首页 > 最新文献

Nanomaterials最新文献

英文 中文
Editorial: 2D Materials for Advanced Sensors: Fabrication and Applications.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-23 DOI: 10.3390/nano15030180
Wugang Liao, Lin Wang

The rapid advancements in the field of two-dimensional (2D) materials have significantly influenced the development of innovative sensor technologies [...].

{"title":"Editorial: 2D Materials for Advanced Sensors: Fabrication and Applications.","authors":"Wugang Liao, Lin Wang","doi":"10.3390/nano15030180","DOIUrl":"https://doi.org/10.3390/nano15030180","url":null,"abstract":"<p><p>The rapid advancements in the field of two-dimensional (2D) materials have significantly influenced the development of innovative sensor technologies [...].</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143408876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research Progress Towards and Prospects of Carbon Dots Derived from Tea and Chinese Medicinal Materials.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-23 DOI: 10.3390/nano15030171
Xiaoxue Tang, Zhao Gong, Yan Lang, Hongyue Chen, Siqi Huang, Yuguang Lv

This review focuses on the research progress related to carbon dots (CDs) derived from Chinese herbal medicines and tea, covering preparation methods, physicochemical properties, and application fields. It elaborates on preparation approaches like hydrothermal, solvothermal, microwave-assisted, and ultrasonic-assisted methods, and their influence on CDs' structure and properties. It also explores CDs' structural and optical properties. The application fields include antibacterial, sensing, bioimaging, photocatalysis, hemostasis, and energy. Carbon dots show antibacterial activity by destroying bacterial cell membranes, they can detect various substances in sensing, are important for bioimaging, degrade organic pollutants in photocatalysis, have hemostatic and anti-inflammatory effects, and can be used as battery anode materials. Despite progress, challenges remain in improving yield, quantum yield, property control, and understanding their mechanism of action. This review provides a reference for related research and looks ahead to future directions.

{"title":"Research Progress Towards and Prospects of Carbon Dots Derived from Tea and Chinese Medicinal Materials.","authors":"Xiaoxue Tang, Zhao Gong, Yan Lang, Hongyue Chen, Siqi Huang, Yuguang Lv","doi":"10.3390/nano15030171","DOIUrl":"https://doi.org/10.3390/nano15030171","url":null,"abstract":"<p><p>This review focuses on the research progress related to carbon dots (CDs) derived from Chinese herbal medicines and tea, covering preparation methods, physicochemical properties, and application fields. It elaborates on preparation approaches like hydrothermal, solvothermal, microwave-assisted, and ultrasonic-assisted methods, and their influence on CDs' structure and properties. It also explores CDs' structural and optical properties. The application fields include antibacterial, sensing, bioimaging, photocatalysis, hemostasis, and energy. Carbon dots show antibacterial activity by destroying bacterial cell membranes, they can detect various substances in sensing, are important for bioimaging, degrade organic pollutants in photocatalysis, have hemostatic and anti-inflammatory effects, and can be used as battery anode materials. Despite progress, challenges remain in improving yield, quantum yield, property control, and understanding their mechanism of action. This review provides a reference for related research and looks ahead to future directions.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143408691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Nanoparticles in Wine Science: Innovations and Applications.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-23 DOI: 10.3390/nano15030175
Agnieszka Mierczynska-Vasilev

Viticulture, the science of growing, cultivating, and harvesting grapes, and enology, the art and science of making wine, are rapidly evolving through innovative approaches aimed at improving the quality and efficiency of grape and wine production. This review explores the emerging use of nanoparticles, in particular gold, silver, and magnetic nanoparticles, to improve the quality, safety, and sustainability of both grape growing and winemaking processes. The unique properties of these nanoparticles, such as their small size, high surface area, and distinct chemical properties, enable them to address key challenges within the industry. In viticulture, nanoparticles have shown potential in protecting vines from pathogens, optimizing grape yield, and improving quality. In enology, nanoparticles are making a significant contribution to microbial control, reducing spoilage and refining wine analysis techniques, leading to improved product quality and safety. This review also highlights the synergy between different types of nanoparticles and their diverse applications, from microbial control in wine production to their use in innovative packaging solutions. In addition, nanoparticles have the potential to reduce dependence on agrochemicals and improve the sustainability of wine production, which is a promising avenue for future research. However, the integration of nanoparticles in viticulture and enology also poses regulatory and safety challenges, including the potential for nanoparticles to leach into wine products. Further research and regulatory advances are essential to ensure the safe and effective use of these technologies in winemaking. Overall, nanoparticles offer significant benefits to the wine industry, driving improvements in efficiency, sustainability, and quality.

{"title":"The Role of Nanoparticles in Wine Science: Innovations and Applications.","authors":"Agnieszka Mierczynska-Vasilev","doi":"10.3390/nano15030175","DOIUrl":"https://doi.org/10.3390/nano15030175","url":null,"abstract":"<p><p>Viticulture, the science of growing, cultivating, and harvesting grapes, and enology, the art and science of making wine, are rapidly evolving through innovative approaches aimed at improving the quality and efficiency of grape and wine production. This review explores the emerging use of nanoparticles, in particular gold, silver, and magnetic nanoparticles, to improve the quality, safety, and sustainability of both grape growing and winemaking processes. The unique properties of these nanoparticles, such as their small size, high surface area, and distinct chemical properties, enable them to address key challenges within the industry. In viticulture, nanoparticles have shown potential in protecting vines from pathogens, optimizing grape yield, and improving quality. In enology, nanoparticles are making a significant contribution to microbial control, reducing spoilage and refining wine analysis techniques, leading to improved product quality and safety. This review also highlights the synergy between different types of nanoparticles and their diverse applications, from microbial control in wine production to their use in innovative packaging solutions. In addition, nanoparticles have the potential to reduce dependence on agrochemicals and improve the sustainability of wine production, which is a promising avenue for future research. However, the integration of nanoparticles in viticulture and enology also poses regulatory and safety challenges, including the potential for nanoparticles to leach into wine products. Further research and regulatory advances are essential to ensure the safe and effective use of these technologies in winemaking. Overall, nanoparticles offer significant benefits to the wine industry, driving improvements in efficiency, sustainability, and quality.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning Design for Loss Optimization in Metamaterials.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-23 DOI: 10.3390/nano15030178
Xianfeng Wu, Jing Zhao, Kunlun Xie, Xiaopeng Zhao

Inherent material loss is a pivotal challenge that impedes the development of metamaterial properties, particularly in the context of 3D metamaterials operating at visible wavelengths. Traditional approaches, such as the design of periodic model structures and the selection of noble metals, have encountered a plateau. Coupled with the complexities of constructing 3D structures and achieving precise alignment, these factors have made the creation of low-loss metamaterials in the visible spectrum a formidable task. In this work, we harness the concept of deep learning, combined with the principle of weak interactions in metamaterials, to re-examine and optimize previously validated disordered discrete metamaterials. The paper presents an innovative strategy for loss optimization in metamaterials with disordered structural unit distributions, proving their robustness and ability to perform intended functions within a critical distribution ratio. This refined design strategy offers a theoretical framework for the development of single-frequency and broadband metamaterials within disordered discrete systems. It paves the way for the loss optimization of optical metamaterials and the facile fabrication of high-performance photonic devices.

{"title":"Deep Learning Design for Loss Optimization in Metamaterials.","authors":"Xianfeng Wu, Jing Zhao, Kunlun Xie, Xiaopeng Zhao","doi":"10.3390/nano15030178","DOIUrl":"https://doi.org/10.3390/nano15030178","url":null,"abstract":"<p><p>Inherent material loss is a pivotal challenge that impedes the development of metamaterial properties, particularly in the context of 3D metamaterials operating at visible wavelengths. Traditional approaches, such as the design of periodic model structures and the selection of noble metals, have encountered a plateau. Coupled with the complexities of constructing 3D structures and achieving precise alignment, these factors have made the creation of low-loss metamaterials in the visible spectrum a formidable task. In this work, we harness the concept of deep learning, combined with the principle of weak interactions in metamaterials, to re-examine and optimize previously validated disordered discrete metamaterials. The paper presents an innovative strategy for loss optimization in metamaterials with disordered structural unit distributions, proving their robustness and ability to perform intended functions within a critical distribution ratio. This refined design strategy offers a theoretical framework for the development of single-frequency and broadband metamaterials within disordered discrete systems. It paves the way for the loss optimization of optical metamaterials and the facile fabrication of high-performance photonic devices.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143408454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecularly Imprinted Nanozymes for Selective Hydrolysis of Aromatic Carbonates Under Mild Conditions.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-23 DOI: 10.3390/nano15030169
Tien Tan Bui, Yan Zhao

Aliphatic polycarbonate (PC) can be readily hydrolyzed by lipase, but bisphenol A-derived PC (i.e., BPA-PC) lacks enzyme catalysts for their efficient hydrolysis due to the high hydrophobicity and rigidity of its polymer backbone. This study aims to develop an artificial nanozyme for the selective hydrolysis of small-molecule aromatic carbonates as model substrates for BPA-PC. The catalyst is prepared through molecular imprinting of cross-linkable micelles in a one-pot reaction using a thiourea template and a zinc-containing functional monomer. The resulting water-soluble nanoparticle resembles a hydrolytic metalloenzyme to bind the appropriately shaped aromatic carbonate substrate in the active site, with the nearby zinc acting as a cofactor to activate a water molecule for the nucleophilic attack on the carbonate. Catalytic hydrolysis is observed at room temperature and pH 7, with a rate acceleration of 1 × 106 for diphenyl carbonate.

{"title":"Molecularly Imprinted Nanozymes for Selective Hydrolysis of Aromatic Carbonates Under Mild Conditions.","authors":"Tien Tan Bui, Yan Zhao","doi":"10.3390/nano15030169","DOIUrl":"https://doi.org/10.3390/nano15030169","url":null,"abstract":"<p><p>Aliphatic polycarbonate (PC) can be readily hydrolyzed by lipase, but bisphenol A-derived PC (i.e., BPA-PC) lacks enzyme catalysts for their efficient hydrolysis due to the high hydrophobicity and rigidity of its polymer backbone. This study aims to develop an artificial nanozyme for the selective hydrolysis of small-molecule aromatic carbonates as model substrates for BPA-PC. The catalyst is prepared through molecular imprinting of cross-linkable micelles in a one-pot reaction using a thiourea template and a zinc-containing functional monomer. The resulting water-soluble nanoparticle resembles a hydrolytic metalloenzyme to bind the appropriately shaped aromatic carbonate substrate in the active site, with the nearby zinc acting as a cofactor to activate a water molecule for the nucleophilic attack on the carbonate. Catalytic hydrolysis is observed at room temperature and pH 7, with a rate acceleration of 1 × 10<sup>6</sup> for diphenyl carbonate.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Demonstration of Integrated Quasi-Vertical DMOS Compatible with the Bipolar-CMOS-DMOS Process Achieving Ultralow RON,sp.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-23 DOI: 10.3390/nano15030172
Feng Lin, Tuanzhuang Wu, Weidong Wang, Zhengxuan Wang, Yi Zhang, Sheng Li, Ran Ye, Long Zhang, Jiaxing Wei, Siyang Liu, Weifeng Sun

An integrated quasi-vertical double-diffused MOSFET (DMOS) with split-gate trench (SGT) structure (SGT-QVDMOS), whose specific ON-state resistance (RON,sp) breaks the traditional Si limit significantly, is proposed and fabricated. The measured data of the latest manufactured device is presented. By introducing the vertical gate poly, the split grounded source poly, and the asymmetric thick oxide in the gate trench, the traditional lateral drift region is folded in the SGT-QVDMOS. In this way, the device voltage withstanding mode transforms from one dimension to two dimensions, including the horizontal and the vertical directions. Combining the electric field modulation effect and the reduced lateral area, which benefit from the quasi-vertical structure, the forward conducting characteristic of the SGT-QVDMOS is effectively improved. According to the measured results from the SGT-QVDMOS manufactured by the 180 nm Bipolar-CMOS-DMOS (BCD) process, the ultralow ON-state resistance is obtained. The device achieves 1.9 V VTH, 11.07 mΩ∙mm2 RON,sp, and 48.6 V BV, which is 39.0% lower than the traditional Si limit.

{"title":"Demonstration of Integrated Quasi-Vertical DMOS Compatible with the Bipolar-CMOS-DMOS Process Achieving Ultralow R<sub>ON,sp</sub>.","authors":"Feng Lin, Tuanzhuang Wu, Weidong Wang, Zhengxuan Wang, Yi Zhang, Sheng Li, Ran Ye, Long Zhang, Jiaxing Wei, Siyang Liu, Weifeng Sun","doi":"10.3390/nano15030172","DOIUrl":"https://doi.org/10.3390/nano15030172","url":null,"abstract":"<p><p>An integrated quasi-vertical double-diffused MOSFET (DMOS) with split-gate trench (SGT) structure (SGT-QVDMOS), whose specific ON-state resistance (R<sub>ON,sp</sub>) breaks the traditional Si limit significantly, is proposed and fabricated. The measured data of the latest manufactured device is presented. By introducing the vertical gate poly, the split grounded source poly, and the asymmetric thick oxide in the gate trench, the traditional lateral drift region is folded in the SGT-QVDMOS. In this way, the device voltage withstanding mode transforms from one dimension to two dimensions, including the horizontal and the vertical directions. Combining the electric field modulation effect and the reduced lateral area, which benefit from the quasi-vertical structure, the forward conducting characteristic of the SGT-QVDMOS is effectively improved. According to the measured results from the SGT-QVDMOS manufactured by the 180 nm Bipolar-CMOS-DMOS (BCD) process, the ultralow ON-state resistance is obtained. The device achieves 1.9 V V<sub>TH</sub>, 11.07 mΩ∙mm<sup>2</sup> R<sub>ON,sp</sub>, and 48.6 V BV, which is 39.0% lower than the traditional Si limit.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143408597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the Oxygen Evolution Reaction Performance of Ternary Layered Double Hydroxides by Tuning All Three Cations' Electronic Structures.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-23 DOI: 10.3390/nano15030177
Gayi Nyongombe, Malik Maaza, Mohamed Siaj, Simon Dhlamini

The pursuit of efficient and sustainable hydrogen production is essential in the fight against climate change. One important method for achieving this is the electrolysis of water, particularly through the oxygen evolution reaction (OER). Recent studies indicate that trimetallic layered double hydroxides (LDHs) can enhance OER performance compared to bimetallic LDHs. This improvement occurs because the third cation alters the electronic structures of the other two cations, thereby increasing the intermediates' binding energies and enhancing electrical conductivity. This study proposes an approach enabling the modulation of the electronic structures of all three cations involved in the synthesis of the trimetallic LDHs. It suggested intercalating sodium dodecyl sulfate (SDS) into the interlayer of the trimetallic NiFe-La-LDH. A successful intercalation of SDS has been confirmed through the XRD, FT-IR, EDS, and XPS. This has expanded the interlayer distance which was beneficial for the electrical conductivity. Furthermore, SDS generated sulphur, which modulated the electronic structures of all three cations enriching the active sites and improving electrical conductivity and OER performance compared to its counterparts. This approach is beneficial: 1. The interlayer can be further enlarged by using different doping ratios of SDS. 2. Sulphur can enrich the active sites and improve the OER performance.

{"title":"Improving the Oxygen Evolution Reaction Performance of Ternary Layered Double Hydroxides by Tuning All Three Cations' Electronic Structures.","authors":"Gayi Nyongombe, Malik Maaza, Mohamed Siaj, Simon Dhlamini","doi":"10.3390/nano15030177","DOIUrl":"https://doi.org/10.3390/nano15030177","url":null,"abstract":"<p><p>The pursuit of efficient and sustainable hydrogen production is essential in the fight against climate change. One important method for achieving this is the electrolysis of water, particularly through the oxygen evolution reaction (OER). Recent studies indicate that trimetallic layered double hydroxides (LDHs) can enhance OER performance compared to bimetallic LDHs. This improvement occurs because the third cation alters the electronic structures of the other two cations, thereby increasing the intermediates' binding energies and enhancing electrical conductivity. This study proposes an approach enabling the modulation of the electronic structures of all three cations involved in the synthesis of the trimetallic LDHs. It suggested intercalating sodium dodecyl sulfate (SDS) into the interlayer of the trimetallic NiFe-La-LDH. A successful intercalation of SDS has been confirmed through the XRD, FT-IR, EDS, and XPS. This has expanded the interlayer distance which was beneficial for the electrical conductivity. Furthermore, SDS generated sulphur, which modulated the electronic structures of all three cations enriching the active sites and improving electrical conductivity and OER performance compared to its counterparts. This approach is beneficial: 1. The interlayer can be further enlarged by using different doping ratios of SDS. 2. Sulphur can enrich the active sites and improve the OER performance.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oscillations in Absorption from InGaN/GaN Quantum Well to Continuum.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-23 DOI: 10.3390/nano15030174
Marta Gładysiewicz-Kudrawiec, Mikołaj Żak, Witold Trzeciakowski

We analyze theoretically an InGaN/GaN n-i-p diode with a single quantum well supporting only one bound state. The bottom parts of the diode, namely the first barrier and the quantum well, are heavily n-doped with silicon at 5 × 1019 cm-3 to ensure a high electron concentration in the well. The voltage drop in the diode occurs in the second AlGaN barrier, which is undoped, and structure ends with a p-doped GaN. The band structure of the diode is calculated by a Schrodinger-Poisson drift-diffusion solver. Next, we calculate the absorption from the bound state in the well to the "continuum" above the well. We show the oscillatory behavior of the spectrum, with the amplitude decreasing with more negative voltage applied to the diode. Oscillations are due to interferences of the wavefunctions between the edges of the well and the slope of the potential barrier.

{"title":"Oscillations in Absorption from InGaN/GaN Quantum Well to Continuum.","authors":"Marta Gładysiewicz-Kudrawiec, Mikołaj Żak, Witold Trzeciakowski","doi":"10.3390/nano15030174","DOIUrl":"https://doi.org/10.3390/nano15030174","url":null,"abstract":"<p><p>We analyze theoretically an InGaN/GaN <i>n-i-p</i> diode with a single quantum well supporting only one bound state. The bottom parts of the diode, namely the first barrier and the quantum well, are heavily n-doped with silicon at 5 × 10<sup>19</sup> cm<sup>-3</sup> to ensure a high electron concentration in the well. The voltage drop in the diode occurs in the second AlGaN barrier, which is undoped, and structure ends with a p-doped GaN. The band structure of the diode is calculated by a Schrodinger-Poisson drift-diffusion solver. Next, we calculate the absorption from the bound state in the well to the \"continuum\" above the well. We show the oscillatory behavior of the spectrum, with the amplitude decreasing with more negative voltage applied to the diode. Oscillations are due to interferences of the wavefunctions between the edges of the well and the slope of the potential barrier.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143408300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of Electrocatalytic Tungsten Carbide Nanoparticles by High-Pressure and High-Temperature Treatment of Organotungsten Compounds.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-23 DOI: 10.3390/nano15030170
Taijiro Tadokoro, Sota Sato, Ichiro Yamane, Hiroki Waizumi, Seiya Yokokura, Toshihiro Shimada

Metal-organic framework (MOF)-derived carbon, which contains metal nanoparticles embedded in a carbon matrix, is becoming an important group of catalysts. We report the synthesis of tungsten carbide-carbon nanocomposites using a similar concept, i.e., by pyrolysis of organotungsten compounds under high-temperature and high-pressure conditions. We characterized the product using various analytical techniques and examined its electrocatalytic activity. Two precursors, Bis(cyclopentadienyl)tungsten (IV) dichloride (Cp2WCl2) and Bis(cyclopentadienyl)tungsten (IV) dihydride (Cp2WH2) were pyrolyzed at 4.5 GPa and 600 °C. Tungsten carbide (β-WC1-x) crystals with a size of 2 nm embedded in graphitic carbon were formed from Cp2WH2-derived samples. Electrochemical measurements showed that all samples were active in the oxygen reduction reaction (ORR), with the Cp2WH2-derived sample having the best catalytic performance.

{"title":"Synthesis of Electrocatalytic Tungsten Carbide Nanoparticles by High-Pressure and High-Temperature Treatment of Organotungsten Compounds.","authors":"Taijiro Tadokoro, Sota Sato, Ichiro Yamane, Hiroki Waizumi, Seiya Yokokura, Toshihiro Shimada","doi":"10.3390/nano15030170","DOIUrl":"https://doi.org/10.3390/nano15030170","url":null,"abstract":"<p><p>Metal-organic framework (MOF)-derived carbon, which contains metal nanoparticles embedded in a carbon matrix, is becoming an important group of catalysts. We report the synthesis of tungsten carbide-carbon nanocomposites using a similar concept, i.e., by pyrolysis of organotungsten compounds under high-temperature and high-pressure conditions. We characterized the product using various analytical techniques and examined its electrocatalytic activity. Two precursors, Bis(cyclopentadienyl)tungsten (IV) dichloride (Cp<sub>2</sub>WCl<sub>2</sub>) and Bis(cyclopentadienyl)tungsten (IV) dihydride (Cp<sub>2</sub>WH<sub>2</sub>) were pyrolyzed at 4.5 GPa and 600 °C. Tungsten carbide (<i>β</i>-WC<sub>1-x</sub>) crystals with a size of 2 nm embedded in graphitic carbon were formed from Cp<sub>2</sub>WH<sub>2</sub>-derived samples. Electrochemical measurements showed that all samples were active in the oxygen reduction reaction (ORR), with the Cp<sub>2</sub>WH<sub>2</sub>-derived sample having the best catalytic performance.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green Synthesis of Multi-Walled Carbon Nanotube-Reinforced Hydroxyapatite Doped with Silver and Silver-Core Selenium-Shell Nanoparticles: Synthesis, Characterization, and Biological Activity.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-23 DOI: 10.3390/nano15030179
İlkay Unal

Hydroxyapatite (HAp) is widely used in biomedical applications due to its biocompatibility, osteoconductivity, and bioactivity. However, its low mechanical strength, tendency toward rapid corrosion, and lack of bactericidal properties present significant limitations in applications. This study aimed to improve the properties of HAp by reinforcing it with multi-walled carbon nanotubes (MWCNTs) and doping it with silver nanoparticles (AgNPs) and silver-core selenium-shell nanoparticles (Ag@SeNPs). Ocimum basilicum extract was used as both a reducing and stabilizing agent in the synthesis of nanoparticles using an environmentally friendly and non-toxic method as an alternative to traditional methods. The synthesized HAp, HAp/MWCNT, Ag-HAp/MWCNT, and Ag@Se-HAp/MWCNT nanocomposites were characterized by TEM, SEM, XRD, Raman spectroscopy, and BET analysis. BET analysis showed a reduction in surface area from 109.4 m2/g for pure HAp to 71.4 m2/g, 47.5 m2/g, and 35.3 m2/g for HAp/MWCNTs, Ag- HAp/MWCNTs, and Ag@Se-HAp/MWCNTs, respectively. Antimicrobial activities against P. aeruginosa, E. coli, S. aureus, E. faecalis, and C. albicans were evaluated. HAp and HAp/MWCNT did not show any antimicrobial activity, while Ag-HAp/MWCNTs showed inhibition zones of 14 mm for Escherichia coli and 18 mm for Pseudomonas aeruginosa at 5 mg/mL. Ag@Se-MWCNTs/HAp exhibited superior efficacy with inhibition zones of 18 mm, 12 mm, and 20 mm for S. aureus, E. faecalis, and Candida albicans, respectively. The incorporation of Ag@SeNPs enhanced HAp's antibacterial and antifungal properties through a synergistic mechanism.

{"title":"Green Synthesis of Multi-Walled Carbon Nanotube-Reinforced Hydroxyapatite Doped with Silver and Silver-Core Selenium-Shell Nanoparticles: Synthesis, Characterization, and Biological Activity.","authors":"İlkay Unal","doi":"10.3390/nano15030179","DOIUrl":"https://doi.org/10.3390/nano15030179","url":null,"abstract":"<p><p>Hydroxyapatite (HAp) is widely used in biomedical applications due to its biocompatibility, osteoconductivity, and bioactivity. However, its low mechanical strength, tendency toward rapid corrosion, and lack of bactericidal properties present significant limitations in applications. This study aimed to improve the properties of HAp by reinforcing it with multi-walled carbon nanotubes (MWCNTs) and doping it with silver nanoparticles (AgNPs) and silver-core selenium-shell nanoparticles (Ag@SeNPs). <i>Ocimum basilicum</i> extract was used as both a reducing and stabilizing agent in the synthesis of nanoparticles using an environmentally friendly and non-toxic method as an alternative to traditional methods. The synthesized HAp, HAp/MWCNT, Ag-HAp/MWCNT, and Ag@Se-HAp/MWCNT nanocomposites were characterized by TEM, SEM, XRD, Raman spectroscopy, and BET analysis. BET analysis showed a reduction in surface area from 109.4 m<sup>2</sup>/g for pure HAp to 71.4 m<sup>2</sup>/g, 47.5 m<sup>2</sup>/g, and 35.3 m<sup>2</sup>/g for HAp/MWCNTs, Ag- HAp/MWCNTs, and Ag@Se-HAp/MWCNTs, respectively. Antimicrobial activities against <i>P. aeruginosa</i>, <i>E. coli</i>, <i>S. aureus</i>, <i>E. faecalis</i>, and <i>C. albicans</i> were evaluated. HAp and HAp/MWCNT did not show any antimicrobial activity, while Ag-HAp/MWCNTs showed inhibition zones of 14 mm for <i>Escherichia coli</i> and 18 mm for <i>Pseudomonas aeruginosa</i> at 5 mg/mL. Ag@Se-MWCNTs/HAp exhibited superior efficacy with inhibition zones of 18 mm, 12 mm, and 20 mm for <i>S. aureus</i>, <i>E. faecalis</i>, and <i>Candida albicans</i>, respectively. The incorporation of Ag@SeNPs enhanced HAp's antibacterial and antifungal properties through a synergistic mechanism.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 3","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nanomaterials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1