首页 > 最新文献

Nature Methods最新文献

英文 中文
Predicting RNA structures 预测RNA结构。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-08 DOI: 10.1038/s41592-025-02954-2
Allison Doerr
Predicting the folded structures of RNA molecules poses greater challenges than proteins, but steady progress continues.
预测RNA分子的折叠结构比预测蛋白质的折叠结构更具挑战性,但仍在稳步取得进展。
{"title":"Predicting RNA structures","authors":"Allison Doerr","doi":"10.1038/s41592-025-02954-2","DOIUrl":"10.1038/s41592-025-02954-2","url":null,"abstract":"Predicting the folded structures of RNA molecules poses greater challenges than proteins, but steady progress continues.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 12","pages":"2495-2495"},"PeriodicalIF":32.1,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145708686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncertainty quantification for connectomics 连接组学的不确定性量化。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-08 DOI: 10.1038/s41592-025-02945-3
Jan Funke
As connectomics datasets grow in size and quantity, future reconstruction methods will have to work with minimal or no human supervision. For that, we will need methods that can quantify data and model uncertainty in order to assess the level of trust we can put in the downstream analysis of connectomes.
随着连接组学数据集在规模和数量上的增长,未来的重建方法将不得不在最少或没有人类监督的情况下工作。为此,我们将需要能够量化数据和建模不确定性的方法,以评估我们可以在连接体的下游分析中投入的信任水平。
{"title":"Uncertainty quantification for connectomics","authors":"Jan Funke","doi":"10.1038/s41592-025-02945-3","DOIUrl":"10.1038/s41592-025-02945-3","url":null,"abstract":"As connectomics datasets grow in size and quantity, future reconstruction methods will have to work with minimal or no human supervision. For that, we will need methods that can quantify data and model uncertainty in order to assess the level of trust we can put in the downstream analysis of connectomes.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 12","pages":"2484-2486"},"PeriodicalIF":32.1,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145708704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using comparative connectomics to understand variability and evolution in neural circuits 使用比较连接组学来理解神经回路的变异性和进化。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-08 DOI: 10.1038/s41592-025-02946-2
Marta Costa
Advances in connectomics are enabling the mapping of connectomes across individuals, sexes or species. Multiple comparisons enable the categorization of differences in these wiring diagrams as either technical or biological variability, or those that might impact circuit function. Testing these predictions experimentally will help us understand how evolution operates in neural circuits.
连接组学的进步使连接组在个体、性别或物种之间的映射成为可能。多次比较可以将这些接线图中的差异分类为技术或生物变异,或可能影响电路功能的差异。通过实验验证这些预测将有助于我们理解进化是如何在神经回路中运作的。
{"title":"Using comparative connectomics to understand variability and evolution in neural circuits","authors":"Marta Costa","doi":"10.1038/s41592-025-02946-2","DOIUrl":"10.1038/s41592-025-02946-2","url":null,"abstract":"Advances in connectomics are enabling the mapping of connectomes across individuals, sexes or species. Multiple comparisons enable the categorization of differences in these wiring diagrams as either technical or biological variability, or those that might impact circuit function. Testing these predictions experimentally will help us understand how evolution operates in neural circuits.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 12","pages":"2481-2483"},"PeriodicalIF":32.1,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145708761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking the potential of X-rays to scale up tissue ultrastructure mapping 释放x射线的潜力,扩大组织超微结构制图。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-04 DOI: 10.1038/s41592-025-02892-z
Nondestructively mapping biological tissues in 3D with nanoscale detail is essential to scale up the study of how cells interact in their environment, such as in neuronal circuits. We resolved such ultrastructure in brain tissue using coherent X-ray phase-contrast imaging techniques, which extends the volume imaging toolbox with nondestructive approaches.
以纳米尺度绘制生物组织的三维无损图,对于扩大细胞在其环境(如神经元回路)中如何相互作用的研究至关重要。我们使用相干x射线相衬成像技术解决了脑组织中的这种超微结构,这扩展了非破坏性方法的体积成像工具箱。
{"title":"Unlocking the potential of X-rays to scale up tissue ultrastructure mapping","authors":"","doi":"10.1038/s41592-025-02892-z","DOIUrl":"10.1038/s41592-025-02892-z","url":null,"abstract":"Nondestructively mapping biological tissues in 3D with nanoscale detail is essential to scale up the study of how cells interact in their environment, such as in neuronal circuits. We resolved such ultrastructure in brain tissue using coherent X-ray phase-contrast imaging techniques, which extends the volume imaging toolbox with nondestructive approaches.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 12","pages":"2512-2513"},"PeriodicalIF":32.1,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145678346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Imputation for Skeleton data (DISK) for behavioral science 用于行为科学的骨骼数据深度Imputation (DISK)。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-04 DOI: 10.1038/s41592-025-02893-y
France Rose, Monika Michaluk, Timon Blindauer, Bogna M. Ignatowska-Jankowska, Liam O’Shaughnessy, Greg J. Stephens, Talmo D. Pereira, Marylka Y. Uusisaari, Katarzyna Bozek
Pose estimation methods and motion capture systems have opened doors to quantitative measurements of animal kinematics. While animal behavior experiments are expensive and complex, tracking errors sometimes make large portions of the experimental data unusable. Here our deep learning method, Deep Imputation for Skeleton data (DISK), uncovers dependencies between keypoints and their dynamics to impute missing tracking data without the help of any manual annotations. We demonstrate the utility and performance of DISK on seven animal skeletons including multi-animal setups. The imputed recordings allow us to detect more episodes of motion, such as steps, and obtain more statistically robust results when comparing these episodes between experimental conditions. In addition, by learning to impute the missing content, DISK learns meaningful representations of the data capturing, for example, underlying actions. This stand-alone imputation package, available at https://github.com/bozeklab/DISK.git/ , is applicable to outputs of tracking methods (marker-based or markerless) and allows for varied types of downstream analysis. Analysis of behavioral data often involves tracking animal keypoints in video and motion capture recordings. DISK imputes missing keypoints, thereby improving downstream analyses.
姿态估计方法和动作捕捉系统为动物运动学的定量测量打开了大门。虽然动物行为实验既昂贵又复杂,但跟踪错误有时会使大部分实验数据无法使用。在这里,我们的深度学习方法,深度Imputation for Skeleton data (DISK),揭示关键点及其动态之间的依赖关系,在没有任何手动注释的帮助下,输入缺失的跟踪数据。我们演示了DISK在七种动物骨骼(包括多动物设置)上的效用和性能。输入的记录使我们能够检测到更多的运动事件,例如步骤,并在比较实验条件下的这些事件时获得更具统计稳健性的结果。此外,通过学习输入缺失的内容,DISK学习数据捕获的有意义的表示,例如,底层操作。这个独立的输入包,可在https://github.com/bozeklab/DISK.git/上获得,适用于跟踪方法的输出(基于标记或无标记),并允许各种类型的下游分析。
{"title":"Deep Imputation for Skeleton data (DISK) for behavioral science","authors":"France Rose, Monika Michaluk, Timon Blindauer, Bogna M. Ignatowska-Jankowska, Liam O’Shaughnessy, Greg J. Stephens, Talmo D. Pereira, Marylka Y. Uusisaari, Katarzyna Bozek","doi":"10.1038/s41592-025-02893-y","DOIUrl":"10.1038/s41592-025-02893-y","url":null,"abstract":"Pose estimation methods and motion capture systems have opened doors to quantitative measurements of animal kinematics. While animal behavior experiments are expensive and complex, tracking errors sometimes make large portions of the experimental data unusable. Here our deep learning method, Deep Imputation for Skeleton data (DISK), uncovers dependencies between keypoints and their dynamics to impute missing tracking data without the help of any manual annotations. We demonstrate the utility and performance of DISK on seven animal skeletons including multi-animal setups. The imputed recordings allow us to detect more episodes of motion, such as steps, and obtain more statistically robust results when comparing these episodes between experimental conditions. In addition, by learning to impute the missing content, DISK learns meaningful representations of the data capturing, for example, underlying actions. This stand-alone imputation package, available at https://github.com/bozeklab/DISK.git/ , is applicable to outputs of tracking methods (marker-based or markerless) and allows for varied types of downstream analysis. Analysis of behavioral data often involves tracking animal keypoints in video and motion capture recordings. DISK imputes missing keypoints, thereby improving downstream analyses.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"23 1","pages":"236-247"},"PeriodicalIF":32.1,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41592-025-02893-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145678223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C-COMPASS: a user-friendly neural network tool profiles cell compartments at protein and lipid levels C-COMPASS:一个用户友好的神经网络工具在蛋白质和脂质水平上描述细胞区室。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-04 DOI: 10.1038/s41592-025-02880-3
Daniel T. Haas, Daniel Weindl, Pamela Kakimoto, Eva-Maria Trautmann, Julia P. Schessner, Xia Mao, Mathias J. Gerl, Maximilian Gerwien, Timo D. Müller, Christian Klose, Xiping Cheng, Jan Hasenauer, Natalie Krahmer
Systematic proteomic organelle profiling methods including protein correlation profiling and LOPIT have advanced our understanding of cellular compartmentalization. To manage the complexity of organelle profiling data, we introduce C-COMPASS, a user-friendly open-source software that employs a neural network-based regression model to predict the spatial cellular distribution of proteins. C-COMPASS handles complex multilocalization patterns and integrates protein abundance to model organelle composition changes across conditions. We apply C-COMPASS to mice with humanized livers to elucidate organelle remodeling during metabolic perturbations. Additionally, by training neural networks with co-generated marker protein profiles, C-COMPASS extends spatial profiling to lipids, overcoming the lack of organelle-specific lipid markers, allowing for determination of localization and tracking of lipid species across different compartments. This provides integrated snapshots of organelle lipid and protein compositions. Overall, C-COMPASS offers an accessible tool for multiomic studies of organelle dynamics without needing advanced computational skills, empowering researchers to explore new questions in lipidomics, proteomics and organelle biology. C-COMPASS is an open-source software designed to predict the spatial cellular distribution of proteins and lipids from cellular organelle profiling using a neural network-based regression model.
包括蛋白质相关分析和LOPIT在内的系统蛋白质组学细胞器分析方法提高了我们对细胞区隔化的理解。为了管理细胞器分析数据的复杂性,我们引入了C-COMPASS,这是一个用户友好的开源软件,它采用基于神经网络的回归模型来预测蛋白质的空间细胞分布。C-COMPASS处理复杂的多定位模式,并整合蛋白质丰度来模拟不同条件下细胞器组成的变化。我们将C-COMPASS应用于人源化肝脏小鼠,以阐明代谢扰动期间的细胞器重塑。此外,通过使用共同生成的标记蛋白谱训练神经网络,C-COMPASS将空间分析扩展到脂质,克服了缺乏细胞器特异性脂质标记的问题,从而确定了脂质在不同区室中的定位和跟踪。这提供了细胞器脂质和蛋白质组成的综合快照。总的来说,C-COMPASS为细胞器动力学的多组学研究提供了一个可访问的工具,无需高级计算技能,使研究人员能够探索脂质组学,蛋白质组学和细胞器生物学的新问题。
{"title":"C-COMPASS: a user-friendly neural network tool profiles cell compartments at protein and lipid levels","authors":"Daniel T. Haas, Daniel Weindl, Pamela Kakimoto, Eva-Maria Trautmann, Julia P. Schessner, Xia Mao, Mathias J. Gerl, Maximilian Gerwien, Timo D. Müller, Christian Klose, Xiping Cheng, Jan Hasenauer, Natalie Krahmer","doi":"10.1038/s41592-025-02880-3","DOIUrl":"10.1038/s41592-025-02880-3","url":null,"abstract":"Systematic proteomic organelle profiling methods including protein correlation profiling and LOPIT have advanced our understanding of cellular compartmentalization. To manage the complexity of organelle profiling data, we introduce C-COMPASS, a user-friendly open-source software that employs a neural network-based regression model to predict the spatial cellular distribution of proteins. C-COMPASS handles complex multilocalization patterns and integrates protein abundance to model organelle composition changes across conditions. We apply C-COMPASS to mice with humanized livers to elucidate organelle remodeling during metabolic perturbations. Additionally, by training neural networks with co-generated marker protein profiles, C-COMPASS extends spatial profiling to lipids, overcoming the lack of organelle-specific lipid markers, allowing for determination of localization and tracking of lipid species across different compartments. This provides integrated snapshots of organelle lipid and protein compositions. Overall, C-COMPASS offers an accessible tool for multiomic studies of organelle dynamics without needing advanced computational skills, empowering researchers to explore new questions in lipidomics, proteomics and organelle biology. C-COMPASS is an open-source software designed to predict the spatial cellular distribution of proteins and lipids from cellular organelle profiling using a neural network-based regression model.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"23 1","pages":"118-130"},"PeriodicalIF":32.1,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41592-025-02880-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145678161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Latent space-based network analysis for brain–behavior linking in neuroimaging 神经成像中脑-行为连接的潜在空间网络分析。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-04 DOI: 10.1038/s41592-025-02896-9
Selena Wang, Xinzhi Zhang, Yunhe Liu, Wanwan Xu, Xinyuan Tian, Yize Zhao
We propose a latent space-based statistical network analysis (LatentSNA) method that implements network science in a generative Bayesian framework, preserves neurologically meaningful brain topology and improves statistical power for imaging biomarker detection. LatentSNA (1) addresses the lack of power and inflated type II errors in current analytic approaches when detecting imaging biomarkers, (2) allows unbiased estimation of the influence of biomarkers on behavioral variants, (3) quantifies uncertainty and evaluates the likelihood of estimated biomarker effects against chance and (4) improves brain–behavior prediction in new samples as well as the clinical utility of neuroimaging findings. LatentSNA is broadly applicable across multiple imaging modalities and outcome measures in developing, aging and transdiagnostic cohorts, totaling 8,003 to 11,861 participants. LatentSNA achieves substantial accuracy gains (averaging 110–150%) and replicability improvements (averaging 153%) over existing approaches in moderate to large datasets. As a result, LatentSNA elucidates how network topology is implicated in brain–behavior relationships. LatentSNA is a method for network analysis in human neuroimaging. It facilitates linking neural activity with behavior and improves biomarker prediction by reducing type II errors.
我们提出了一种基于潜在空间的统计网络分析(LatentSNA)方法,该方法在生成贝叶斯框架中实现了网络科学,保留了神经学上有意义的大脑拓扑,并提高了成像生物标志物检测的统计能力。LatentSNA(1)解决了在检测成像生物标记物时,当前分析方法中功率不足和II型误差膨胀的问题;(2)允许对生物标记物对行为变异的影响进行无偏估计;(3)量化不确定性并评估估计生物标记物对偶然影响的可能性;(4)改善新样本中的大脑行为预测以及神经成像结果的临床应用。LatentSNA广泛适用于发展中、衰老和跨诊断队列的多种成像模式和结果测量,共8,003至11,861名参与者。在中等到大型数据集中,与现有方法相比,LatentSNA实现了显著的准确性提高(平均110-150%)和可复制性提高(平均153%)。因此,LatentSNA阐明了网络拓扑是如何与大脑行为关系相关联的。
{"title":"Latent space-based network analysis for brain–behavior linking in neuroimaging","authors":"Selena Wang, Xinzhi Zhang, Yunhe Liu, Wanwan Xu, Xinyuan Tian, Yize Zhao","doi":"10.1038/s41592-025-02896-9","DOIUrl":"10.1038/s41592-025-02896-9","url":null,"abstract":"We propose a latent space-based statistical network analysis (LatentSNA) method that implements network science in a generative Bayesian framework, preserves neurologically meaningful brain topology and improves statistical power for imaging biomarker detection. LatentSNA (1) addresses the lack of power and inflated type II errors in current analytic approaches when detecting imaging biomarkers, (2) allows unbiased estimation of the influence of biomarkers on behavioral variants, (3) quantifies uncertainty and evaluates the likelihood of estimated biomarker effects against chance and (4) improves brain–behavior prediction in new samples as well as the clinical utility of neuroimaging findings. LatentSNA is broadly applicable across multiple imaging modalities and outcome measures in developing, aging and transdiagnostic cohorts, totaling 8,003 to 11,861 participants. LatentSNA achieves substantial accuracy gains (averaging 110–150%) and replicability improvements (averaging 153%) over existing approaches in moderate to large datasets. As a result, LatentSNA elucidates how network topology is implicated in brain–behavior relationships. LatentSNA is a method for network analysis in human neuroimaging. It facilitates linking neural activity with behavior and improves biomarker prediction by reducing type II errors.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"23 1","pages":"225-235"},"PeriodicalIF":32.1,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145678252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atom-level enzyme active site scaffolding using RFdiffusion2 利用射频扩散技术构建酶活性位点的原子水平
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-03 DOI: 10.1038/s41592-025-02975-x
Woody Ahern, Jason Yim, Doug Tischer, Saman Salike, Seth M. Woodbury, Donghyo Kim, Indrek Kalvet, Yakov Kipnis, Brian Coventry, Han Raut Altae-Tran, Magnus S. Bauer, Regina Barzilay, Tommi S. Jaakkola, Rohith Krishna, David Baker
Designing new enzymes typically begins with idealized arrangements of catalytic functional groups around a reaction transition state, then attempts to generate protein structures that precisely position these groups. Current AI-based methods can create active enzymes but require predefined residue positions and rely on reverse-building residue backbones from side-chain placements, which limits design flexibility. Here we show that a new deep generative model, RoseTTAFold diffusion 2 (RFdiffusion2), overcomes these constraints by designing enzymes directly from functional group geometries without specifying residue order or performing inverse rotamer generation. RFdiffusion2 successfully generates scaffolds for all 41 active sites in a diverse benchmark, compared to 16 using previous methods. We further design enzymes for three distinct catalytic mechanisms and identify active candidates after experimentally testing fewer than 96 sequences in each case. These results highlight the potential of atomic-level generative modeling to create de novo enzymes directly from reaction mechanisms. RFdiffusion2, an extension of the RFdiffusion framework, builds de novo enzyme active sites using atom-level functional group constraints.
设计新酶通常从围绕反应过渡态的催化官能团的理想安排开始,然后试图产生精确定位这些基团的蛋白质结构。目前基于人工智能的方法可以创建活性酶,但需要预定义的残基位置,并依赖于侧链位置的反向构建残基主干,这限制了设计的灵活性。在这里,我们展示了一种新的深度生成模型,RoseTTAFold diffusion2 (RFdiffusion2),通过直接从功能基几何形状设计酶而不指定残基顺序或执行逆旋转体生成来克服这些限制。在不同的基准中,RFdiffusion2成功地为所有41个活性位点生成了支架,而使用以前的方法只能为16个。我们进一步设计了三种不同催化机制的酶,并在每种情况下实验测试少于96个序列后确定了活性候选酶。这些结果突出了原子水平生成模型的潜力,可以直接从反应机制中创建新的酶。
{"title":"Atom-level enzyme active site scaffolding using RFdiffusion2","authors":"Woody Ahern, Jason Yim, Doug Tischer, Saman Salike, Seth M. Woodbury, Donghyo Kim, Indrek Kalvet, Yakov Kipnis, Brian Coventry, Han Raut Altae-Tran, Magnus S. Bauer, Regina Barzilay, Tommi S. Jaakkola, Rohith Krishna, David Baker","doi":"10.1038/s41592-025-02975-x","DOIUrl":"10.1038/s41592-025-02975-x","url":null,"abstract":"Designing new enzymes typically begins with idealized arrangements of catalytic functional groups around a reaction transition state, then attempts to generate protein structures that precisely position these groups. Current AI-based methods can create active enzymes but require predefined residue positions and rely on reverse-building residue backbones from side-chain placements, which limits design flexibility. Here we show that a new deep generative model, RoseTTAFold diffusion 2 (RFdiffusion2), overcomes these constraints by designing enzymes directly from functional group geometries without specifying residue order or performing inverse rotamer generation. RFdiffusion2 successfully generates scaffolds for all 41 active sites in a diverse benchmark, compared to 16 using previous methods. We further design enzymes for three distinct catalytic mechanisms and identify active candidates after experimentally testing fewer than 96 sequences in each case. These results highlight the potential of atomic-level generative modeling to create de novo enzymes directly from reaction mechanisms. RFdiffusion2, an extension of the RFdiffusion framework, builds de novo enzyme active sites using atom-level functional group constraints.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"23 1","pages":"96-105"},"PeriodicalIF":32.1,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41592-025-02975-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145669068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two as one: when scientists run a lab together 二为一:当科学家们一起管理实验室时。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-03 DOI: 10.1038/s41592-025-02938-2
Vivien Marx
Leading a lab is both a venture and an adventure. It’s double that for these researchers.
领导一个实验室既是一种冒险,也是一种冒险。对这些研究人员来说是双倍的。
{"title":"Two as one: when scientists run a lab together","authors":"Vivien Marx","doi":"10.1038/s41592-025-02938-2","DOIUrl":"10.1038/s41592-025-02938-2","url":null,"abstract":"Leading a lab is both a venture and an adventure. It’s double that for these researchers.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 12","pages":"2465-2466"},"PeriodicalIF":32.1,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145669021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular-scale isotropic 3D super-resolution microscopy via interference localization 通过干涉定位的分子尺度各向同性3D超分辨率显微镜。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-02 DOI: 10.1038/s41592-025-02911-z
Shihang Luo  (, ), Xian’ao Zhao  (, ), Yuanyuan Li  (, ), Chunyan Fan  (, ), Ruina Liu  (, ), Ran Gong  (, ), Weixing Li  (, ), Nana Ma  (, ), Zhenghong Yang  (, ), Tao Xu  (, ), Wei Ji  (, ), Lusheng Gu  (, )
Three-dimensional (3D) nanoscale imaging reveals the detailed morphology of subcellular structures; however, conventional single-molecule localization microscopy is constrained by limited axial resolution. Here we introduce ROSE-3D, an interferometric localization approach that enables isotropic 3D super-resolution imaging with uniform performance across the entire depth of field. Compared with conventional astigmatism-based methods, ROSE-3D improves lateral localization precision by 2–6 times and axial precision by 3.5–8 times over a depth of field of approximately 1.2 μm. Leveraging its multicolor and whole-cell imaging capabilities, ROSE-3D resolves, in situ, the nanoscale organization of nuclear lamins and the assemblies of mitochondrial fission-related protein DRP1. These results establish ROSE-3D as a powerful tool for interrogating nanoscale cellular architecture. ROSE-3D is a single-molecule localization microscopy approach that achieves high isotropic resolution via interferometric localization. The approach is capable of whole-cell and multicolor imaging.
三维(3D)纳米级成像揭示了亚细胞结构的详细形态;然而,传统的单分子定位显微镜受限于有限的轴向分辨率。在这里,我们介绍了ROSE-3D,这是一种干涉定位方法,可以实现各向同性3D超分辨率成像,在整个景深范围内具有均匀的性能。与传统的基于像散的方法相比,在约1.2 μm的景深范围内,ROSE-3D的横向定位精度提高了2-6倍,轴向定位精度提高了3.5-8倍。利用其多色和全细胞成像能力,ROSE-3D可以原位解析核层的纳米级组织和线粒体分裂相关蛋白DRP1的组装。这些结果使ROSE-3D成为研究纳米级细胞结构的强大工具。
{"title":"Molecular-scale isotropic 3D super-resolution microscopy via interference localization","authors":"Shihang Luo \u0000 (, ), Xian’ao Zhao \u0000 (, ), Yuanyuan Li \u0000 (, ), Chunyan Fan \u0000 (, ), Ruina Liu \u0000 (, ), Ran Gong \u0000 (, ), Weixing Li \u0000 (, ), Nana Ma \u0000 (, ), Zhenghong Yang \u0000 (, ), Tao Xu \u0000 (, ), Wei Ji \u0000 (, ), Lusheng Gu \u0000 (, )","doi":"10.1038/s41592-025-02911-z","DOIUrl":"10.1038/s41592-025-02911-z","url":null,"abstract":"Three-dimensional (3D) nanoscale imaging reveals the detailed morphology of subcellular structures; however, conventional single-molecule localization microscopy is constrained by limited axial resolution. Here we introduce ROSE-3D, an interferometric localization approach that enables isotropic 3D super-resolution imaging with uniform performance across the entire depth of field. Compared with conventional astigmatism-based methods, ROSE-3D improves lateral localization precision by 2–6 times and axial precision by 3.5–8 times over a depth of field of approximately 1.2 μm. Leveraging its multicolor and whole-cell imaging capabilities, ROSE-3D resolves, in situ, the nanoscale organization of nuclear lamins and the assemblies of mitochondrial fission-related protein DRP1. These results establish ROSE-3D as a powerful tool for interrogating nanoscale cellular architecture. ROSE-3D is a single-molecule localization microscopy approach that achieves high isotropic resolution via interferometric localization. The approach is capable of whole-cell and multicolor imaging.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"23 1","pages":"183-192"},"PeriodicalIF":32.1,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145661543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Methods
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1