首页 > 最新文献

Nature Methods最新文献

英文 中文
Analyzing submicron spatial transcriptomics data at their original resolution 以原始分辨率分析亚微米空间转录组学数据
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-13 DOI: 10.1038/s41592-024-02416-1
FICTURE software addresses a critical challenge in spatial omics analysis: making high-resolution inference with only a few molecules per square micron. This tool fully realizes the potential of contemporary spatial platforms by learning latent spatial factors from the whole transcriptome while preserving the resolution of each technology at scale.
FICTURE 软件解决了空间 omics 分析中的一个关键难题:在每平方微米只有几个分子的情况下进行高分辨率推断。该工具从整个转录组中学习潜在的空间因子,同时保留了每种技术的规模分辨率,从而充分发挥了当代空间平台的潜力。
{"title":"Analyzing submicron spatial transcriptomics data at their original resolution","authors":"","doi":"10.1038/s41592-024-02416-1","DOIUrl":"10.1038/s41592-024-02416-1","url":null,"abstract":"FICTURE software addresses a critical challenge in spatial omics analysis: making high-resolution inference with only a few molecules per square micron. This tool fully realizes the potential of contemporary spatial platforms by learning latent spatial factors from the whole transcriptome while preserving the resolution of each technology at scale.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research ethics matter 研究伦理问题
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-13 DOI: 10.1038/s41592-024-02425-0
All life sciences research is potentially subject to ethical considerations. Institutions should support collaborations with professional ethicists and philosophers to help life scientists navigate ethical crossroads.
所有生命科学研究都有可能受到伦理因素的影响。各研究机构应支持与专业伦理学家和哲学家合作,帮助生命科学家在伦理十字路口前行。
{"title":"Research ethics matter","authors":"","doi":"10.1038/s41592-024-02425-0","DOIUrl":"10.1038/s41592-024-02425-0","url":null,"abstract":"All life sciences research is potentially subject to ethical considerations. Institutions should support collaborations with professional ethicists and philosophers to help life scientists navigate ethical crossroads.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41592-024-02425-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FICTURE: scalable segmentation-free analysis of submicron-resolution spatial transcriptomics FICTURE:亚微米分辨率空间转录组学的可扩展无分割分析
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-12 DOI: 10.1038/s41592-024-02415-2
Yichen Si, ChangHee Lee, Yongha Hwang, Jeong H. Yun, Weiqiu Cheng, Chun-Seok Cho, Miguel Quiros, Asma Nusrat, Weizhou Zhang, Goo Jun, Sebastian Zöllner, Jun Hee Lee, Hyun Min Kang
Spatial transcriptomics (ST) technologies have advanced to enable transcriptome-wide gene expression analysis at submicron resolution over large areas. However, analysis of high-resolution ST is often challenged by complex tissue structure, where existing cell segmentation methods struggle due to the irregular cell sizes and shapes, and by the absence of segmentation-free methods scalable to whole-transcriptome analysis. Here we present FICTURE (Factor Inference of Cartographic Transcriptome at Ultra-high REsolution), a segmentation-free spatial factorization method that can handle transcriptome-wide data labeled with billions of submicron-resolution spatial coordinates and is compatible with both sequencing-based and imaging-based ST data. FICTURE uses the multilayered Dirichlet model for stochastic variational inference of pixel-level spatial factors, and is orders of magnitude more efficient than existing methods. FICTURE reveals the microscopic ST architecture for challenging tissues, such as vascular, fibrotic, muscular and lipid-laden areas in real data where previous methods failed. FICTURE’s cross-platform generality, scalability and precision make it a powerful tool for exploring high-resolution ST. FICTURE is a segmentation-free approach for identifying tissue architecture in spatial transcriptomics data. FICTURE is compatible with both imaging-based and sequencing-based methods and is uniquely suited for handling the largest available datasets.
空间转录组学(ST)技术已发展到能以亚微米分辨率对大面积区域进行全转录组基因表达分析。然而,高分辨率 ST 的分析往往受到复杂组织结构的挑战,现有的细胞分割方法因细胞大小和形状不规则而难以实现,而且缺乏可扩展到全转录组分析的无分割方法。在这里,我们提出了 FICTURE(超高分辨制图转录组因式推断),这是一种免分割空间因式分解方法,可处理标有数十亿亚微米分辨率空间坐标的全转录组数据,并与基于测序和成像的 ST 数据兼容。FICTURE 使用多层 Dirichlet 模型对像素级空间因子进行随机变量推断,其效率比现有方法高出几个数量级。FICTURE 可以揭示具有挑战性的组织的微观 ST 结构,如真实数据中的血管、纤维化、肌肉和脂质沉积区域,而以往的方法都无法做到这一点。FICTURE 的跨平台通用性、可扩展性和精确性使其成为探索高分辨率 ST 的强大工具。
{"title":"FICTURE: scalable segmentation-free analysis of submicron-resolution spatial transcriptomics","authors":"Yichen Si, ChangHee Lee, Yongha Hwang, Jeong H. Yun, Weiqiu Cheng, Chun-Seok Cho, Miguel Quiros, Asma Nusrat, Weizhou Zhang, Goo Jun, Sebastian Zöllner, Jun Hee Lee, Hyun Min Kang","doi":"10.1038/s41592-024-02415-2","DOIUrl":"10.1038/s41592-024-02415-2","url":null,"abstract":"Spatial transcriptomics (ST) technologies have advanced to enable transcriptome-wide gene expression analysis at submicron resolution over large areas. However, analysis of high-resolution ST is often challenged by complex tissue structure, where existing cell segmentation methods struggle due to the irregular cell sizes and shapes, and by the absence of segmentation-free methods scalable to whole-transcriptome analysis. Here we present FICTURE (Factor Inference of Cartographic Transcriptome at Ultra-high REsolution), a segmentation-free spatial factorization method that can handle transcriptome-wide data labeled with billions of submicron-resolution spatial coordinates and is compatible with both sequencing-based and imaging-based ST data. FICTURE uses the multilayered Dirichlet model for stochastic variational inference of pixel-level spatial factors, and is orders of magnitude more efficient than existing methods. FICTURE reveals the microscopic ST architecture for challenging tissues, such as vascular, fibrotic, muscular and lipid-laden areas in real data where previous methods failed. FICTURE’s cross-platform generality, scalability and precision make it a powerful tool for exploring high-resolution ST. FICTURE is a segmentation-free approach for identifying tissue architecture in spatial transcriptomics data. FICTURE is compatible with both imaging-based and sequencing-based methods and is uniquely suited for handling the largest available datasets.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigate: an open-source platform for smart light-sheet microscopy 导航:用于智能光片显微镜的开源平台
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-11 DOI: 10.1038/s41592-024-02413-4
Zach Marin, Xiaoding Wang, Dax W. Collison, Conor McFadden, Jinlong Lin, Hazel M. Borges, Bingying Chen, Dushyant Mehra, Qionghua Shen, Seweryn Gałecki, Stephan Daetwyler, Steven J. Sheppard, Phu Thien, Baylee A. Porter, Suzanne D. Conzen, Douglas P. Shepherd, Reto Fiolka, Kevin M. Dean
{"title":"Navigate: an open-source platform for smart light-sheet microscopy","authors":"Zach Marin, Xiaoding Wang, Dax W. Collison, Conor McFadden, Jinlong Lin, Hazel M. Borges, Bingying Chen, Dushyant Mehra, Qionghua Shen, Seweryn Gałecki, Stephan Daetwyler, Steven J. Sheppard, Phu Thien, Baylee A. Porter, Suzanne D. Conzen, Douglas P. Shepherd, Reto Fiolka, Kevin M. Dean","doi":"10.1038/s41592-024-02413-4","DOIUrl":"10.1038/s41592-024-02413-4","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-inspired learning for denoising live-cell super-resolution microscopy 用于活细胞超分辨率显微镜去噪的自我启发学习
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-11 DOI: 10.1038/s41592-024-02400-9
Liying Qu, Shiqun Zhao, Yuanyuan Huang, Xianxin Ye, Kunhao Wang, Yuzhen Liu, Xianming Liu, Heng Mao, Guangwei Hu, Wei Chen, Changliang Guo, Jiaye He, Jiubin Tan, Haoyu Li, Liangyi Chen, Weisong Zhao
Every collected photon is precious in live-cell super-resolution (SR) microscopy. Here, we describe a data-efficient, deep learning-based denoising solution to improve diverse SR imaging modalities. The method, SN2N, is a Self-inspired Noise2Noise module with self-supervised data generation and self-constrained learning process. SN2N is fully competitive with supervised learning methods and circumvents the need for large training set and clean ground truth, requiring only a single noisy frame for training. We show that SN2N improves photon efficiency by one-to-two orders of magnitude and is compatible with multiple imaging modalities for volumetric, multicolor, time-lapse SR microscopy. We further integrated SN2N into different SR reconstruction algorithms to effectively mitigate image artifacts. We anticipate SN2N will enable improved live-SR imaging and inspire further advances. SN2N, a Self-inspired Noise2Noise module, offers a versatile solution for volumetric time-lapse super-resolution imaging of live cells. SN2N uses self-supervised data generation and self-constrained learning for training with a single noisy frame.
在活细胞超分辨率(SR)显微镜中,每一个收集到的光子都弥足珍贵。在此,我们介绍一种数据高效、基于深度学习的去噪解决方案,以改进各种 SR 成像模式。该方法名为 SN2N,是一种自启发 Noise2Noise 模块,具有自监督数据生成和自约束学习过程。SN2N 与监督学习方法相比完全具有竞争力,而且无需大量训练集和干净的地面实况,只需单个噪声帧进行训练。我们的研究表明,SN2N 可将光子效率提高一到两个数量级,并可与多种成像模式兼容,用于体积、多色、延时 SR 显微镜。我们进一步将 SN2N 集成到不同的 SR 重建算法中,以有效减少图像伪影。我们预计,SN2N 将改善实时 SR 成像,并推动进一步的发展。
{"title":"Self-inspired learning for denoising live-cell super-resolution microscopy","authors":"Liying Qu, Shiqun Zhao, Yuanyuan Huang, Xianxin Ye, Kunhao Wang, Yuzhen Liu, Xianming Liu, Heng Mao, Guangwei Hu, Wei Chen, Changliang Guo, Jiaye He, Jiubin Tan, Haoyu Li, Liangyi Chen, Weisong Zhao","doi":"10.1038/s41592-024-02400-9","DOIUrl":"10.1038/s41592-024-02400-9","url":null,"abstract":"Every collected photon is precious in live-cell super-resolution (SR) microscopy. Here, we describe a data-efficient, deep learning-based denoising solution to improve diverse SR imaging modalities. The method, SN2N, is a Self-inspired Noise2Noise module with self-supervised data generation and self-constrained learning process. SN2N is fully competitive with supervised learning methods and circumvents the need for large training set and clean ground truth, requiring only a single noisy frame for training. We show that SN2N improves photon efficiency by one-to-two orders of magnitude and is compatible with multiple imaging modalities for volumetric, multicolor, time-lapse SR microscopy. We further integrated SN2N into different SR reconstruction algorithms to effectively mitigate image artifacts. We anticipate SN2N will enable improved live-SR imaging and inspire further advances. SN2N, a Self-inspired Noise2Noise module, offers a versatile solution for volumetric time-lapse super-resolution imaging of live cells. SN2N uses self-supervised data generation and self-constrained learning for training with a single noisy frame.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Personalized pangenome references 个性化泛基因组参考文献
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-11 DOI: 10.1038/s41592-024-02407-2
Jouni Sirén, Parsa Eskandar, Matteo Tommaso Ungaro, Glenn Hickey, Jordan M. Eizenga, Adam M. Novak, Xian Chang, Pi-Chuan Chang, Mikhail Kolmogorov, Andrew Carroll, Jean Monlong, Benedict Paten
Pangenomes reduce reference bias by representing genetic diversity better than a single reference sequence. Yet when comparing a sample to a pangenome, variants in the pangenome that are not part of the sample can be misleading, for example, causing false read mappings. These irrelevant variants are generally rarer in terms of allele frequency, and have previously been dealt with by filtering rare variants. However, this blunt heuristic both fails to remove some irrelevant variants and removes many relevant variants. We propose a new approach that imputes a personalized pangenome subgraph by sampling local haplotypes according to k-mer counts in the reads. We implement the approach in the vg toolkit ( https://github.com/vgteam/vg ) for the Giraffe short-read aligner and compare its accuracy to state-of-the-art methods using human pangenome graphs from the Human Pangenome Reference Consortium. This reduces small variant genotyping errors by four times relative to the Genome Analysis Toolkit and makes short-read structural variant genotyping of known variants competitive with long-read variant discovery methods. This work introduces a k-mer-based approach to customizing a pangenome reference, making it more relevant to a new sample of interest. This method enhances the accuracy of genotyping small variants and large structural variants.
与单一参考序列相比,庞基因组能更好地代表遗传多样性,从而减少参考偏差。然而,在将样本与庞基因组进行比较时,庞基因组中不属于样本的变异可能会产生误导,例如造成错误的读数映射。就等位基因频率而言,这些不相关的变异通常比较罕见,以前的处理方法是过滤罕见变异。然而,这种笨拙的启发式方法既不能去除一些无关变异,也会去除许多相关变异。我们提出了一种新方法,通过根据读数中的 k-mer 计数对局部单倍型进行采样,从而推算出个性化的 pangenome 子图。我们在长颈鹿短读数比对仪的 vg 工具包 (https://github.com/vgteam/vg) 中实现了这种方法,并使用人类泛基因组参考联盟(Human Pangenome Reference Consortium)的人类泛基因组图谱将其准确性与最先进的方法进行了比较。与基因组分析工具包相比,这将小变异基因分型误差降低了四倍,并使已知变异的短读数结构变异基因分型与长读数变异发现方法具有竞争力。
{"title":"Personalized pangenome references","authors":"Jouni Sirén, Parsa Eskandar, Matteo Tommaso Ungaro, Glenn Hickey, Jordan M. Eizenga, Adam M. Novak, Xian Chang, Pi-Chuan Chang, Mikhail Kolmogorov, Andrew Carroll, Jean Monlong, Benedict Paten","doi":"10.1038/s41592-024-02407-2","DOIUrl":"10.1038/s41592-024-02407-2","url":null,"abstract":"Pangenomes reduce reference bias by representing genetic diversity better than a single reference sequence. Yet when comparing a sample to a pangenome, variants in the pangenome that are not part of the sample can be misleading, for example, causing false read mappings. These irrelevant variants are generally rarer in terms of allele frequency, and have previously been dealt with by filtering rare variants. However, this blunt heuristic both fails to remove some irrelevant variants and removes many relevant variants. We propose a new approach that imputes a personalized pangenome subgraph by sampling local haplotypes according to k-mer counts in the reads. We implement the approach in the vg toolkit ( https://github.com/vgteam/vg ) for the Giraffe short-read aligner and compare its accuracy to state-of-the-art methods using human pangenome graphs from the Human Pangenome Reference Consortium. This reduces small variant genotyping errors by four times relative to the Genome Analysis Toolkit and makes short-read structural variant genotyping of known variants competitive with long-read variant discovery methods. This work introduces a k-mer-based approach to customizing a pangenome reference, making it more relevant to a new sample of interest. This method enhances the accuracy of genotyping small variants and large structural variants.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LLMs predict protein phases LLM 预测蛋白质阶段
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-10 DOI: 10.1038/s41592-024-02421-4
Arunima Singh
{"title":"LLMs predict protein phases","authors":"Arunima Singh","doi":"10.1038/s41592-024-02421-4","DOIUrl":"10.1038/s41592-024-02421-4","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-invasive metabolic imaging of brown adipose tissue 棕色脂肪组织的无创代谢成像
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-10 DOI: 10.1038/s41592-024-02422-3
Jean Nakhle
{"title":"Non-invasive metabolic imaging of brown adipose tissue","authors":"Jean Nakhle","doi":"10.1038/s41592-024-02422-3","DOIUrl":"10.1038/s41592-024-02422-3","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ECLiPSE: a versatile classification technique for structural and morphological analysis of 2D and 3D single-molecule localization microscopy data ECLiPSE:用于二维和三维单分子定位显微镜数据的结构和形态分析的多功能分类技术
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-10 DOI: 10.1038/s41592-024-02414-3
Siewert Hugelier, Qing Tang, Hannah Hyun-Sook Kim, Melina Theoni Gyparaki, Charles Bond, Adriana Naomi Santiago-Ruiz, Sílvia Porta, Melike Lakadamyali
Single-molecule localization microscopy (SMLM) has gained widespread use for visualizing the morphology of subcellular organelles and structures with nanoscale spatial resolution. However, analysis tools for automatically quantifying and classifying SMLM images have lagged behind. Here we introduce Enhanced Classification of Localized Point clouds by Shape Extraction (ECLiPSE), an automated machine learning analysis pipeline specifically designed to classify cellular structures captured through two-dimensional or three-dimensional SMLM. ECLiPSE leverages a comprehensive set of shape descriptors, the majority of which are directly extracted from the localizations to minimize bias during the characterization of individual structures. ECLiPSE has been validated using both unsupervised and supervised classification on datasets, including various cellular structures, achieving near-perfect accuracy. We apply two-dimensional ECLiPSE to classify morphologically distinct protein aggregates relevant for neurodegenerative diseases. Additionally, we employ three-dimensional ECLiPSE to identify relevant biological differences between healthy and depolarized mitochondria. ECLiPSE will enhance the way we study cellular structures across various biological contexts. Enhanced Classification of Localized Point clouds by Shape Extraction (ECLiPSE) is a robust feature extraction and classification pipeline for diverse and heterogeneous structures in both 2D and 3D single-molecule localization microscopy data.
单分子定位显微镜(SMLM)已被广泛应用于以纳米级空间分辨率观察亚细胞器和结构的形态。然而,用于自动量化和分类 SMLM 图像的分析工具却相对落后。在此,我们介绍通过形状提取增强局部点云分类(ECLiPSE),这是一种自动机器学习分析管道,专门用于对通过二维或三维 SMLM 捕捉到的细胞结构进行分类。ECLiPSE 利用一套全面的形状描述符,其中大部分直接从定位中提取,以尽量减少单个结构表征过程中的偏差。ECLiPSE 已在包括各种细胞结构在内的数据集上进行了无监督和有监督分类验证,达到了近乎完美的准确性。我们应用二维 ECLiPSE 对与神经退行性疾病相关的形态各异的蛋白质聚集体进行分类。此外,我们还利用三维 ECLiPSE 来识别健康线粒体和去极化线粒体之间的相关生物学差异。ECLiPSE 将改进我们在各种生物背景下研究细胞结构的方法。
{"title":"ECLiPSE: a versatile classification technique for structural and morphological analysis of 2D and 3D single-molecule localization microscopy data","authors":"Siewert Hugelier, Qing Tang, Hannah Hyun-Sook Kim, Melina Theoni Gyparaki, Charles Bond, Adriana Naomi Santiago-Ruiz, Sílvia Porta, Melike Lakadamyali","doi":"10.1038/s41592-024-02414-3","DOIUrl":"10.1038/s41592-024-02414-3","url":null,"abstract":"Single-molecule localization microscopy (SMLM) has gained widespread use for visualizing the morphology of subcellular organelles and structures with nanoscale spatial resolution. However, analysis tools for automatically quantifying and classifying SMLM images have lagged behind. Here we introduce Enhanced Classification of Localized Point clouds by Shape Extraction (ECLiPSE), an automated machine learning analysis pipeline specifically designed to classify cellular structures captured through two-dimensional or three-dimensional SMLM. ECLiPSE leverages a comprehensive set of shape descriptors, the majority of which are directly extracted from the localizations to minimize bias during the characterization of individual structures. ECLiPSE has been validated using both unsupervised and supervised classification on datasets, including various cellular structures, achieving near-perfect accuracy. We apply two-dimensional ECLiPSE to classify morphologically distinct protein aggregates relevant for neurodegenerative diseases. Additionally, we employ three-dimensional ECLiPSE to identify relevant biological differences between healthy and depolarized mitochondria. ECLiPSE will enhance the way we study cellular structures across various biological contexts. Enhanced Classification of Localized Point clouds by Shape Extraction (ECLiPSE) is a robust feature extraction and classification pipeline for diverse and heterogeneous structures in both 2D and 3D single-molecule localization microscopy data.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41592-024-02414-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biocomputation using tristate buffers 使用三态缓冲区进行生物计算
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-10 DOI: 10.1038/s41592-024-02423-2
Lin Tang
{"title":"Biocomputation using tristate buffers","authors":"Lin Tang","doi":"10.1038/s41592-024-02423-2","DOIUrl":"10.1038/s41592-024-02423-2","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Methods
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1