Pub Date : 2025-10-24DOI: 10.1038/s41563-025-02385-6
Yanfu Ma, Shuhui Liu, Jianing Mao, Mingzi Sun, Ke Shi, Wenyi Li, Wantong Zhao, Jieqiong Shan, Yang Zhao, Zheng Jiang, Riguang Zhang, Rui Gao, Wei Liu, Bolong Huang, G. Q. Max Lu, Jian Liu, Limin Wu
Dual-atom catalysts (DACs) exhibit high catalytic activity and metal utilization, alongside structural diversity with a wide range of catalytic site configurations. These features position DACs as promising candidates for energy conversion technologies. However, the precise control over atomic dispersion, pairing ratios and interatomic distances—which critically influence their multifunctional catalytic behavior—remains a formidable challenge. Here we developed a ligand-restricted strategy for the precise synthesis of highly paired DACs with tunable atomic distances. This was accomplished by coordinating diamine ligands with dual-metal precursors, restricting the pairing and relative positions of two metal atoms on two-dimensional graphitic carbon nitride. The atomic pairing ratio exceeded 82%, and the atomic pairing distance was controlled by the chain length of the diamine ligand. As a demonstration, the paired Pt1-Au1 DACs exhibited almost threefold enhancement in catalytic activity for nitrate reduction to ammonia compared with their unpaired counterparts. This work introduces an effective strategy for the atomic-scale fabrication of complex catalysts as well as provides valuable insights into nanoscale reaction mechanisms in heterogeneous catalysis. A ligand-restricted strategy is developed to realize the synthesis of dual-atom catalysts with high pairing ratio and tunable atomic distances.
{"title":"Ligand-restricted synthesis of highly paired dual-atom catalysts","authors":"Yanfu Ma, Shuhui Liu, Jianing Mao, Mingzi Sun, Ke Shi, Wenyi Li, Wantong Zhao, Jieqiong Shan, Yang Zhao, Zheng Jiang, Riguang Zhang, Rui Gao, Wei Liu, Bolong Huang, G. Q. Max Lu, Jian Liu, Limin Wu","doi":"10.1038/s41563-025-02385-6","DOIUrl":"10.1038/s41563-025-02385-6","url":null,"abstract":"Dual-atom catalysts (DACs) exhibit high catalytic activity and metal utilization, alongside structural diversity with a wide range of catalytic site configurations. These features position DACs as promising candidates for energy conversion technologies. However, the precise control over atomic dispersion, pairing ratios and interatomic distances—which critically influence their multifunctional catalytic behavior—remains a formidable challenge. Here we developed a ligand-restricted strategy for the precise synthesis of highly paired DACs with tunable atomic distances. This was accomplished by coordinating diamine ligands with dual-metal precursors, restricting the pairing and relative positions of two metal atoms on two-dimensional graphitic carbon nitride. The atomic pairing ratio exceeded 82%, and the atomic pairing distance was controlled by the chain length of the diamine ligand. As a demonstration, the paired Pt1-Au1 DACs exhibited almost threefold enhancement in catalytic activity for nitrate reduction to ammonia compared with their unpaired counterparts. This work introduces an effective strategy for the atomic-scale fabrication of complex catalysts as well as provides valuable insights into nanoscale reaction mechanisms in heterogeneous catalysis. A ligand-restricted strategy is developed to realize the synthesis of dual-atom catalysts with high pairing ratio and tunable atomic distances.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"25 1","pages":"80-90"},"PeriodicalIF":38.5,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145357969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-22DOI: 10.1038/s41563-025-02380-x
S. J. Gomez Alvarado, J. R. Chamorro, D. Rout, J. Hielscher, Sarah Schwarz, Caeli Benyacko, M. B. Stone, V. Ovidiu Garlea, A. R. Jackson, G. Pokharel, R. Gomez, B. R. Ortiz, Suchismita Sarker, L. Kautzsch, L. C. Gallington, R. Seshadri, Stephen D. Wilson
Frustration of long-range order via lattice geometry amplifies fluctuations and generates ground states that are highly sensitive to perturbations. Traditionally, geometric frustration is used to engineer unconventional magnetic states; however, the charge degree of freedom and bond order can be similarly frustrated. Finding materials that host both frustrated magnetic and bond networks holds promise for engineering structural and magnetic states with the potential of coupling to one another via either magnetic or strain fields. Here we identify an unusual instance of this coexistence in the triangular lattice antiferromagnets LnCd3P3 (Ln = lanthanides). These compounds feature two-dimensional planes of unique trigonal planar CdP3 units with an underlying bond instability that is frustrated via emergent kagome ice correlations. This bond instability is interleaved in between layers of frustrated magnetic moments. Our results establish LnCd3P3 as a rare materials class in which frustrated magnetism is embedded within a dopable semiconductor with a frustrated bond order instability. The coexistence of frustrated magnetism and bond order is demonstrated in a family of antiferromagnets. Layers of dual frustrated orders are interleaved in the same crystal lattice, which presents an exciting possibility for engineering new responses.
{"title":"Interleaved bond frustration in a triangular lattice antiferromagnet","authors":"S. J. Gomez Alvarado, J. R. Chamorro, D. Rout, J. Hielscher, Sarah Schwarz, Caeli Benyacko, M. B. Stone, V. Ovidiu Garlea, A. R. Jackson, G. Pokharel, R. Gomez, B. R. Ortiz, Suchismita Sarker, L. Kautzsch, L. C. Gallington, R. Seshadri, Stephen D. Wilson","doi":"10.1038/s41563-025-02380-x","DOIUrl":"10.1038/s41563-025-02380-x","url":null,"abstract":"Frustration of long-range order via lattice geometry amplifies fluctuations and generates ground states that are highly sensitive to perturbations. Traditionally, geometric frustration is used to engineer unconventional magnetic states; however, the charge degree of freedom and bond order can be similarly frustrated. Finding materials that host both frustrated magnetic and bond networks holds promise for engineering structural and magnetic states with the potential of coupling to one another via either magnetic or strain fields. Here we identify an unusual instance of this coexistence in the triangular lattice antiferromagnets LnCd3P3 (Ln = lanthanides). These compounds feature two-dimensional planes of unique trigonal planar CdP3 units with an underlying bond instability that is frustrated via emergent kagome ice correlations. This bond instability is interleaved in between layers of frustrated magnetic moments. Our results establish LnCd3P3 as a rare materials class in which frustrated magnetism is embedded within a dopable semiconductor with a frustrated bond order instability. The coexistence of frustrated magnetism and bond order is demonstrated in a family of antiferromagnets. Layers of dual frustrated orders are interleaved in the same crystal lattice, which presents an exciting possibility for engineering new responses.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"25 1","pages":"65-72"},"PeriodicalIF":38.5,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145339106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Efficient wide-bandgap perovskite solar cells have pushed tandem efficiencies to 34.9%, reinforcing their promise for next-generation photovoltaics. However, their commercial adoption is hindered by stability issues of wide-bandgap perovskites, especially under high-temperature maximum power point tracking conditions. Here we report the stabilization of ~1.7-eV wide-bandgap perovskites via intermediate phase evolution, enabling a self-guided crystal-growth mode. A CsI2Br intermediate phase forms during early stage deposition, directing the oriented growth of polycrystalline films with unique texturing. Atomic-scale scanning transmission electron microscopy reveals that the CsI2Br ( 1 2 ¯ 3 ) facet, with a 2.9-Å interplanar spacing, matches the perovskite (200) facet, guiding coherent {100} growth. This results in enhanced crystallinity, with a 2-order-magnitude increase in the (100) diffraction intensity and a reduced full-width at half-maximum from 0.249° to 0.148°, compared with solution-processed films. The resulting solar cells exhibit outstanding thermal and operational stability, maintaining performance under maximum power point tracking for over 3,000 h at room temperature and over 500 h at 110 °C, with a projected lifetime of ~70,000 h. With 21.37% power conversion efficiency and >84% fill factor, this work presents a compelling route towards stable, high-efficiency tandem photovoltaics.
{"title":"Intermediate phase evolution for stable and oriented evaporated wide-bandgap perovskite solar cells.","authors":"Zijing Dong,Jingcong Hu,Xiao Guo,Zhuojie Shi,Haijie Chen,Yunluo Wang,Ran Luo,Julian A Steele,Zachary Degnan,Eduardo Solano,Qilin Zhou,Nikhil Kalasariya,Nengxu Li,Tao Wang,Jinxi Chen,Ling Kai Lee,Yuduan Wang,Jia Li,Martin Stolterfoht,Manling Sui,Yue Lu,Yi Hou","doi":"10.1038/s41563-025-02375-8","DOIUrl":"https://doi.org/10.1038/s41563-025-02375-8","url":null,"abstract":"Efficient wide-bandgap perovskite solar cells have pushed tandem efficiencies to 34.9%, reinforcing their promise for next-generation photovoltaics. However, their commercial adoption is hindered by stability issues of wide-bandgap perovskites, especially under high-temperature maximum power point tracking conditions. Here we report the stabilization of ~1.7-eV wide-bandgap perovskites via intermediate phase evolution, enabling a self-guided crystal-growth mode. A CsI2Br intermediate phase forms during early stage deposition, directing the oriented growth of polycrystalline films with unique texturing. Atomic-scale scanning transmission electron microscopy reveals that the CsI2Br ( 1 2 ¯ 3 ) facet, with a 2.9-Å interplanar spacing, matches the perovskite (200) facet, guiding coherent {100} growth. This results in enhanced crystallinity, with a 2-order-magnitude increase in the (100) diffraction intensity and a reduced full-width at half-maximum from 0.249° to 0.148°, compared with solution-processed films. The resulting solar cells exhibit outstanding thermal and operational stability, maintaining performance under maximum power point tracking for over 3,000 h at room temperature and over 500 h at 110 °C, with a projected lifetime of ~70,000 h. With 21.37% power conversion efficiency and >84% fill factor, this work presents a compelling route towards stable, high-efficiency tandem photovoltaics.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"200 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145339105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-22DOI: 10.1038/s41563-025-02389-2
Yang Li, Zhong You
Ribbon-based morphing structures form multistable shape morphologies, enabling the design of soft machines that merge simple fabrication with dynamic and versatile motion.
基于带状的变形结构形成多稳定的形状形态,使软机器的设计能够将简单的制造与动态和多用途运动相结合。
{"title":"Multiple shape transformations from simple ribbons","authors":"Yang Li, Zhong You","doi":"10.1038/s41563-025-02389-2","DOIUrl":"10.1038/s41563-025-02389-2","url":null,"abstract":"Ribbon-based morphing structures form multistable shape morphologies, enabling the design of soft machines that merge simple fabrication with dynamic and versatile motion.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"24 11","pages":"1679-1681"},"PeriodicalIF":38.5,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145339107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-20DOI: 10.1038/s41563-025-02369-6
German Sastre
A computer algorithm discovers all valid combinations of zeolite pairs that form intergrowths and correctly predicts their experimental feasibility.
计算机算法发现所有形成共生的沸石对的有效组合,并正确预测其实验可行性。
{"title":"Growing together","authors":"German Sastre","doi":"10.1038/s41563-025-02369-6","DOIUrl":"10.1038/s41563-025-02369-6","url":null,"abstract":"A computer algorithm discovers all valid combinations of zeolite pairs that form intergrowths and correctly predicts their experimental feasibility.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"24 12","pages":"1875-1876"},"PeriodicalIF":38.5,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145337276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-20DOI: 10.1038/s41563-025-02377-6
Kota Oishi, Koki Muraoka, Satoko Toyama, Takeshi Iwata, Takehito Seki, Naoya Shibata, Kenta Iyoki, Toru Wakihara, Tatsuya Okubo, Akira Nakayama
Zeolites are a class of porous crystalline silicate-based materials with applications such as catalysis and separation. Zeolite intergrowths can have superior performance compared with conventional single-phase zeolites in these applications. This study develops a computational workflow to evaluate ~1.03 trillion atomistic structures to identify promising zeolite intergrowths through geometrical analysis and atomistic simulations. We find that interfacial energy is an excellent descriptor to distinguish hydrothermally synthesized zeolite intergrowths from the others, showing almost-perfect classification performance (area under the curve of 0.995). Computational screening workflow saves 100% of hydrothermally synthesized zeolite pairs and successfully rejects 99.3% of hypothetical pairs. Network analyses reveal that hypothetical pairs comparable to experimentally proven ones show substantial topological and chemical similarities, although such information is not directly used in the screening workflow. One of the hypothetical candidates that passed the criteria is experimentally realized by direct and seed-assisted hydrothermal syntheses, thereby broadening the applicable scope of zeolite intergrowths to zincosilicates with three and nine rings. Determining the feasibility of intergrowths between zeolites is investigated using high-throughput atomistic simulations and experimental verification. Interfacial energy is an effective descriptor for identifying the feasibility of zeolite intergrowths and a zincosilicate zeolite intergrowth with three and nine rings is realized by hydrothermal syntheses.
{"title":"Drawing boundaries between feasible and unfeasible zeolite intergrowths using high-throughput computational screening with synthesis validation","authors":"Kota Oishi, Koki Muraoka, Satoko Toyama, Takeshi Iwata, Takehito Seki, Naoya Shibata, Kenta Iyoki, Toru Wakihara, Tatsuya Okubo, Akira Nakayama","doi":"10.1038/s41563-025-02377-6","DOIUrl":"10.1038/s41563-025-02377-6","url":null,"abstract":"Zeolites are a class of porous crystalline silicate-based materials with applications such as catalysis and separation. Zeolite intergrowths can have superior performance compared with conventional single-phase zeolites in these applications. This study develops a computational workflow to evaluate ~1.03 trillion atomistic structures to identify promising zeolite intergrowths through geometrical analysis and atomistic simulations. We find that interfacial energy is an excellent descriptor to distinguish hydrothermally synthesized zeolite intergrowths from the others, showing almost-perfect classification performance (area under the curve of 0.995). Computational screening workflow saves 100% of hydrothermally synthesized zeolite pairs and successfully rejects 99.3% of hypothetical pairs. Network analyses reveal that hypothetical pairs comparable to experimentally proven ones show substantial topological and chemical similarities, although such information is not directly used in the screening workflow. One of the hypothetical candidates that passed the criteria is experimentally realized by direct and seed-assisted hydrothermal syntheses, thereby broadening the applicable scope of zeolite intergrowths to zincosilicates with three and nine rings. Determining the feasibility of intergrowths between zeolites is investigated using high-throughput atomistic simulations and experimental verification. Interfacial energy is an effective descriptor for identifying the feasibility of zeolite intergrowths and a zincosilicate zeolite intergrowth with three and nine rings is realized by hydrothermal syntheses.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"24 12","pages":"1978-1984"},"PeriodicalIF":38.5,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145331960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The assembly of strong graphene into high-performance macroscopic materials has attracted great interest and sustained attention. Thermal treatment has proven effective in improving the performance by restoring pristine graphene lattice from defective graphene oxide. However, the mechanical performance of graphene fibres remains inferior to that of single-layer pristine graphene, primarily due to assembly-induced defects such as microvoids that form during the folding process of two-dimensional sheets to fibre structures. Here we report the room-temperature fabrication of ultrastrong and stiff graphene fibres, which exhibit an average tensile strength of 5.19 GPa and Young's modulus of 529 GPa. We propose a domain-folding strategy to construct highly folded yet densely packed nanotexture, resulting in a tenfold reduction in microvoid volume. The stress distribution within the fibres is homogenized, leading to enhanced mechanical properties. These findings advance the fabrication of carbon fibres and other macroscopic materials assembled from two-dimensional nanosheets, enabling high material quality with reduced energy consumption.
{"title":"High-performance graphene-based carbon fibres prepared at room temperature via domain folding.","authors":"Peng Li,Ziqiu Wang,Gangfeng Cai,Yingjie Zhao,Zihao Deng,Bo Wang,Zheng Li,Xin Ming,Weiwei Gao,Zhen Xu,Zhiping Xu,Yingjun Liu,Chao Gao","doi":"10.1038/s41563-025-02384-7","DOIUrl":"https://doi.org/10.1038/s41563-025-02384-7","url":null,"abstract":"The assembly of strong graphene into high-performance macroscopic materials has attracted great interest and sustained attention. Thermal treatment has proven effective in improving the performance by restoring pristine graphene lattice from defective graphene oxide. However, the mechanical performance of graphene fibres remains inferior to that of single-layer pristine graphene, primarily due to assembly-induced defects such as microvoids that form during the folding process of two-dimensional sheets to fibre structures. Here we report the room-temperature fabrication of ultrastrong and stiff graphene fibres, which exhibit an average tensile strength of 5.19 GPa and Young's modulus of 529 GPa. We propose a domain-folding strategy to construct highly folded yet densely packed nanotexture, resulting in a tenfold reduction in microvoid volume. The stress distribution within the fibres is homogenized, leading to enhanced mechanical properties. These findings advance the fabrication of carbon fibres and other macroscopic materials assembled from two-dimensional nanosheets, enabling high material quality with reduced energy consumption.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"11 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145331962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-17DOI: 10.1038/s41563-025-02386-5
Rui Xia, Chun Li, Yan Shao, Dong He, Jianfeng Yan, Mao Yu, Kangjie Chu, Huanhuan Yang, Daohang Cai, Guoli Chen, Yaqi Du, Guangfu Luo, Weishu Liu, Fuzeng Ren, Zhubing He, Yanhao Yu
Elastic seals safeguard stretchable electronics from reactive species in the surrounding environment. However, elastic contact with device modules and the intrinsic small-molecule permeability of elastomers limit the hermeticity of devices. Here we present a viscoplastic surface effect in polymeric elastomers for deriving sealing platforms with high hermeticity and large stretchability, made possible by controlling phase separations of partially miscible polar plastics within the near-surface region of block copolymer elastomers. The resulting viscoplastic surface allows the elastomer to form defect-free interfaces regardless of their size, materials chemistry and geometry. This capability facilitates the airtight integration of device modules to mitigate side leakage and enable the seamless assembly of high-potential gas barriers to prevent bulk penetration. A multilayer seal that incorporates scavenging components demonstrates properties that are as hermetic as aluminium foil while being stretchable like a rubber band. This breakthrough extends the operational lifetime of perovskite optoelectronics, hydrogel thermoelectrics and implantable bioelectronics without sacrificing their stretchability or efficiency. Viscoplastic surface effects in polymeric elastomers drive the development of sealing platforms with high hermeticity and large stretchability to safeguard stretchable electronics from degradation.
{"title":"Hermetic stretchable seals enabled by a viscoplastic surface effect","authors":"Rui Xia, Chun Li, Yan Shao, Dong He, Jianfeng Yan, Mao Yu, Kangjie Chu, Huanhuan Yang, Daohang Cai, Guoli Chen, Yaqi Du, Guangfu Luo, Weishu Liu, Fuzeng Ren, Zhubing He, Yanhao Yu","doi":"10.1038/s41563-025-02386-5","DOIUrl":"10.1038/s41563-025-02386-5","url":null,"abstract":"Elastic seals safeguard stretchable electronics from reactive species in the surrounding environment. However, elastic contact with device modules and the intrinsic small-molecule permeability of elastomers limit the hermeticity of devices. Here we present a viscoplastic surface effect in polymeric elastomers for deriving sealing platforms with high hermeticity and large stretchability, made possible by controlling phase separations of partially miscible polar plastics within the near-surface region of block copolymer elastomers. The resulting viscoplastic surface allows the elastomer to form defect-free interfaces regardless of their size, materials chemistry and geometry. This capability facilitates the airtight integration of device modules to mitigate side leakage and enable the seamless assembly of high-potential gas barriers to prevent bulk penetration. A multilayer seal that incorporates scavenging components demonstrates properties that are as hermetic as aluminium foil while being stretchable like a rubber band. This breakthrough extends the operational lifetime of perovskite optoelectronics, hydrogel thermoelectrics and implantable bioelectronics without sacrificing their stretchability or efficiency. Viscoplastic surface effects in polymeric elastomers drive the development of sealing platforms with high hermeticity and large stretchability to safeguard stretchable electronics from degradation.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"24 12","pages":"2011-2018"},"PeriodicalIF":38.5,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145311469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-15DOI: 10.1038/s41563-025-02374-9
Vikalp Raj,Yixian Wang,Min Feng,Kaustubh G Naik,Manish Jain,Bairav S Vishnugopi,Shimao Deng,Noah B Schorr,Martin Salazar,Alexander M Heusser,Xiaojing Huang,Andrew Scott Manning,Sergiy Kalnaus,Yijin Liu,John Watt,Josefine D McBrayer,Brad L Boyce,Hong Fang,Puru Jena,Partha P Mukherjee,Yue Qi,David Mitlin
We report a method for promoting electrochemical stability in garnet Li6.4La3Zr1.4Ta0.6O12 solid-state electrolyte based on a composite two-phase oxide-oxide microstructure. Grain boundary precipitation of the controlled distribution of amorphous zirconium oxide microparticles is achieved through the addition of reactive tantalum carbide. During ambient-atmosphere sintering, the carbide decomposes through an in situ reaction, the 'extra' Ta substituting for Zr within the Li6.4La3Zr1.4Ta0.6O12 lattice. Density functional theory (DFT) calculations identify a thermodynamically favourable reaction path and show how substituting Ta5+ at Zr4+ sites affects the crystal structure as well as bulk ionic and electronic conductivities. Quantitative stereology highlights that zirconia also acts as a sintering aid, reducing compact porosity. Cryogenic focused-ion-beam scanning electron microscopy and fractography analysis of cycled solid-state electrolytes illustrates that near-universally observed intergranular Li-metal dendrite propagation is suppressed by the two-phase microstructure, favouring transgranular dendrites instead. Importantly, DFT demonstrates that compared with the Li6.4La3Zr1.4Ta0.6O12 surface, the zirconium oxide surface per se is less electronically conductive and does not trap excess electrons to reduce Li ions. This is a key reason for the substantial improvement in the electrochemical properties over the single-phase baseline.
{"title":"Grain boundary zirconia-modified garnet solid-state electrolyte.","authors":"Vikalp Raj,Yixian Wang,Min Feng,Kaustubh G Naik,Manish Jain,Bairav S Vishnugopi,Shimao Deng,Noah B Schorr,Martin Salazar,Alexander M Heusser,Xiaojing Huang,Andrew Scott Manning,Sergiy Kalnaus,Yijin Liu,John Watt,Josefine D McBrayer,Brad L Boyce,Hong Fang,Puru Jena,Partha P Mukherjee,Yue Qi,David Mitlin","doi":"10.1038/s41563-025-02374-9","DOIUrl":"https://doi.org/10.1038/s41563-025-02374-9","url":null,"abstract":"We report a method for promoting electrochemical stability in garnet Li6.4La3Zr1.4Ta0.6O12 solid-state electrolyte based on a composite two-phase oxide-oxide microstructure. Grain boundary precipitation of the controlled distribution of amorphous zirconium oxide microparticles is achieved through the addition of reactive tantalum carbide. During ambient-atmosphere sintering, the carbide decomposes through an in situ reaction, the 'extra' Ta substituting for Zr within the Li6.4La3Zr1.4Ta0.6O12 lattice. Density functional theory (DFT) calculations identify a thermodynamically favourable reaction path and show how substituting Ta5+ at Zr4+ sites affects the crystal structure as well as bulk ionic and electronic conductivities. Quantitative stereology highlights that zirconia also acts as a sintering aid, reducing compact porosity. Cryogenic focused-ion-beam scanning electron microscopy and fractography analysis of cycled solid-state electrolytes illustrates that near-universally observed intergranular Li-metal dendrite propagation is suppressed by the two-phase microstructure, favouring transgranular dendrites instead. Importantly, DFT demonstrates that compared with the Li6.4La3Zr1.4Ta0.6O12 surface, the zirconium oxide surface per se is less electronically conductive and does not trap excess electrons to reduce Li ions. This is a key reason for the substantial improvement in the electrochemical properties over the single-phase baseline.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"26 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145296177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-15DOI: 10.1038/s41563-025-02356-x
Hari Ramachandran, Edward W. Mu, Eder G. Lomeli, Augustin Braun, Masato Goto, Kuan H. Hsu, Jue Liu, Zhelong Jiang, Kipil Lim, Grace M. Busse, Brian Moritz, Joshua J. Kas, John Vinson, John J. Rehr, Jungjin Park, Iwnetim I. Abate, Yuichi Shimakawa, Edward I. Solomon, Wanli Yang, William E. Gent, Thomas P. Devereaux, William C. Chueh
Iron redox cycling between low-valent oxidation states of FeII and FeIII drives crucial processes in nature. The FeII/III redox couple charge compensates the cycling of lithium iron phosphate, a positive electrode (cathode) for lithium-ion batteries. High-valent iron redox couples, involving formal oxidation higher than FeIII, could deliver higher electrochemical potentials and energy densities. However, because of the instability of high-valent Fe electrodes, they have proven difficult to probe and exploit in intercalation systems. Here we report and characterize a formal FeIII/V redox couple by revisiting the charge compensation mechanism of (de)lithiation in Li4FeSbO6. Valence-sensitive experimental and computational core-level spectroscopy reveal a direct transition from FeIII (3d5) to a negative-charge-transfer FeV (3d5L2) ground state on delithiation, without forming FeIV, or oxygen dimers. We identify that the cation ordering in Li4FeSbO6 drives a templated phase transition to stabilize the unique FeV species and demonstrate that disrupting cation ordering suppresses the FeIII/V redox couple. Exhibiting resistance to calendar aging, high operating potential and low voltage hysteresis, the FeIII/V redox couple in Li4FeSbO6 provides a framework for developing sustainable, Fe-based intercalation cathodes for high-voltage applications. An FeIII/V redox mechanism in Li4FeSbO6 on delithiation without FeIV or oxygen formation with resistance to aging, high operating potential and low voltage hysteresis is demonstrated, with implications for Fe-based high-voltage applications.
{"title":"A formal FeIII/V redox couple in an intercalation electrode","authors":"Hari Ramachandran, Edward W. Mu, Eder G. Lomeli, Augustin Braun, Masato Goto, Kuan H. Hsu, Jue Liu, Zhelong Jiang, Kipil Lim, Grace M. Busse, Brian Moritz, Joshua J. Kas, John Vinson, John J. Rehr, Jungjin Park, Iwnetim I. Abate, Yuichi Shimakawa, Edward I. Solomon, Wanli Yang, William E. Gent, Thomas P. Devereaux, William C. Chueh","doi":"10.1038/s41563-025-02356-x","DOIUrl":"10.1038/s41563-025-02356-x","url":null,"abstract":"Iron redox cycling between low-valent oxidation states of FeII and FeIII drives crucial processes in nature. The FeII/III redox couple charge compensates the cycling of lithium iron phosphate, a positive electrode (cathode) for lithium-ion batteries. High-valent iron redox couples, involving formal oxidation higher than FeIII, could deliver higher electrochemical potentials and energy densities. However, because of the instability of high-valent Fe electrodes, they have proven difficult to probe and exploit in intercalation systems. Here we report and characterize a formal FeIII/V redox couple by revisiting the charge compensation mechanism of (de)lithiation in Li4FeSbO6. Valence-sensitive experimental and computational core-level spectroscopy reveal a direct transition from FeIII (3d5) to a negative-charge-transfer FeV (3d5L2) ground state on delithiation, without forming FeIV, or oxygen dimers. We identify that the cation ordering in Li4FeSbO6 drives a templated phase transition to stabilize the unique FeV species and demonstrate that disrupting cation ordering suppresses the FeIII/V redox couple. Exhibiting resistance to calendar aging, high operating potential and low voltage hysteresis, the FeIII/V redox couple in Li4FeSbO6 provides a framework for developing sustainable, Fe-based intercalation cathodes for high-voltage applications. An FeIII/V redox mechanism in Li4FeSbO6 on delithiation without FeIV or oxygen formation with resistance to aging, high operating potential and low voltage hysteresis is demonstrated, with implications for Fe-based high-voltage applications.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"25 1","pages":"91-99"},"PeriodicalIF":38.5,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145302307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}