around large size Al2 O3 inclusions, while the inclusions in the steel deoxidized by Al-Mg tend to distribute more homogeneously. Moreover, the calculated results suggest that the attractive capillary force is larger between inclusions with larger size. The attractive capillary force is larger when the value of smaller size inclusions R1 is gradually close to the value of larger size inclusions R2 . The relationship between attractive capillary force and the degree of homogeneity in inclusion dispersion is discussed based on Kralchevsky-Paunov model.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"28 1","pages":"310"},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82288129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
New methods in metal forming are rapidly developing and several forming processes are used to optimize manufacturing components and to reduce cost production. Single Point Incremental Forming (SPIF) is a metal sheet forming process used for rapid prototyping applications and small batch production. This work is dedicated to the investigation of the profile geometry and thickness evolution of a truncated pyramid. The influence of process parameters during a SPIF process is also studied. A numerical response surface methodology with a Design of Experiments (DOE) is used to improve the thickness reduction and the effects of the springback. A set of 16 tests are performed by varying four parameters: tool diameter, forming angle, sheet thickness, and tool path. The Gurson-Tvergaard-Needleman (GTN) damage model is used to analyze the damage evolution during material deformation. It is found that the model can effectively predict the geometrical profile and thickness with an error of less than 4%. Furthermore, it is noticed that the forming angle is the most influential parameter on the thickness reduction and springback level. Finally, the damage evolution is demonstrated to be sensitive to the forming angle.
{"title":"Investigation of the influence of incremental sheet forming process parameters using response surface methodology","authors":"Belouettar Karim, Ould ouali Mohand, Zeroudi Nasereddine, Thibaud Sébastien","doi":"10.1051/metal/2021039","DOIUrl":"https://doi.org/10.1051/metal/2021039","url":null,"abstract":"New methods in metal forming are rapidly developing and several forming processes are used to optimize manufacturing components and to reduce cost production. Single Point Incremental Forming (SPIF) is a metal sheet forming process used for rapid prototyping applications and small batch production. This work is dedicated to the investigation of the profile geometry and thickness evolution of a truncated pyramid. The influence of process parameters during a SPIF process is also studied. A numerical response surface methodology with a Design of Experiments (DOE) is used to improve the thickness reduction and the effects of the springback. A set of 16 tests are performed by varying four parameters: tool diameter, forming angle, sheet thickness, and tool path. The Gurson-Tvergaard-Needleman (GTN) damage model is used to analyze the damage evolution during material deformation. It is found that the model can effectively predict the geometrical profile and thickness with an error of less than 4%. Furthermore, it is noticed that the forming angle is the most influential parameter on the thickness reduction and springback level. Finally, the damage evolution is demonstrated to be sensitive to the forming angle.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"21 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83289576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}