首页 > 最新文献

npj Climate and Atmospheric Science最新文献

英文 中文
The southward shift of hurricane genesis over the northern Atlantic Ocean
IF 9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2025-01-30 DOI: 10.1038/s41612-025-00923-2
Xi Cao, Renguang Wu, Xianling Jiang, Yifeng Dai, Pengfei Wang, Lei Zhou, Liang Wu, Difei Deng, Ying Sun, Shangfeng Chen, Kaiming Hu, Zhibiao Wang, Lu Liu, Xiaoqing Lan, Zhencai Du, Junhu Zhao, Xiao Xiao

The hurricane, with maximum wind speed over 64 kts, is among the most terrible calamities over the northern Atlantic (NATL). Previous studies identified a poleward migration of tropical cyclone (TC) genesis over the Pacific Ocean, but the shift over the NATL is statistically insignificant. The present study detects a robust southward migration in the genesis latitude of NATL TCs that later reach hurricane strength after 1979, which is consistent with a growth in hurricane frequency in the southern part (10°-20°N) of NATL. This increasing trend of hurricane frequency is intimately attributable to the decreasing vertical shear of zonal wind, resulting from a decreasing north-south temperature gradient. The reduced north-south temperature gradient is primarily caused by greater warming trend in tropospheric temperature in the subtropics, driven by intensified static stability. The present research suggests a potential increase in the hazards confronted by low-latitude islands and coastal nations in Northern America.

{"title":"The southward shift of hurricane genesis over the northern Atlantic Ocean","authors":"Xi Cao, Renguang Wu, Xianling Jiang, Yifeng Dai, Pengfei Wang, Lei Zhou, Liang Wu, Difei Deng, Ying Sun, Shangfeng Chen, Kaiming Hu, Zhibiao Wang, Lu Liu, Xiaoqing Lan, Zhencai Du, Junhu Zhao, Xiao Xiao","doi":"10.1038/s41612-025-00923-2","DOIUrl":"https://doi.org/10.1038/s41612-025-00923-2","url":null,"abstract":"<p>The hurricane, with maximum wind speed over 64 kts, is among the most terrible calamities over the northern Atlantic (NATL). Previous studies identified a poleward migration of tropical cyclone (TC) genesis over the Pacific Ocean, but the shift over the NATL is statistically insignificant. The present study detects a robust southward migration in the genesis latitude of NATL TCs that later reach hurricane strength after 1979, which is consistent with a growth in hurricane frequency in the southern part (10°-20°N) of NATL. This increasing trend of hurricane frequency is intimately attributable to the decreasing vertical shear of zonal wind, resulting from a decreasing north-south temperature gradient. The reduced north-south temperature gradient is primarily caused by greater warming trend in tropospheric temperature in the subtropics, driven by intensified static stability. The present research suggests a potential increase in the hazards confronted by low-latitude islands and coastal nations in Northern America.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"13 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143056537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Historical record of upwelling-favorable winds in Southern Benguela 1833–2014
IF 9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2025-01-29 DOI: 10.1038/s41612-025-00925-0
David Gallego, Ricardo García-Herrera, Folly Serge Tomety, M. Carmen Álvarez-Castro, Cristina Peña-Ortiz

As a result of the high volume of maritime traffic along the coasts of Namibia and western South Africa, mariners recorded numerous in-situ wind observations since early times. Many of these historical data are currently available through the International Comprehensive Ocean-Atmosphere Data Set (ICOADS). Here, we make use of these historical data to develop an instrumental index for the characterization of the upwelling-favorable winds over the southern Benguela Upwelling System from 1833 to 2014. Our results suggest that upwelling in this region has increased since the mid-1980s, in good agreement with previous research. However, when the entire period is considered, our index does not evidence a long-term trend but a multidecadal variability with an oscillation period between 20 and 30 years. We found a significant influence of ENSO exerted through the modulation of the position of the South Atlantic high-pressure system. However, this teleconnection may be highly non-stationary.

{"title":"Historical record of upwelling-favorable winds in Southern Benguela 1833–2014","authors":"David Gallego, Ricardo García-Herrera, Folly Serge Tomety, M. Carmen Álvarez-Castro, Cristina Peña-Ortiz","doi":"10.1038/s41612-025-00925-0","DOIUrl":"https://doi.org/10.1038/s41612-025-00925-0","url":null,"abstract":"<p>As a result of the high volume of maritime traffic along the coasts of Namibia and western South Africa, mariners recorded numerous in-situ wind observations since early times. Many of these historical data are currently available through the International Comprehensive Ocean-Atmosphere Data Set (ICOADS). Here, we make use of these historical data to develop an instrumental index for the characterization of the upwelling-favorable winds over the southern Benguela Upwelling System from 1833 to 2014. Our results suggest that upwelling in this region has increased since the mid-1980s, in good agreement with previous research. However, when the entire period is considered, our index does not evidence a long-term trend but a multidecadal variability with an oscillation period between 20 and 30 years. We found a significant influence of ENSO exerted through the modulation of the position of the South Atlantic high-pressure system. However, this teleconnection may be highly non-stationary.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"15 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying mechanisms of tropical cyclone generated orographic precipitation with Doppler radar and rain gauge observations
IF 9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2025-01-29 DOI: 10.1038/s41612-025-00921-4
Lin-Wen Cheng, Cheng-Ku Yu, Syuan-Ping Chen

The tropical cyclone (TC) generated orographic precipitation frequently causes severe floods and landslides over coastal and land areas, but its underlying processes remain largely unresolved. This study explored this issue using a high-density rain gauge network and Doppler radar observations to investigate an intense orographic precipitation event over Da-Tun Mountain (DT) in northern Taiwan associated with Typhoon Meari (2011). Detailed examination of observations and the quantification of precipitation enhancement showed that the seeder–feeder mechanism, rather than the widely known upslope lifting mechanism, was a primary contributor to heavy precipitation. Smaller-scale, landfalling convective elements embedded within TC background precipitation and their interactions with DT also influenced the degree of orographic enhancement of precipitation. These rapidly evolving scenarios represent a secondary contributor to the modulation of precipitation intensities. The results from the study provide important insights into the relative importance of the different processes of orographically enhanced precipitation for TCs.

{"title":"Identifying mechanisms of tropical cyclone generated orographic precipitation with Doppler radar and rain gauge observations","authors":"Lin-Wen Cheng, Cheng-Ku Yu, Syuan-Ping Chen","doi":"10.1038/s41612-025-00921-4","DOIUrl":"https://doi.org/10.1038/s41612-025-00921-4","url":null,"abstract":"<p>The tropical cyclone (TC) generated orographic precipitation frequently causes severe floods and landslides over coastal and land areas, but its underlying processes remain largely unresolved. This study explored this issue using a high-density rain gauge network and Doppler radar observations to investigate an intense orographic precipitation event over Da-Tun Mountain (DT) in northern Taiwan associated with Typhoon Meari (2011). Detailed examination of observations and the quantification of precipitation enhancement showed that the seeder–feeder mechanism, rather than the widely known upslope lifting mechanism, was a primary contributor to heavy precipitation. Smaller-scale, landfalling convective elements embedded within TC background precipitation and their interactions with DT also influenced the degree of orographic enhancement of precipitation. These rapidly evolving scenarios represent a secondary contributor to the modulation of precipitation intensities. The results from the study provide important insights into the relative importance of the different processes of orographically enhanced precipitation for TCs.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"115 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unusual and persistent easterlies restrained the 2023/24 El Niño development after a triple-dip La Niña
IF 9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2025-01-27 DOI: 10.1038/s41612-024-00890-0
Ji-Won Kim, Baijun Tian, Jin-Yi Yu

The 2023/24 El Niño, emerging after a rare triple-dip La Niña, garnered global attention due to its potential to evolve into an extreme event, given the largest accumulation of warm water in the equatorial western Pacific since 1980. Despite initial expectations, its growth rate unexpectedly decelerated in mid-2023, preventing it from reaching the anticipated intensity. Here, we show through observational analyses that unusual easterly anomalies over the tropical western-central Pacific, persisting after the end of the preceding La Niña, significantly contributed to this slowdown. A prominent east‒west sea surface temperature gradient in the region has been identified as the crucial factor associated with these unusual and persistent easterly anomalies. This temperature gradient is directly attributed to a negative North Pacific Meridional Mode and a deepened thermocline over the Philippine Sea. These findings offer a deeper understanding of the atypical transition from a prolonged multi-year La Niña to an El Niño.

{"title":"Unusual and persistent easterlies restrained the 2023/24 El Niño development after a triple-dip La Niña","authors":"Ji-Won Kim, Baijun Tian, Jin-Yi Yu","doi":"10.1038/s41612-024-00890-0","DOIUrl":"https://doi.org/10.1038/s41612-024-00890-0","url":null,"abstract":"<p>The 2023/24 El Niño, emerging after a rare triple-dip La Niña, garnered global attention due to its potential to evolve into an extreme event, given the largest accumulation of warm water in the equatorial western Pacific since 1980. Despite initial expectations, its growth rate unexpectedly decelerated in mid-2023, preventing it from reaching the anticipated intensity. Here, we show through observational analyses that unusual easterly anomalies over the tropical western-central Pacific, persisting after the end of the preceding La Niña, significantly contributed to this slowdown. A prominent east‒west sea surface temperature gradient in the region has been identified as the crucial factor associated with these unusual and persistent easterly anomalies. This temperature gradient is directly attributed to a negative North Pacific Meridional Mode and a deepened thermocline over the Philippine Sea. These findings offer a deeper understanding of the atypical transition from a prolonged multi-year La Niña to an El Niño.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"22 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shifted dominant flood drivers of an alpine glacierized catchment in the Tianshan region revealed through interpretable deep learning
IF 9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2025-01-26 DOI: 10.1038/s41612-025-00918-z
Wenting Liang, Weili Duan, Yaning Chen, Gonghuan Fang, Shan Zou, Zhi Li, Zewei Qiu, Haodong Lyu

The Kumalak River, a typical alpine glacierized catchment in the Tianshan region, experiences complex flooding driven by glacier meltwater, snowmelt, and rainfall. However, the mechanisms driving these processes under climate change remain unclear. To address this, a SWAT-Glacier hydrological model and a degree–day factor model were used for snowmelt, glacier meltwater, and rainfall calculations. Two Long Short-Term Memory (LSTM) models (LSTM-SG and LSTM-DDF) were developed using these inputs, and additive decomposition and integrated gradient methods were applied to interpret flood mechanisms. Glacier meltwater was found to dominate annual maximum flood (AMF) events, while snowmelt drove annual spring maximum flood (AMFSp) events. For AMF events (1960–2018), contributions were 10.01–12.21% from snowmelt, 60.49–60.92% from glacier meltwater, and 26.86–29.50% from rainfall. For AMFSp events (1961–2018), contributions were 48.49–56.08% from snowmelt, 16.12–22.08% from glacier meltwater, and 27.79–29.42% from rainfall. These findings provide critical insights for enhancing flood prediction and optimizing water resource management.

{"title":"Shifted dominant flood drivers of an alpine glacierized catchment in the Tianshan region revealed through interpretable deep learning","authors":"Wenting Liang, Weili Duan, Yaning Chen, Gonghuan Fang, Shan Zou, Zhi Li, Zewei Qiu, Haodong Lyu","doi":"10.1038/s41612-025-00918-z","DOIUrl":"https://doi.org/10.1038/s41612-025-00918-z","url":null,"abstract":"<p>The Kumalak River, a typical alpine glacierized catchment in the Tianshan region, experiences complex flooding driven by glacier meltwater, snowmelt, and rainfall. However, the mechanisms driving these processes under climate change remain unclear. To address this, a SWAT-Glacier hydrological model and a degree–day factor model were used for snowmelt, glacier meltwater, and rainfall calculations. Two Long Short-Term Memory (LSTM) models (LSTM-SG and LSTM-DDF) were developed using these inputs, and additive decomposition and integrated gradient methods were applied to interpret flood mechanisms. Glacier meltwater was found to dominate annual maximum flood (AMF) events, while snowmelt drove annual spring maximum flood (AMFSp) events. For AMF events (1960–2018), contributions were 10.01–12.21% from snowmelt, 60.49–60.92% from glacier meltwater, and 26.86–29.50% from rainfall. For AMFSp events (1961–2018), contributions were 48.49–56.08% from snowmelt, 16.12–22.08% from glacier meltwater, and 27.79–29.42% from rainfall. These findings provide critical insights for enhancing flood prediction and optimizing water resource management.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"13 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High prediction skill of decadal tropical cyclone variability in the North Atlantic and East Pacific in the met office decadal prediction system DePreSys4
IF 9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2025-01-25 DOI: 10.1038/s41612-025-00919-y
Paul-Arthur Monerie, Xiangbo Feng, Kevin Hodges, Ralf Toumi

The UK Met Office decadal prediction system DePreSys4 shows skill in predicting the number of tropical cyclones (TCs) and TC track density over the eastern Pacific and tropical Atlantic Ocean on the decadal timescale (up to ACC = 0.93 and ACC = 0.83, respectively, as measured by the anomaly correlation coefficient—ACC). The high skill in predicting the number of TCs is related to the simulation of the externally forced response, with internal climate variability also allowing the improvement in prediction skill. The Skill is due to the model’s ability to predict the temporal evolution of surface temperature and vertical wind shear over the eastern Pacific and tropical Atlantic Ocean. We apply a signal-to-noise calibration framework and show that DePreSys4 predicts an increase in the number of TCs over the eastern Pacific and the tropical Atlantic Ocean in the next decade (2023–2030), potentially leading to high economic losses.

{"title":"High prediction skill of decadal tropical cyclone variability in the North Atlantic and East Pacific in the met office decadal prediction system DePreSys4","authors":"Paul-Arthur Monerie, Xiangbo Feng, Kevin Hodges, Ralf Toumi","doi":"10.1038/s41612-025-00919-y","DOIUrl":"https://doi.org/10.1038/s41612-025-00919-y","url":null,"abstract":"<p>The UK Met Office decadal prediction system DePreSys4 shows skill in predicting the number of tropical cyclones (TCs) and TC track density over the eastern Pacific and tropical Atlantic Ocean on the decadal timescale (up to ACC = 0.93 and ACC = 0.83, respectively, as measured by the anomaly correlation coefficient—ACC). The high skill in predicting the number of TCs is related to the simulation of the externally forced response, with internal climate variability also allowing the improvement in prediction skill. The Skill is due to the model’s ability to predict the temporal evolution of surface temperature and vertical wind shear over the eastern Pacific and tropical Atlantic Ocean. We apply a signal-to-noise calibration framework and show that DePreSys4 predicts an increase in the number of TCs over the eastern Pacific and the tropical Atlantic Ocean in the next decade (2023–2030), potentially leading to high economic losses.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"38 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifaceted changes in water availability with a warmer climate
IF 9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2025-01-24 DOI: 10.1038/s41612-025-00913-4
Binglan Gu, Sha Zhou, Bofu Yu, Kirsten L. Findell, Benjamin R. Lintner

Climate warming alters spatial and seasonal patterns of surface water availability (P-E), affecting runoff and terrestrial water storage. However, a comprehensive assessment of these changes across various hydroclimates remains lacking. We develop a multi-model ensemble approach to classify global terrestrial hydroclimate into four distinct regimes based on the mean and seasonality of P-E. P-E is projected to become increasingly variable across space and time. Wet regions with low and high seasonality are likely to experience more concentrated increases in wet-season runoff by up to 20%, highlighting potential increases in flood-related vulnerability. Low-seasonality regions exhibit faster wet-season increases and more rapid dry-season decreases in soil moisture, heightening the likelihood of water scarcity and drought. Conversely, dry regions with high seasonality are less sensitive to climate change. These findings underscore the multifaceted impacts of climate change on global water resources, necessitating the need for tailored adaptation strategies for different hydroclimate regimes.

{"title":"Multifaceted changes in water availability with a warmer climate","authors":"Binglan Gu, Sha Zhou, Bofu Yu, Kirsten L. Findell, Benjamin R. Lintner","doi":"10.1038/s41612-025-00913-4","DOIUrl":"https://doi.org/10.1038/s41612-025-00913-4","url":null,"abstract":"<p>Climate warming alters spatial and seasonal patterns of surface water availability (P-E), affecting runoff and terrestrial water storage. However, a comprehensive assessment of these changes across various hydroclimates remains lacking. We develop a multi-model ensemble approach to classify global terrestrial hydroclimate into four distinct regimes based on the mean and seasonality of P-E. P-E is projected to become increasingly variable across space and time. Wet regions with low and high seasonality are likely to experience more concentrated increases in wet-season runoff by up to 20%, highlighting potential increases in flood-related vulnerability. Low-seasonality regions exhibit faster wet-season increases and more rapid dry-season decreases in soil moisture, heightening the likelihood of water scarcity and drought. Conversely, dry regions with high seasonality are less sensitive to climate change. These findings underscore the multifaceted impacts of climate change on global water resources, necessitating the need for tailored adaptation strategies for different hydroclimate regimes.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"77 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vertical and spatial differences in ozone formation sensitivities under different ozone pollution levels in eastern Chinese cities 中国东部城市不同臭氧污染水平下臭氧形成敏感性的垂直和空间差异
IF 9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2025-01-23 DOI: 10.1038/s41612-024-00855-3
Zhuang Wang, Hao Zhang, Chune Shi, Xianguang Ji, Yizhi Zhu, Congzi Xia, Xiaoyun Sun, Meng Zhang, Xinfeng Lin, Shaowei Yan, Yuan Zhou, Chengzhi Xing, Yujia Chen, Cheng Liu

Ozone is the primary air pollutant in eastern China during the warm season. Clarifying the differences in the spatio–temporal evolution of the ozone formation sensitivity between ozone polluted days and clean air days is key for the precise formulation of ozone prevention policies. By combining ground–and satellite–based remote sensing with ground station observations, we identified large spatio–temporal differences in the ozone formation sensitivity in eastern Chinese cities under different ozone pollution levels. Diurnally, the NO2 concentration was higher in the morning and lower at noon on the ozone exceedance days. The HCHO concentration was higher throughout the day, and the transition limited regime or NOx–limited regime contributed more to the ozone formation sensitivity on the ozone exceedance days. Vertically, the ratio of HCHO to NO2 (FNR) was higher on ozone exceedance days, and the contributions of NOx–limited regime at 0–2 km and the transition limited regime at 0–1 km on ozone exceedance days increased considerably. Spatially, HCHO in the North China Plain and middle–lower Yangtze River Plain was significantly increased on ozone exceedance days, while the NO2 concentration in the southeast hills was increased on ozone exceedance days. The difference in FNR values between northern and southern cities in eastern China on O3 exceedance days narrowed, and the ozone formation sensitivity in eastern China tended to be under a transition limited regime. The shifts in the ozone formation sensitivity under different ozone pollution levels implies that controlling only one of the precursors cannot achieve the best O3 prevention effect, and the most appropriate ratio of O3 precursor emission reductions should be designed according to ozone formation sensitivity in the different regions.

臭氧是中国东部暖季主要的大气污染物。明确臭氧污染日与清洁日臭氧形成敏感性的时空演化差异,是准确制定臭氧防治政策的关键。通过地星遥感与地面站观测相结合,发现不同臭氧污染水平下中国东部城市臭氧形成敏感性存在较大时空差异。臭氧超标日NO2浓度以上午高中午低为主;在臭氧超标日,HCHO浓度全天较高,过渡限制状态或nox限制状态对臭氧形成敏感性贡献较大。垂直方向上,臭氧超标日HCHO / NO2 (FNR)比值较高,0 ~ 2 km区间nox限制和0 ~ 1 km过渡限制对臭氧超标日的贡献显著增加。从空间上看,华北平原和长江中下游平原的HCHO在臭氧超标日显著增加,东南丘陵NO2浓度在臭氧超标日显著增加。东部城市臭氧超限日FNR值差异缩小,东部地区臭氧形成敏感性处于过渡性有限状态。不同臭氧污染水平下臭氧形成敏感性的变化表明,仅控制一种前体不能达到最佳的O3防治效果,应根据不同地区臭氧形成敏感性设计最合适的O3前体减排比例。
{"title":"Vertical and spatial differences in ozone formation sensitivities under different ozone pollution levels in eastern Chinese cities","authors":"Zhuang Wang, Hao Zhang, Chune Shi, Xianguang Ji, Yizhi Zhu, Congzi Xia, Xiaoyun Sun, Meng Zhang, Xinfeng Lin, Shaowei Yan, Yuan Zhou, Chengzhi Xing, Yujia Chen, Cheng Liu","doi":"10.1038/s41612-024-00855-3","DOIUrl":"https://doi.org/10.1038/s41612-024-00855-3","url":null,"abstract":"<p>Ozone is the primary air pollutant in eastern China during the warm season. Clarifying the differences in the spatio–temporal evolution of the ozone formation sensitivity between ozone polluted days and clean air days is key for the precise formulation of ozone prevention policies. By combining ground–and satellite–based remote sensing with ground station observations, we identified large spatio–temporal differences in the ozone formation sensitivity in eastern Chinese cities under different ozone pollution levels. Diurnally, the NO<sub>2</sub> concentration was higher in the morning and lower at noon on the ozone exceedance days. The HCHO concentration was higher throughout the day, and the transition limited regime or NO<sub>x</sub>–limited regime contributed more to the ozone formation sensitivity on the ozone exceedance days. Vertically, the ratio of HCHO to NO<sub>2</sub> (FNR) was higher on ozone exceedance days, and the contributions of NO<sub>x</sub>–limited regime at 0–2 km and the transition limited regime at 0–1 km on ozone exceedance days increased considerably. Spatially, HCHO in the North China Plain and middle–lower Yangtze River Plain was significantly increased on ozone exceedance days, while the NO<sub>2</sub> concentration in the southeast hills was increased on ozone exceedance days. The difference in FNR values between northern and southern cities in eastern China on O<sub>3</sub> exceedance days narrowed, and the ozone formation sensitivity in eastern China tended to be under a transition limited regime. The shifts in the ozone formation sensitivity under different ozone pollution levels implies that controlling only one of the precursors cannot achieve the best O<sub>3</sub> prevention effect, and the most appropriate ratio of O<sub>3</sub> precursor emission reductions should be designed according to ozone formation sensitivity in the different regions.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"45 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Tibetan plateau warming amplification on the interannual variations in East Asia Summer precipitation 青藏高原变暖放大对东亚夏季降水年际变化的影响
IF 9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2025-01-22 DOI: 10.1038/s41612-025-00920-5
XiaoJing Jia, XinHai Chen, Wei Dong, Hao Ma, JingWen Ge, QiFeng Qian

The amplified warming on the Tibetan Plateau (TA) is a distinctive characteristic of global climate change, leading to various climate responses with far-reaching implications. This study investigates the influence of interannual variation of TA on summer precipitation over East Asia (Pre_EA) using observational data and a Linear Baroclinic Model (LBM). When TA exceeds the Northern Hemisphere average, summer precipitation in the Yangtze River Valley significantly decreases, while it increases in North China and South China, resulting in a tripole Pre_EA pattern. Notably, the relationship between TA and Pre_EA is independent of the El Niño-Southern Oscillation (ENSO) and explains more variance in Pre_EA than ENSO. Our analysis reveals that TA enhances the tripole Pre_EA pattern by modulating moisture transport and vertical motion in the East Asia-North Pacific regions. Specifically, positive TA is linked to significant local tropospheric warming, which intensifies and eastward expands the South Asian High, creating a double-gyre meridional circulation over East Asia. Additionally, positive TA induces an eastward-propagating wave, reinforcing a midlatitude anomalous high-pressure belt over East Asia and the western North Pacific regions. These circulation changes weaken the East Asian subtropical jet, form a notable double jet configuration, and promote subsidence over mid-latitude East Asia. Moreover, anomalously warm sea surface temperatures in the Northwestern Pacific reinforce the TA-Pre_EA relationship by contributing to the mid-latitude East Asia-North Pacific high-pressure belt. Our LBM model experiments support these findings. Our study provides an in-depth understanding of the physical processes influencing summer precipitation variability in East Asia.

青藏高原增温放大是全球气候变化的一个显著特征,导致各种气候响应,影响深远。利用实测资料和线性斜压模式(LBM)研究了TA年际变化对东亚夏季降水的影响。当TA超过北半球平均水平时,长江流域夏季降水显著减少,华北和华南夏季降水增加,形成Pre_EA三极型。值得注意的是,TA和Pre_EA之间的关系与El Niño-Southern涛动(ENSO)无关,并且解释了Pre_EA比ENSO更大的方差。分析表明,热作用通过调节东亚-北太平洋地区的水汽输送和垂直运动增强了三极子Pre_EA型。具体来说,正TA与显著的局部对流层变暖有关,该变暖加剧并向东扩展南亚高压,在东亚上空形成双环流经向环流。此外,正TA诱发一个向东传播的波,加强了东亚和北太平洋西部地区的中纬度异常高压带。这些环流变化减弱了东亚副热带急流,形成了显著的双急流构型,促进了东亚中纬度地区的下沉。此外,西北太平洋海表温度异常温暖,通过促进中纬度东亚-北太平洋高压带,加强了TA-Pre_EA关系。我们的LBM模型实验支持这些发现。我们的研究提供了对影响东亚夏季降水变率的物理过程的深入理解。
{"title":"Impact of Tibetan plateau warming amplification on the interannual variations in East Asia Summer precipitation","authors":"XiaoJing Jia, XinHai Chen, Wei Dong, Hao Ma, JingWen Ge, QiFeng Qian","doi":"10.1038/s41612-025-00920-5","DOIUrl":"https://doi.org/10.1038/s41612-025-00920-5","url":null,"abstract":"<p>The amplified warming on the Tibetan Plateau (TA) is a distinctive characteristic of global climate change, leading to various climate responses with far-reaching implications. This study investigates the influence of interannual variation of TA on summer precipitation over East Asia (Pre_EA) using observational data and a Linear Baroclinic Model (LBM). When TA exceeds the Northern Hemisphere average, summer precipitation in the Yangtze River Valley significantly decreases, while it increases in North China and South China, resulting in a tripole Pre_EA pattern. Notably, the relationship between TA and Pre_EA is independent of the El Niño-Southern Oscillation (ENSO) and explains more variance in Pre_EA than ENSO. Our analysis reveals that TA enhances the tripole Pre_EA pattern by modulating moisture transport and vertical motion in the East Asia-North Pacific regions. Specifically, positive TA is linked to significant local tropospheric warming, which intensifies and eastward expands the South Asian High, creating a double-gyre meridional circulation over East Asia. Additionally, positive TA induces an eastward-propagating wave, reinforcing a midlatitude anomalous high-pressure belt over East Asia and the western North Pacific regions. These circulation changes weaken the East Asian subtropical jet, form a notable double jet configuration, and promote subsidence over mid-latitude East Asia. Moreover, anomalously warm sea surface temperatures in the Northwestern Pacific reinforce the TA-Pre_EA relationship by contributing to the mid-latitude East Asia-North Pacific high-pressure belt. Our LBM model experiments support these findings. Our study provides an in-depth understanding of the physical processes influencing summer precipitation variability in East Asia.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"32 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reversed link between central pacific ENSO and Greenland–Barents sea ice 中太平洋ENSO与格陵兰-巴伦支海冰之间的反向联系
IF 9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2025-01-21 DOI: 10.1038/s41612-025-00912-5
Yuxin Xie, Anmin Duan, Chao Zhang, Chuangzhi He, Qi Mao, Bingxian Liu

Winter Arctic sea ice is a crucial climate indicator, declining at an accelerated rate compared to the past and playing a significant role in Arctic amplification over recent decades. The sea-ice concentration (SIC) in the Greenland–Barents Sea (GBS) shows considerable interannual variability, yet the link between this variability and the El Niño–Southern Oscillation (ENSO) remains uncertain. Here, we identify a reversed relationship between the autumn Central Pacific (CP)-type ENSO and the winter GBS SIC around the mid-1980s. Observational and model experiments demonstrate that, before the mid-1980s, CP ENSO triggered a double wave pattern propagating toward the Arctic, generating a positive geopotential height anomaly in the Arctic. Such an anomaly, along with a northerly anomaly, favored cold-air advection and intrusion into the GBS, resulting in an increased SIC. After the mid-1980s, however, CP ENSO only induced a single wave train towards the Arctic, favoring a positive geopotential height anomaly over Iceland. As a result, the southerly anomaly transported abundant moisture into the GBS and consequently reduced the SIC. The variation in wave patterns can largely be attributed to the sea surface temperature anomaly in the tropical Atlantic induced by CP ENSO. Our findings highlight the unstable connection between tropical and polar regions, which provides a basis for better understanding the mechanisms of Arctic sea-ice changes.

北极冬季海冰是一个重要的气候指标,与过去相比,其下降速度加快,并在近几十年的北极放大中发挥了重要作用。格陵兰-巴伦支海(GBS)的海冰浓度(SIC)表现出相当大的年际变化,但这种变化与厄尔尼诺Niño-Southern涛动(ENSO)之间的联系仍不确定。本研究发现,20世纪80年代中期前后,秋季中太平洋(CP)型ENSO与冬季GBS - SIC之间存在反向关系。观测和模式实验表明,在20世纪80年代中期之前,CP ENSO引发了一个向北极传播的双波型,在北极产生了一个正的位势高度异常。这种异常与偏北异常一起,有利于冷空气平流侵入GBS,导致SIC增加。然而,在20世纪80年代中期之后,CP ENSO只诱导了一股向北极的波列,有利于冰岛上空的正位势高度异常。结果表明,南向异常向GBS输送了丰富的水汽,降低了SIC。这种波型的变化在很大程度上可归因于CP ENSO引起的热带大西洋海温异常。我们的发现强调了热带和极地地区之间不稳定的联系,这为更好地理解北极海冰变化的机制提供了基础。
{"title":"Reversed link between central pacific ENSO and Greenland–Barents sea ice","authors":"Yuxin Xie, Anmin Duan, Chao Zhang, Chuangzhi He, Qi Mao, Bingxian Liu","doi":"10.1038/s41612-025-00912-5","DOIUrl":"https://doi.org/10.1038/s41612-025-00912-5","url":null,"abstract":"<p>Winter Arctic sea ice is a crucial climate indicator, declining at an accelerated rate compared to the past and playing a significant role in Arctic amplification over recent decades. The sea-ice concentration (SIC) in the Greenland–Barents Sea (GBS) shows considerable interannual variability, yet the link between this variability and the El Niño–Southern Oscillation (ENSO) remains uncertain. Here, we identify a reversed relationship between the autumn Central Pacific (CP)-type ENSO and the winter GBS SIC around the mid-1980s. Observational and model experiments demonstrate that, before the mid-1980s, CP ENSO triggered a double wave pattern propagating toward the Arctic, generating a positive geopotential height anomaly in the Arctic. Such an anomaly, along with a northerly anomaly, favored cold-air advection and intrusion into the GBS, resulting in an increased SIC. After the mid-1980s, however, CP ENSO only induced a single wave train towards the Arctic, favoring a positive geopotential height anomaly over Iceland. As a result, the southerly anomaly transported abundant moisture into the GBS and consequently reduced the SIC. The variation in wave patterns can largely be attributed to the sea surface temperature anomaly in the tropical Atlantic induced by CP ENSO. Our findings highlight the unstable connection between tropical and polar regions, which provides a basis for better understanding the mechanisms of Arctic sea-ice changes.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"45 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
npj Climate and Atmospheric Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1