首页 > 最新文献

npj Climate and Atmospheric Science最新文献

英文 中文
Future large-scale atmospheric circulation changes and Greenland precipitation
IF 9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2025-01-10 DOI: 10.1038/s41612-025-00899-z
Baojuan Huai, Minghu Ding, Michiel R. van den Broeke, Carleen H. Reijmer, Brice Noël, Weijun Sun, Yetang Wang

In this work, we examine connections between patterns of future Greenland precipitation and large-scale atmospheric circulation changes over the Northern Hemisphere. In the last three decades of the 21st century, CMIP5 and CMIP6 ensemble mean precipitation significantly decreases over the northern part of the North Atlantic Ocean with respect to 1951–1980. This drying signal extends from the ocean to the southeastern margin of Greenland. The 500 hPa geopotential height change shows a clear pattern including a widespread increase across the Arctic with a negative anomaly centered over Iceland and surrounding regions. To identify the mechanisms linking atmospheric circulation variability with Greenland precipitation, we perform a singular value decomposition (SVD) and center of action (COA) analysis. We find that a northeastward shift of the Icelandic Low (IL) under the SSP5‐8.5 warming scenario leads to the drying signal found in southeast Greenland. This implies that the IL location will have a strong influence on precipitation changes over southeast Greenland in the future, impacting projections of Greenland ice sheet surface mass balance.

{"title":"Future large-scale atmospheric circulation changes and Greenland precipitation","authors":"Baojuan Huai, Minghu Ding, Michiel R. van den Broeke, Carleen H. Reijmer, Brice Noël, Weijun Sun, Yetang Wang","doi":"10.1038/s41612-025-00899-z","DOIUrl":"https://doi.org/10.1038/s41612-025-00899-z","url":null,"abstract":"<p>In this work, we examine connections between patterns of future Greenland precipitation and large-scale atmospheric circulation changes over the Northern Hemisphere. In the last three decades of the 21st century, CMIP5 and CMIP6 ensemble mean precipitation significantly decreases over the northern part of the North Atlantic Ocean with respect to 1951–1980. This drying signal extends from the ocean to the southeastern margin of Greenland. The 500 hPa geopotential height change shows a clear pattern including a widespread increase across the Arctic with a negative anomaly centered over Iceland and surrounding regions. To identify the mechanisms linking atmospheric circulation variability with Greenland precipitation, we perform a singular value decomposition (SVD) and center of action (COA) analysis. We find that a northeastward shift of the Icelandic Low (IL) under the SSP5‐8.5 warming scenario leads to the drying signal found in southeast Greenland. This implies that the IL location will have a strong influence on precipitation changes over southeast Greenland in the future, impacting projections of Greenland ice sheet surface mass balance.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"39 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142939655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regional-specific trends of PM2.5 and O3 temperature sensitivity in the United States
IF 9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2025-01-10 DOI: 10.1038/s41612-024-00862-4
Lifei Yin, Bin Bai, Bingqing Zhang, Qiao Zhu, Qian Di, Weeberb J. Requia, Joel D. Schwartz, Liuhua Shi, Pengfei Liu

Climate change poses direct and indirect threats to public health, including exacerbating air pollution. However, the influence of rising temperature on air quality remains highly uncertain in the United States, particularly under rapid reduction in anthropogenic emissions. Here, we examined the sensitivity of surface-level fine particulate matter (PM2.5) and ozone (O3) to summer temperature anomalies in the contiguous US as well as their decadal changes using high-resolution datasets generated by machine learning. Our findings demonstrate that in the eastern US, stringent emission control strategies have significantly reduced the positive responses of PM2.5 and O3 to summer temperature, thereby lowering the population exposure associated with warming-induced air quality deterioration. In contrast, PM2.5 in the western US became more sensitive to temperature, highlighting the urgent need to manage and mitigate the impact of worsening wildfires. Our results have important implications for air quality management and risk assessments of future climate change.

{"title":"Regional-specific trends of PM2.5 and O3 temperature sensitivity in the United States","authors":"Lifei Yin, Bin Bai, Bingqing Zhang, Qiao Zhu, Qian Di, Weeberb J. Requia, Joel D. Schwartz, Liuhua Shi, Pengfei Liu","doi":"10.1038/s41612-024-00862-4","DOIUrl":"https://doi.org/10.1038/s41612-024-00862-4","url":null,"abstract":"<p>Climate change poses direct and indirect threats to public health, including exacerbating air pollution. However, the influence of rising temperature on air quality remains highly uncertain in the United States, particularly under rapid reduction in anthropogenic emissions. Here, we examined the sensitivity of surface-level fine particulate matter (PM<sub>2.5</sub>) and ozone (O<sub>3</sub>) to summer temperature anomalies in the contiguous US as well as their decadal changes using high-resolution datasets generated by machine learning. Our findings demonstrate that in the eastern US, stringent emission control strategies have significantly reduced the positive responses of PM<sub>2.5</sub> and O<sub>3</sub> to summer temperature, thereby lowering the population exposure associated with warming-induced air quality deterioration. In contrast, PM<sub>2.5</sub> in the western US became more sensitive to temperature, highlighting the urgent need to manage and mitigate the impact of worsening wildfires. Our results have important implications for air quality management and risk assessments of future climate change.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"13 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142939648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing temporal stability of global tropical cyclone precipitation
IF 9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2025-01-10 DOI: 10.1038/s41612-025-00896-2
E Deng, Qian Xiang, Johnny C. L. Chan, Yue Dong, Shifei Tu, Pak-Wai Chan, Yi-Qing Ni

Tropical cyclone (TC) precipitation has led to escalating urban flooding and transportation disruptions in recent years. The volatility of the TC rain rate (RR) over short periods complicates accurate forecasting. Here, we use satellite-based observational rainfall datasets from 1998 to 2019 to calculate changes in TC 24-h RR and quantify the temporal stability of TC precipitation. We demonstrate a significant global increase in the annual temporal stability of TC RR across the total rainfall area, inner-core, and rainband areas. Specifically, the probabilities of rapid RR increase and decrease events in the TC total rainfall area decreased at rates of –1.74 ± 0.57% per decade and –2.23 ± 0.55% per decade, respectively. Based on the reanalysis dataset, we propose that the synergistic effects of increased atmospheric stability and total column water vapor—both resulting from anthropogenic warming at low latitudes—are potentially associated with this trend.

{"title":"Increasing temporal stability of global tropical cyclone precipitation","authors":"E Deng, Qian Xiang, Johnny C. L. Chan, Yue Dong, Shifei Tu, Pak-Wai Chan, Yi-Qing Ni","doi":"10.1038/s41612-025-00896-2","DOIUrl":"https://doi.org/10.1038/s41612-025-00896-2","url":null,"abstract":"<p>Tropical cyclone (TC) precipitation has led to escalating urban flooding and transportation disruptions in recent years. The volatility of the TC rain rate (RR) over short periods complicates accurate forecasting. Here, we use satellite-based observational rainfall datasets from 1998 to 2019 to calculate changes in TC 24-h RR and quantify the temporal stability of TC precipitation. We demonstrate a significant global increase in the annual temporal stability of TC RR across the total rainfall area, inner-core, and rainband areas. Specifically, the probabilities of rapid RR increase and decrease events in the TC total rainfall area decreased at rates of –1.74 ± 0.57% per decade and –2.23 ± 0.55% per decade, respectively. Based on the reanalysis dataset, we propose that the synergistic effects of increased atmospheric stability and total column water vapor—both resulting from anthropogenic warming at low latitudes—are potentially associated with this trend.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"56 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142939651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cloud microphysical response to entrainment of dry air containing aerosols
IF 9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2025-01-08 DOI: 10.1038/s41612-024-00889-7
Jae Min Yeom, Hamed Fahandezh Sadi, Jesse C. Anderson, Fan Yang, Will Cantrell, Raymond A. Shaw

Impacts of aerosol particles on clouds, precipitation, and climate remain one of the significant uncertainties in climate change. Aerosol particles entrained at cloud top and edge can affect cloud microphysical and macrophysical properties, but the process is still poorly understood. Here we investigate the cloud microphysical responses to the entrainment of aerosol-laden air in the Pi convection-cloud chamber. Results show that cloud droplet number concentration increases and mean radius of droplets decreases, which leads to narrower droplet size distribution and smaller relative dispersion. These behaviors are generally consistent with the scenario expected from the first aerosol-cloud indirect effect for a constant liquid water content (L). However, L increases significantly in these experiments. Such enhancement of L can be understood as suppression of droplet sedimentation removal due to small droplets. Further, an increase in aerosol concentration from entrainment reduces the effective radius and ultimately increases cloud optical thickness and cloud albedo, making the clouds brighter. These findings are of relevance to the entrainment interface at stratocumulus cloud top, where modeling studies have suggested sedimentation plays a strong role in regulating L. Therefore, the results provide insights into the impacts of entrainment of aerosol-laden air on cloud, precipitation, and climate.

{"title":"Cloud microphysical response to entrainment of dry air containing aerosols","authors":"Jae Min Yeom, Hamed Fahandezh Sadi, Jesse C. Anderson, Fan Yang, Will Cantrell, Raymond A. Shaw","doi":"10.1038/s41612-024-00889-7","DOIUrl":"https://doi.org/10.1038/s41612-024-00889-7","url":null,"abstract":"<p>Impacts of aerosol particles on clouds, precipitation, and climate remain one of the significant uncertainties in climate change. Aerosol particles entrained at cloud top and edge can affect cloud microphysical and macrophysical properties, but the process is still poorly understood. Here we investigate the cloud microphysical responses to the entrainment of aerosol-laden air in the Pi convection-cloud chamber. Results show that cloud droplet number concentration increases and mean radius of droplets decreases, which leads to narrower droplet size distribution and smaller relative dispersion. These behaviors are generally consistent with the scenario expected from the first aerosol-cloud indirect effect for a constant liquid water content (<i>L</i>). However, <i>L</i> increases significantly in these experiments. Such enhancement of <i>L</i> can be understood as suppression of droplet sedimentation removal due to small droplets. Further, an increase in aerosol concentration from entrainment reduces the effective radius and ultimately increases cloud optical thickness and cloud albedo, making the clouds brighter. These findings are of relevance to the entrainment interface at stratocumulus cloud top, where modeling studies have suggested sedimentation plays a strong role in regulating <i>L</i>. Therefore, the results provide insights into the impacts of entrainment of aerosol-laden air on cloud, precipitation, and climate.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"36 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142937551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A modified transformer model for the extended-range forecast of intraseasonal oscillation
IF 9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2025-01-08 DOI: 10.1038/s41612-025-00902-7
Chuhan Lu, Yichen Shen, Zhaoyong Guan

Extended-range forecast has long maintained a difficult point for the seamless forecast system due to the lack of predictability, with intraseasonal oscillation (ISO), an important signal in many high-impact weather events, being an important source of that. To improve the accuracy of ISO extended-range forecast and make up the gaps in previous researches in this regard, a data-driven model ISOX is proposed for the intraseasonal components of atmospheric fields. Compared with the subseasonal forecast results from climate forecast system (CFS), and the climatological forecast, ISOX achieves higher accuracy for lead times longer than 13 days, with few spatial or temporal weak points. It also performed better in predicting the positive 2 m temperature ISO and lower tropospheric conditions in a heatwave event, surpassing CFS for lead times longer than 13 days. Finally, through gradient evaluation, the model is proved to be able to study the ISO signal movements of atmospheric systems. Thus, the success of this model may shed light on improving extended-range forecast skills and assist the timely detection and prevention of possible meteorological disasters.

{"title":"A modified transformer model for the extended-range forecast of intraseasonal oscillation","authors":"Chuhan Lu, Yichen Shen, Zhaoyong Guan","doi":"10.1038/s41612-025-00902-7","DOIUrl":"https://doi.org/10.1038/s41612-025-00902-7","url":null,"abstract":"<p>Extended-range forecast has long maintained a difficult point for the seamless forecast system due to the lack of predictability, with intraseasonal oscillation (ISO), an important signal in many high-impact weather events, being an important source of that. To improve the accuracy of ISO extended-range forecast and make up the gaps in previous researches in this regard, a data-driven model ISOX is proposed for the intraseasonal components of atmospheric fields. Compared with the subseasonal forecast results from climate forecast system (CFS), and the climatological forecast, ISOX achieves higher accuracy for lead times longer than 13 days, with few spatial or temporal weak points. It also performed better in predicting the positive 2 m temperature ISO and lower tropospheric conditions in a heatwave event, surpassing CFS for lead times longer than 13 days. Finally, through gradient evaluation, the model is proved to be able to study the ISO signal movements of atmospheric systems. Thus, the success of this model may shed light on improving extended-range forecast skills and assist the timely detection and prevention of possible meteorological disasters.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"38 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142937558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classifying synoptic patterns driving tornadic storms and associated spatial trends in the United States
IF 9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2025-01-08 DOI: 10.1038/s41612-025-00897-1
Qin Jiang, Daniel T. Dawson II, Funing Li, Daniel R. Chavas

Severe convective storms and tornadoes rank among nature’s most hazardous phenomena, inflicting significant property damage and casualties. Near-surface weather conditions are closely governed by large-scale synoptic patterns. It is crucial to delve into the involved multiscale associations to understand tornado potential in response to climate change. Using clustering analysis, this study unveils that leading synoptic patterns driving tornadic storms and associated spatial trends are distinguishable across geographic regions in the U.S. Synoptic patterns with intense forcing featured by intense upper-level eddy kinetic energy and a dense distribution of Z500 fields dominate the increasing trend in tornado frequency in the southeast U.S., generating more tornadoes per event. Conversely, the decreasing trend noted in certain regions of the central Great Plains is associated with weak upper-level synoptic forcing. These findings offer an explanation of observational changes in tornado occurrences, suggesting that the physical mechanisms driving those changes differ across regions.

{"title":"Classifying synoptic patterns driving tornadic storms and associated spatial trends in the United States","authors":"Qin Jiang, Daniel T. Dawson II, Funing Li, Daniel R. Chavas","doi":"10.1038/s41612-025-00897-1","DOIUrl":"https://doi.org/10.1038/s41612-025-00897-1","url":null,"abstract":"<p>Severe convective storms and tornadoes rank among nature’s most hazardous phenomena, inflicting significant property damage and casualties. Near-surface weather conditions are closely governed by large-scale synoptic patterns. It is crucial to delve into the involved multiscale associations to understand tornado potential in response to climate change. Using clustering analysis, this study unveils that leading synoptic patterns driving tornadic storms and associated spatial trends are distinguishable across geographic regions in the U.S. Synoptic patterns with intense forcing featured by intense upper-level eddy kinetic energy and a dense distribution of Z500 fields dominate the increasing trend in tornado frequency in the southeast U.S., generating more tornadoes per event. Conversely, the decreasing trend noted in certain regions of the central Great Plains is associated with weak upper-level synoptic forcing. These findings offer an explanation of observational changes in tornado occurrences, suggesting that the physical mechanisms driving those changes differ across regions.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"1 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effects of high atmospheric and soil dryness on record-breaking decreases in vegetation productivity over Southwest China in 2023
IF 9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2025-01-08 DOI: 10.1038/s41612-025-00895-3
Zhikai Wang, Wen Chen, Jinling Piao, Qingyu Cai, Shangfeng Chen, Xu Xue, Tianjiao Ma

Extreme climate events have increasingly threatened global terrestrial ecosystems in recent decades. In spring 2023, Southwest China (SWC) experienced unprecedented heatwaves and droughts. Using multiple satellite-based datasets, we found that these events led to the most significant declines in gross primary productivity (GPP) and the enhanced vegetation index (EVI) for the past two decades, with lagged effects persisting until August in the drought-affected area. Unlike the widespread and persistent drought of 2010, the record-breaking heatwaves in April and May 2023 sustained and intensified the drought stress. Elevated temperatures and suppressed precipitation, driven by anomalous atmospheric circulations, exacerbated the soil moisture (SM) shortages and increased the atmospheric vapor pressure deficit (VPD), restricting water availability and carbon uptake for vegetation photosynthesis. Our findings reveal that, during the 2023 extreme event in SWC, the decreases in forest productivity were primarily driven by low SM anomalies, while the decreases in the grassland and cropland productivity mainly resulted from abnormally high VPDs. This study highlights the combined effects of low SM and high VPD anomalies caused by a compound heatwave–drought event on vegetation growth in SWC and provides valuable insights for future assessments of regional extreme climate events on vegetation growth.

{"title":"Synergistic effects of high atmospheric and soil dryness on record-breaking decreases in vegetation productivity over Southwest China in 2023","authors":"Zhikai Wang, Wen Chen, Jinling Piao, Qingyu Cai, Shangfeng Chen, Xu Xue, Tianjiao Ma","doi":"10.1038/s41612-025-00895-3","DOIUrl":"https://doi.org/10.1038/s41612-025-00895-3","url":null,"abstract":"<p>Extreme climate events have increasingly threatened global terrestrial ecosystems in recent decades. In spring 2023, Southwest China (SWC) experienced unprecedented heatwaves and droughts. Using multiple satellite-based datasets, we found that these events led to the most significant declines in gross primary productivity (GPP) and the enhanced vegetation index (EVI) for the past two decades, with lagged effects persisting until August in the drought-affected area. Unlike the widespread and persistent drought of 2010, the record-breaking heatwaves in April and May 2023 sustained and intensified the drought stress. Elevated temperatures and suppressed precipitation, driven by anomalous atmospheric circulations, exacerbated the soil moisture (SM) shortages and increased the atmospheric vapor pressure deficit (VPD), restricting water availability and carbon uptake for vegetation photosynthesis. Our findings reveal that, during the 2023 extreme event in SWC, the decreases in forest productivity were primarily driven by low SM anomalies, while the decreases in the grassland and cropland productivity mainly resulted from abnormally high VPDs. This study highlights the combined effects of low SM and high VPD anomalies caused by a compound heatwave–drought event on vegetation growth in SWC and provides valuable insights for future assessments of regional extreme climate events on vegetation growth.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"20 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulated Antarctic sea ice expansion reconciles climate model with observation
IF 9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2025-01-07 DOI: 10.1038/s41612-024-00881-1
Wei Liu

Observations reveal Antarctic sea ice expansion and Southern Ocean surface cooling trends from 1979 to 2014, whereas climate models mostly simulate the opposite. Here I use historical ensemble simulations with multiple climate models to show that sea-ice natural variability enables the models to simulate an Antarctic sea ice expansion during this period under anthropogenic forcings. Along with sea-ice expansion, Southern Ocean surface and subsurface temperatures up to 50oS, as well as lower tropospheric temperatures between 60oS and 80oS, exhibit significant cooling trends, all of which are consistent with observations. Compared to the sea-ice decline scenario, Antarctic sea ice expansion brings tropical precipitation changes closer to observations. Neither the Southern Annular Mode nor the Interdecadal Pacific Oscillation can fully explain the simulated Antarctic sea ice expansion over 1979–2014, while the sea-ice expansion is closely linked to surface meridional winds associated with a zonal wave 3 pattern.

观测结果表明,1979 年至 2014 年期间南极海冰扩张,南大洋表面呈冷却趋势,而气候模式的模拟结果大多与此相反。在此,我利用多个气候模式的历史集合模拟来说明,海冰的自然变率使模式能够模拟在人为作用力下这一时期南极海冰的扩张。在海冰扩张的同时,南大洋表层和50oS以下的次表层温度,以及60oS至80oS的对流层低层温度都呈现出明显的降温趋势,所有这些都与观测结果一致。与海冰减少情景相比,南极海冰扩张使热带降水变化更接近观测结果。南环流模式和年代际太平洋涛动都不能完全解释 1979-2014 年模拟的南极海冰扩张,而海冰扩张与与带状波 3 模式相关的表面经向风密切相关。
{"title":"Simulated Antarctic sea ice expansion reconciles climate model with observation","authors":"Wei Liu","doi":"10.1038/s41612-024-00881-1","DOIUrl":"https://doi.org/10.1038/s41612-024-00881-1","url":null,"abstract":"<p>Observations reveal Antarctic sea ice expansion and Southern Ocean surface cooling trends from 1979 to 2014, whereas climate models mostly simulate the opposite. Here I use historical ensemble simulations with multiple climate models to show that sea-ice natural variability enables the models to simulate an Antarctic sea ice expansion during this period under anthropogenic forcings. Along with sea-ice expansion, Southern Ocean surface and subsurface temperatures up to 50<sup>o</sup>S, as well as lower tropospheric temperatures between 60<sup>o</sup>S and 80<sup>o</sup>S, exhibit significant cooling trends, all of which are consistent with observations. Compared to the sea-ice decline scenario, Antarctic sea ice expansion brings tropical precipitation changes closer to observations. Neither the Southern Annular Mode nor the Interdecadal Pacific Oscillation can fully explain the simulated Antarctic sea ice expansion over 1979–2014, while the sea-ice expansion is closely linked to surface meridional winds associated with a zonal wave 3 pattern.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"49 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
South Asian Summer Monsoon under stratospheric aerosol intervention
IF 9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2025-01-07 DOI: 10.1038/s41612-024-00875-z
A. Asutosh, Simone Tilmes, Ewa M. Bednarz, Suvarna Fadnavis

The South Asian summer monsoon (SAM) bears significant importance for agriculture, water resources, economy, and environmental aspects of the region for nearly 2 billion people. To minimize the adverse impacts of global warming, Stratospheric Aerosol Intervention (SAI) has been proposed to lower surface temperatures by reflecting a portion of solar radiation back into space. However, the effects of SAI on SAM are still very uncertain. Our study identifies the main drivers leading to a reduction in the mean and extreme summer monsoon precipitation under SAI. These include SAI-induced lower stratospheric warming and the associated weakening of the northern hemispheric subtropical jet, changes in the upper-tropospheric wave activities, geopotential height anomalies, a reduction in the strength of the Asian Summer Monsoon Anticyclone, and, to some degree, local dust changes. As the interest in SAI research grows, our results demonstrate the urgent need to further understand SAM variability under different SAI scenarios.

{"title":"South Asian Summer Monsoon under stratospheric aerosol intervention","authors":"A. Asutosh, Simone Tilmes, Ewa M. Bednarz, Suvarna Fadnavis","doi":"10.1038/s41612-024-00875-z","DOIUrl":"https://doi.org/10.1038/s41612-024-00875-z","url":null,"abstract":"<p>The South Asian summer monsoon (SAM) bears significant importance for agriculture, water resources, economy, and environmental aspects of the region for nearly 2 billion people. To minimize the adverse impacts of global warming, Stratospheric Aerosol Intervention (SAI) has been proposed to lower surface temperatures by reflecting a portion of solar radiation back into space. However, the effects of SAI on SAM are still very uncertain. Our study identifies the main drivers leading to a reduction in the mean and extreme summer monsoon precipitation under SAI. These include SAI-induced lower stratospheric warming and the associated weakening of the northern hemispheric subtropical jet, changes in the upper-tropospheric wave activities, geopotential height anomalies, a reduction in the strength of the Asian Summer Monsoon Anticyclone, and, to some degree, local dust changes. As the interest in SAI research grows, our results demonstrate the urgent need to further understand SAM variability under different SAI scenarios.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"98 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of land use changes and global warming on extreme precipitation patterns in the Maritime Continent
IF 9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2025-01-07 DOI: 10.1038/s41612-024-00883-z
Jie Hsu, Chao-An Chen, Chia-Wei Lan, Chun-Lien Chiang, Chun-Hung Li, Min-Hui Lo

Land use changes (LUC) and global warming (GW) significantly impact the Maritime Continent’s (MC) hydro-climate, but their effects on extreme precipitation events are underexplored. This study investigates the impacts of LUC and GW on wet and dry extremes in the MC using Community Earth System Model (CESM)simulations, analyzing 55 years for LUC and 200 years for GW. We find that LUC-induced deforestation increases surface warming, enhancing atmospheric instability and favoring local convection, leading to more frequent heavy precipitation. Meanwhile, GW amplifies the atmosphere’s water-holding capacity, further intensifying wet extremes. Our findings reveal a “wet-get-wetter, dry-get-drier” pattern driven by different mechanisms: dynamic processes primarily influence wet extremes under LUC, while changes in evapotranspiration control dry extremes. In contrast, under GW, wet extremes are driven by dynamic processes, while dry extremes are influenced by reduced moisture availability and weakened atmospheric circulation. This highlights the need for land management to address rising extreme risks.

{"title":"Impact of land use changes and global warming on extreme precipitation patterns in the Maritime Continent","authors":"Jie Hsu, Chao-An Chen, Chia-Wei Lan, Chun-Lien Chiang, Chun-Hung Li, Min-Hui Lo","doi":"10.1038/s41612-024-00883-z","DOIUrl":"https://doi.org/10.1038/s41612-024-00883-z","url":null,"abstract":"<p>Land use changes (LUC) and global warming (GW) significantly impact the Maritime Continent’s (MC) hydro-climate, but their effects on extreme precipitation events are underexplored. This study investigates the impacts of LUC and GW on wet and dry extremes in the MC using Community Earth System Model (CESM)simulations, analyzing 55 years for LUC and 200 years for GW. We find that LUC-induced deforestation increases surface warming, enhancing atmospheric instability and favoring local convection, leading to more frequent heavy precipitation. Meanwhile, GW amplifies the atmosphere’s water-holding capacity, further intensifying wet extremes. Our findings reveal a “wet-get-wetter, dry-get-drier” pattern driven by different mechanisms: dynamic processes primarily influence wet extremes under LUC, while changes in evapotranspiration control dry extremes. In contrast, under GW, wet extremes are driven by dynamic processes, while dry extremes are influenced by reduced moisture availability and weakened atmospheric circulation. This highlights the need for land management to address rising extreme risks.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
npj Climate and Atmospheric Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1