Pub Date : 2024-11-01DOI: 10.1016/j.optmat.2024.116414
Ammar Qasem , Abeer A. Hassan , Halema A. Alrafai , Siham K. Abdelrahim , A. Alqahtani , Ali S. Alshomrany , Abdulrakeeb A.A. Ghaleb
This study addresses interface defects in tin oxide (SnO₂) electron transport layers (ETLs) for perovskite solar cells (PSCs) by doping SnO₂ with antimony (12.9 % Sb/Sn). Using a diffusion-precipitation method with varying ratios of N-Methyl-2-Pyrrolidone (NMP) and distilled water (DW) as solvents, antimony-doped tin oxide (ATO) nanoparticle layers were formed and deposited on FTO substrates. Structural and compositional analyses (XPS, EDX, and XRD) confirmed successful Sb incorporation, maintaining the SnO₂ lattice with reduced particle size. Higher NMP ratios improved conductivity to 12 S/cm, enhanced charge transport, and raised the bandgap from 3.67 eV to 3.84 eV. Optimal 100 % NMP conditions yielded ATO-based ETLs achieving a power conversion efficiency (PCE) of 23.645 %, with a fill factor (FF) of 43.681 %, open-circuit voltage (VOC) of 1.202 V, and short-circuit current density (JSC) of 23.87 mA/cm2, underscoring the potential of ATO layers for high-performance PSCs.
{"title":"Optimal dispersion of antimony-doped tin oxide (ATO NPs) in different NMP solvent ratios for maximizing photovoltaic efficiency of carbon-based perovskite solar cells","authors":"Ammar Qasem , Abeer A. Hassan , Halema A. Alrafai , Siham K. Abdelrahim , A. Alqahtani , Ali S. Alshomrany , Abdulrakeeb A.A. Ghaleb","doi":"10.1016/j.optmat.2024.116414","DOIUrl":"10.1016/j.optmat.2024.116414","url":null,"abstract":"<div><div>This study addresses interface defects in tin oxide (SnO₂) electron transport layers (ETLs) for perovskite solar cells (PSCs) by doping SnO₂ with antimony (12.9 % Sb/Sn). Using a diffusion-precipitation method with varying ratios of N-Methyl-2-Pyrrolidone (NMP) and distilled water (DW) as solvents, antimony-doped tin oxide (ATO) nanoparticle layers were formed and deposited on FTO substrates. Structural and compositional analyses (XPS, EDX, and XRD) confirmed successful Sb incorporation, maintaining the SnO₂ lattice with reduced particle size. Higher NMP ratios improved conductivity to 12 S/<em>cm</em>, enhanced charge transport, and raised the bandgap from 3.67 eV to 3.84 eV. Optimal 100 % NMP conditions yielded ATO-based ETLs achieving a power conversion efficiency (PCE) of 23.645 %, with a fill factor (FF) of 43.681 %, open-circuit voltage (V<sub>OC</sub>) of 1.202 <em>V</em>, and short-circuit current density (J<sub>SC</sub>) of 23.87 mA/cm<sup>2</sup>, underscoring the potential of ATO layers for high-performance PSCs.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116414"},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.optmat.2024.116420
Daniel K. Dinga, Lucy Schneider, Ulrich Kynast
A silane-modified layered double hydroxide (LDH) hybrid with a covalently coupled europium complex for aqueous singlet oxygen (1O2) detection is presented. A Mg/AL-LDH is modified with two alkoxysilanes simultaneously to increase its covalent linkability (using –SH or –NH2 groups) and to improve its dispersibility in water (using –N+(CH3)3 groups). The 1O2-responsive europium complex is coupled to the –SH or –NH2 - modified LDH employing epoxyphenanthroline (5,6-Epoxy-5,6-dihydro- [1,10]phenanthroline, “ephen”), which is acting as an ancillary ligand to the europium via its hetero-aromatic N-atoms on one hand and allows the covalent linkage of its epoxy-group to the modified LDH on the other hand. In this manner, the silane chains keep the europium complex away from the chemically active LDH surface, hence maintaining its structural integrity and photophysical properties. The result is a water-dispersible probe with a remarkable response to 1O2. This is signaled by the significant increase in the characteristic Eu3+ emission at 613 nm resulting in up to a 27-fold increase in emission intensity on exposure to 1O2 having a decay time of 380 μs. The resulting Eu-LDH hybrid is applicable for heterogeneous aqueous 1O2 detection; its long decay time, useful in time-gated measurements, in conjunction with the biocompatibility of LDH makes it particularly suitable for biological matrices, where 1O2 needs to be monitored.
{"title":"Silane-modified layered double hydroxides with europium sensor for aqueous singlet oxygen detection","authors":"Daniel K. Dinga, Lucy Schneider, Ulrich Kynast","doi":"10.1016/j.optmat.2024.116420","DOIUrl":"10.1016/j.optmat.2024.116420","url":null,"abstract":"<div><div>A silane-modified layered double hydroxide (LDH) hybrid with a covalently coupled europium complex for aqueous singlet oxygen (<sup>1</sup>O<sub>2</sub>) detection is presented. A Mg/AL-LDH is modified with two alkoxysilanes simultaneously to increase its covalent linkability (using –SH or –NH<sub>2</sub> groups) and to improve its dispersibility in water (using –N<sup>+</sup>(CH<sub>3</sub>)<sub>3</sub> groups). The <sup>1</sup>O<sub>2</sub>-responsive europium complex is coupled to the –SH or –NH<sub>2</sub> - modified LDH employing epoxyphenanthroline (5,6-Epoxy-5,6-dihydro- [1,10]phenanthroline, “ephen”), which is acting as an ancillary ligand to the europium via its hetero-aromatic N-atoms on one hand and allows the covalent linkage of its epoxy-group to the modified LDH on the other hand. In this manner, the silane chains keep the europium complex away from the chemically active LDH surface, hence maintaining its structural integrity and photophysical properties. The result is a water-dispersible probe with a remarkable response to <sup>1</sup>O<sub>2</sub>. This is signaled by the significant increase in the characteristic Eu<sup>3+</sup> emission at 613 nm resulting in up to a 27-fold increase in emission intensity on exposure to <sup>1</sup>O<sub>2</sub> having a decay time of 380 μs. The resulting Eu-LDH hybrid is applicable for heterogeneous aqueous <sup>1</sup>O<sub>2</sub> detection; its long decay time, useful in time-gated measurements, in conjunction with the biocompatibility of LDH makes it particularly suitable for biological matrices, where <sup>1</sup>O<sub>2</sub> needs to be monitored.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116420"},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.optmat.2024.116430
Qingyi Feng , Bo Li , Weiyuan Luo , Xia Xiang , Xiaotao Zu
Oxygen ion implantation of fused silica surface was utilized to study the regulation of chemical composition and the evolution of microstructure to understand the enhancement mechanism of the laser damage resistance. The surface quality is improved owing to the passivation of the residual defects of fused silica surface resulted from the surface sputtering induced by the energetic ions. In the un-implanted surface, the oxygen-silicon atomic ratio is 1.9, which increases with the ion fluence. The oxygen ions during the implantation can recombine the oxygen-deficient defects, but the excessive ion fluence will lead to the increased concentrations of the structural defects, especially for POR and singlet oxygen, which is also confirmed by the transformations of the ring structures of SiO4 tetrahedra in Raman spectra. Oxygen-implantation improve the surface quality, compensate for oxygen deficiency under ultraviolet laser irradiation, and recombine the oxygen-deficient defect, thereby decreasing the probability and growth of laser damage to fused silica. The optimized parameter of ion fluence is 1 × 1017 ions/cm2. This study offers a potential technique to further enhance the resistance to laser damage and growth of fused silica surface, which is crucial for the high-flux output and stable operation of ICF facilities.
{"title":"Regulations of oxygen-silicon ratio and microstructure to enhance laser damage resistance of fused silica via oxygen ion implantation","authors":"Qingyi Feng , Bo Li , Weiyuan Luo , Xia Xiang , Xiaotao Zu","doi":"10.1016/j.optmat.2024.116430","DOIUrl":"10.1016/j.optmat.2024.116430","url":null,"abstract":"<div><div>Oxygen ion implantation of fused silica surface was utilized to study the regulation of chemical composition and the evolution of microstructure to understand the enhancement mechanism of the laser damage resistance. The surface quality is improved owing to the passivation of the residual defects of fused silica surface resulted from the surface sputtering induced by the energetic ions. In the un-implanted surface, the oxygen-silicon atomic ratio is 1.9, which increases with the ion fluence. The oxygen ions during the implantation can recombine the oxygen-deficient defects, but the excessive ion fluence will lead to the increased concentrations of the structural defects, especially for POR and singlet oxygen, which is also confirmed by the transformations of the ring structures of SiO<sub>4</sub> tetrahedra in Raman spectra. Oxygen-implantation improve the surface quality, compensate for oxygen deficiency under ultraviolet laser irradiation, and recombine the oxygen-deficient defect, thereby decreasing the probability and growth of laser damage to fused silica. The optimized parameter of ion fluence is 1 × 10<sup>17</sup> ions/cm<sup>2</sup>. This study offers a potential technique to further enhance the resistance to laser damage and growth of fused silica surface, which is crucial for the high-flux output and stable operation of ICF facilities.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116430"},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.optmat.2024.116424
H. Es-soufi , L. Ouachouo , M.I. Sayyed , L. Bih
This work explores the impact of incorporating tungsten oxide (WO3) into boro-phosphate glasses, aiming to enhance their mechanical strength, durability, and gamma radiation shielding capabilities. The study includes the fabrication of glasses within the range of xLi2WO4–(50–x)Li2O–40P2O5–10B2O3, with varying WO3 content (x) from 0 to 50 wt%. The mechanical properties, including Vickers hardness and elastic constants, were assessed. Moreover, the chemical durability, measured through dissolution experiments, and the radiation shielding performance were investigated. The findings show that increasing WO3 content leads to improved microhardness, but reduced chemical durability due to depolymerization of the glass network. Additionally, the gamma radiation shielding capabilities were significantly enhanced with higher WO3 content, demonstrating the potential of these glasses for radiation shielding applications.
{"title":"Evaluating mechanical, durability, and gamma shielding performance in boro-phosphate glasses with tungsten oxide replacements","authors":"H. Es-soufi , L. Ouachouo , M.I. Sayyed , L. Bih","doi":"10.1016/j.optmat.2024.116424","DOIUrl":"10.1016/j.optmat.2024.116424","url":null,"abstract":"<div><div>This work explores the impact of incorporating tungsten oxide (WO3) into boro-phosphate glasses, aiming to enhance their mechanical strength, durability, and gamma radiation shielding capabilities. The study includes the fabrication of glasses within the range of xLi2WO4–(50–x)Li2O–40P2O5–10B2O3, with varying WO3 content (x) from 0 to 50 wt%. The mechanical properties, including Vickers hardness and elastic constants, were assessed. Moreover, the chemical durability, measured through dissolution experiments, and the radiation shielding performance were investigated. The findings show that increasing WO3 content leads to improved microhardness, but reduced chemical durability due to depolymerization of the glass network. Additionally, the gamma radiation shielding capabilities were significantly enhanced with higher WO3 content, demonstrating the potential of these glasses for radiation shielding applications.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116424"},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Highly-efficient near-infrared (NIR) phosphors with long-wavelength emission (>900 nm) are crucial to broaden the potential applications of NIR phosphor-converted light-emitting diodes (pc-LEDs) in practical scenarios. In this study, we synthesized an NIR phosphor, Cr3+-activated NaScP2O7 with emission centered at 920 nm and a full width at half maximum (FWHM) of 208 nm. Nevertheless, the phosphor yields an internal quantum efficiency (IQE) of 9.8 %, owing to severe non-radiative relaxation. By introducing Yb3+ co-dopant into NaScP2O7:Cr3+, the role of Cr3+ changes from an activator to a sensitizer, enabling efficient Cr3+-Yb3+ energy transfer (ET). The resulting NaScP2O7:Cr3+,Yb3+ exhibits a characteristic Yb3+ emission peaking at 1005 nm. Notably, the IQE of the co-doped phosphor is significantly enhanced to 58.9 %, attributed to the suppression of Cr3+ non-radiative relaxation and the efficient sensitization of Yb3+ emission through ET. Benefiting from the intensive short-wavelength infrared emission (SWIR), the phosphor demonstrates versatile applications in anti-counterfeiting and information encryption.
{"title":"Red-shifting and boosting the emission of NaScP2O7:Cr3+ via efficient energy transfer for information encryption and anti-counterfeiting","authors":"Yuming Yang, Jianhao Zha, Qinan Mao, Fangyi Zhao, Yang Ding, Yiwen Zhu, Jiasong Zhong","doi":"10.1016/j.optmat.2024.116418","DOIUrl":"10.1016/j.optmat.2024.116418","url":null,"abstract":"<div><div>Highly-efficient near-infrared (NIR) phosphors with long-wavelength emission (>900 nm) are crucial to broaden the potential applications of NIR phosphor-converted light-emitting diodes (pc-LEDs) in practical scenarios. In this study, we synthesized an NIR phosphor, Cr<sup>3+</sup>-activated NaScP<sub>2</sub>O<sub>7</sub> with emission centered at 920 nm and a full width at half maximum (FWHM) of 208 nm. Nevertheless, the phosphor yields an internal quantum efficiency (IQE) of 9.8 %, owing to severe non-radiative relaxation. By introducing Yb<sup>3+</sup> co-dopant into NaScP<sub>2</sub>O<sub>7</sub>:Cr<sup>3+</sup>, the role of Cr<sup>3+</sup> changes from an activator to a sensitizer, enabling efficient Cr<sup>3+</sup>-Yb<sup>3+</sup> energy transfer (ET). The resulting NaScP<sub>2</sub>O<sub>7</sub>:Cr<sup>3+</sup>,Yb<sup>3+</sup> exhibits a characteristic Yb<sup>3+</sup> emission peaking at 1005 nm. Notably, the IQE of the co-doped phosphor is significantly enhanced to 58.9 %, attributed to the suppression of Cr<sup>3+</sup> non-radiative relaxation and the efficient sensitization of Yb<sup>3+</sup> emission through ET. Benefiting from the intensive short-wavelength infrared emission (SWIR), the phosphor demonstrates versatile applications in anti-counterfeiting and information encryption.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116418"},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.optmat.2024.116406
Xin Luo , Zhi Hong , Dechen Li , Hailan Hou , Fenqin Lai , Weixiong You , Jianhui Huang
In this study, a high-crystallinity glass-ceramic scintillator doped with Eu³⁺ containing Bi₂Te₄O₁₁ nanocrystals was prepared using a traditional melt crystallization method. The optimal heat treatment conditions, phase structure, and luminescent properties of the glass-ceramics were systematically investigated using various characterization techniques, including DSC, XRD, SEM, and spectrophotometry. To achieve glass-ceramic samples with high transmittance and excellent luminescent performance, the optimal heat treatment process was determined to be 500 °C for 10 min. The final sample was found to have a density of 5.9 g/cm³ and a crystallinity of 70 %. Strong orange-red light emission was exhibited by the glass-ceramic under both 465 nm light and X-ray excitation. The maximum integral X-ray excited luminescence (XEL) intensity was found to reach 20.2 % of that of the commercial Bi4Ge3O12 (BGO) scintillation crystal. It is indicated by the research that Eu³⁺-doped high-crystallinity tellurate glass-ceramics are promising candidate materials for scintillators in the field of X-ray detection.
本研究采用传统的熔融结晶方法制备了一种掺杂 Eu³⁺ 的高结晶度玻璃陶瓷闪烁体,其中含有 Bi₂Te₄O₁₁ 纳米晶体。利用 DSC、XRD、SEM 和分光光度法等多种表征技术系统地研究了玻璃陶瓷的最佳热处理条件、相结构和发光特性。为了使玻璃陶瓷样品具有高透光率和优异的发光性能,确定了最佳热处理工艺为 500 °C 10 分钟。最终样品的密度为 5.9 g/cm³,结晶度为 70%。在 465 纳米波长的光和 X 射线激发下,玻璃陶瓷发出强烈的橙红色光。研究发现,最大积分 X 射线激发发光(XEL)强度为商用 Bi4Ge3O12(BGO)闪烁晶体的 20.2%。研究表明,掺杂 Eu³⁺的高结晶度碲酸玻璃陶瓷是 X 射线探测领域闪烁体的理想候选材料。
{"title":"Preparation and scintillation properties of Eu3+-doped high crystallinity tellurite glass ceramics","authors":"Xin Luo , Zhi Hong , Dechen Li , Hailan Hou , Fenqin Lai , Weixiong You , Jianhui Huang","doi":"10.1016/j.optmat.2024.116406","DOIUrl":"10.1016/j.optmat.2024.116406","url":null,"abstract":"<div><div>In this study, a high-crystallinity glass-ceramic scintillator doped with Eu³⁺ containing Bi₂Te₄O₁₁ nanocrystals was prepared using a traditional melt crystallization method. The optimal heat treatment conditions, phase structure, and luminescent properties of the glass-ceramics were systematically investigated using various characterization techniques, including DSC, XRD, SEM, and spectrophotometry. To achieve glass-ceramic samples with high transmittance and excellent luminescent performance, the optimal heat treatment process was determined to be 500 °C for 10 min. The final sample was found to have a density of 5.9 g/cm³ and a crystallinity of 70 %. Strong orange-red light emission was exhibited by the glass-ceramic under both 465 nm light and X-ray excitation. The maximum integral X-ray excited luminescence (XEL) intensity was found to reach 20.2 % of that of the commercial Bi<sub>4</sub>Ge<sub>3</sub>O<sub>12</sub> (BGO) scintillation crystal. It is indicated by the research that Eu³⁺-doped high-crystallinity tellurate glass-ceramics are promising candidate materials for scintillators in the field of X-ray detection.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116406"},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.optmat.2024.116363
Alireza Grayeli , Azin Ahmadpourian , Stanislav Jurečka , Carlos Luna , Sahar Rezaee , Maryam Karimi
Thin films of titanium dioxide (TiO2), with thicknesses ranging from 105 to 231 nm, were deposited on glass substrates using radio-frequency (RF) magnetron sputtering in an argon atmosphere at four distinct RF power levels: 40, 70, 100, and 130 W, with the deposition time kept constant. The crystalline structure, surface morphology and optical and semiconductor properties of the obtained films were analyzed using X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and UV–visible transmittance spectroscopy. These analyses revealed that the crystallinity of the films improves with increasing RF power, corresponding to an increase in film thickness. Consequently, the samples transition from poorly crystalline or amorphous structure to a monocrystalline rutile phase with a (110) texture. However, at the highest RF power studied, this texture is partially disrupted by the formation of nanocrystals with different orientations. The surface roughness exhibited multifractal characteristics, with complexity systematically decreasing and surface stiffness reducing as RF power increased. Refractive indices and optical band gap energies were determined using the Swanepoel and Tauc plot methods, respectively. The films exhibited a notable increase in the refractive index and a decrease in the optical band gap, from 3.81 eV to 3.52 eV, as the RF power was increased. This underscores the influence of RF power on the optical and semiconductor properties of TiO2 films.
{"title":"Investigating the influence of RF power on the surface morphological and optical properties of sputtered TiO2 thin films","authors":"Alireza Grayeli , Azin Ahmadpourian , Stanislav Jurečka , Carlos Luna , Sahar Rezaee , Maryam Karimi","doi":"10.1016/j.optmat.2024.116363","DOIUrl":"10.1016/j.optmat.2024.116363","url":null,"abstract":"<div><div>Thin films of titanium dioxide (TiO<sub>2</sub>), with thicknesses ranging from 105 to 231 nm, were deposited on glass substrates using radio-frequency (RF) magnetron sputtering in an argon atmosphere at four distinct RF power levels: 40, 70, 100, and 130 W, with the deposition time kept constant. The crystalline structure, surface morphology and optical and semiconductor properties of the obtained films were analyzed using X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and UV–visible transmittance spectroscopy. These analyses revealed that the crystallinity of the films improves with increasing RF power, corresponding to an increase in film thickness. Consequently, the samples transition from poorly crystalline or amorphous structure to a monocrystalline rutile phase with a (110) texture. However, at the highest RF power studied, this texture is partially disrupted by the formation of nanocrystals with different orientations. The surface roughness exhibited multifractal characteristics, with complexity systematically decreasing and surface stiffness reducing as RF power increased. Refractive indices and optical band gap energies were determined using the Swanepoel and Tauc plot methods, respectively. The films exhibited a notable increase in the refractive index and a decrease in the optical band gap, from 3.81 eV to 3.52 eV, as the RF power was increased. This underscores the influence of RF power on the optical and semiconductor properties of TiO<sub>2</sub> films.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116363"},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.optmat.2024.116410
Lichao Wang (王立超) , Yang Li (李杨) , Xindi Li (李新娣) , Yiwei Zhu (朱逸玮) , Cheng Zhang (张城) , Jian Kang (康健) , Cen Shao (邵岑) , Le Zhang (张乐) , Jun Zou (邹军)
A hundred-watt level blue collimated laser is used to excite YAG: Ce phosphor ceramics to prepare a high-power white laser-based illuminant. A composite ceramic cooling device is prepared to reduce the operating temperature of YAG: Ce phosphor ceramics by using nano-silver to weld ceramics onto a copper block with a water-cooling device. Phosphor ceramics encapsulated with the above device can withstand the excitation of a 123 W blue laser, and its output luminous flux value reaches 14600 lm. The stable output time of the laser-based illuminant is over 30 min, and the operating temperature of the phosphor ceramic surface is only 270 °C. Compared with the non-cooling device package, the luminous flux of the laser-based illuminant composed of phosphor ceramics packaged with the above structure is increased by 252.8 %. The experimental results show that the composite ceramic cooling device can effectively reduce the operating temperature of phosphor ceramics which is an effective way to realize white laser-based illuminants over 10000 lm.
{"title":"Laser light illuminant based on YAG: Ce phosphor ceramic with ultra-high luminance, stable output, and excellent heat dissipation","authors":"Lichao Wang (王立超) , Yang Li (李杨) , Xindi Li (李新娣) , Yiwei Zhu (朱逸玮) , Cheng Zhang (张城) , Jian Kang (康健) , Cen Shao (邵岑) , Le Zhang (张乐) , Jun Zou (邹军)","doi":"10.1016/j.optmat.2024.116410","DOIUrl":"10.1016/j.optmat.2024.116410","url":null,"abstract":"<div><div>A hundred-watt level blue collimated laser is used to excite YAG: Ce phosphor ceramics to prepare a high-power white laser-based illuminant. A composite ceramic cooling device is prepared to reduce the operating temperature of YAG: Ce phosphor ceramics by using nano-silver to weld ceramics onto a copper block with a water-cooling device. Phosphor ceramics encapsulated with the above device can withstand the excitation of a 123 W blue laser, and its output luminous flux value reaches 14600 lm. The stable output time of the laser-based illuminant is over 30 min, and the operating temperature of the phosphor ceramic surface is only 270 °C. Compared with the non-cooling device package, the luminous flux of the laser-based illuminant composed of phosphor ceramics packaged with the above structure is increased by 252.8 %. The experimental results show that the composite ceramic cooling device can effectively reduce the operating temperature of phosphor ceramics which is an effective way to realize white laser-based illuminants over 10000 lm.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116410"},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.optmat.2024.116402
Abdu Saeed , Eman Alzahrani , M.A. Morsi , A.E. Tarabiah , E.M. Abdelrazek , Saleh Aldwais , Saleh A. Alghamdi , Amani M. Al-Harthi , A.A. Al-Muntaser
In this study, we synthesized titanium oxide (TiO2) nanoparticles (NPs) via the sol-gel process and incorporated them into a polymer blend of polyethylene oxide (PEO) and polymethyl methacrylate (PMMA) to form PEO/PMMA/TiO2 nanocomposites. The TiO2 NPs were integrated into the polymer matrix using the casting method at varying concentrations (1, 2, and 3 wt%). The structural, morphological, optical, and electrical properties of the prepared TiO2 and nanocomposite films were thoroughly characterized using techniques such as transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–Vis) spectroscopy, and electrical impedance spectroscopy (EIS). TEM analysis revealed predominantly spherical TiO2 NPs with an average particle size of 15 nm. XRD and FTIR analyses confirmed the successful incorporation of TiO2 NPs and their interaction with the polymer chains, leading to modifications in the crystalline structure and chemical bonding of the nanocomposites. UV–Vis spectroscopy demonstrated a redshift in the absorption edge and increased absorbance with higher TiO₂ content, indicating enhanced optical properties. The indirect optical bandgap was observed to decrease from 4.19 eV to 2.21 eV as the TiO2 concentration increased, enhancing the material's photoresponsiveness. Additionally, the refractive index increased from 2.11 to 2.91, further supporting the potential for optical applications. EIS results showed a decrease in bulk resistance with increasing TiO2 concentration, suggesting improved electrical conductivity. These findings highlight the potential of PEO/PMMA/TiO2 nanocomposites for optoelectronic applications, where enhanced optical properties, such as improved light absorption, higher refractive index, and improved charge transport, are critical for device performance. The study offers an understanding of the PEO/PMMA/TiO2 nanocomposites, laying a foundation for future research in their applications in optoelectronic devices.
{"title":"Enhanced optical and electrical properties of PEO/PMMA/TiO2 nanocomposites for optoelectronic applications","authors":"Abdu Saeed , Eman Alzahrani , M.A. Morsi , A.E. Tarabiah , E.M. Abdelrazek , Saleh Aldwais , Saleh A. Alghamdi , Amani M. Al-Harthi , A.A. Al-Muntaser","doi":"10.1016/j.optmat.2024.116402","DOIUrl":"10.1016/j.optmat.2024.116402","url":null,"abstract":"<div><div>In this study, we synthesized titanium oxide (TiO<sub>2</sub>) nanoparticles (NPs) via the sol-gel process and incorporated them into a polymer blend of polyethylene oxide (PEO) and polymethyl methacrylate (PMMA) to form PEO/PMMA/TiO2 nanocomposites. The TiO<sub>2</sub> NPs were integrated into the polymer matrix using the casting method at varying concentrations (1, 2, and 3 wt%). The structural, morphological, optical, and electrical properties of the prepared TiO<sub>2</sub> and nanocomposite films were thoroughly characterized using techniques such as transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–Vis) spectroscopy, and electrical impedance spectroscopy (EIS). TEM analysis revealed predominantly spherical TiO<sub>2</sub> NPs with an average particle size of 15 nm. XRD and FTIR analyses confirmed the successful incorporation of TiO<sub>2</sub> NPs and their interaction with the polymer chains, leading to modifications in the crystalline structure and chemical bonding of the nanocomposites. UV–Vis spectroscopy demonstrated a redshift in the absorption edge and increased absorbance with higher TiO₂ content, indicating enhanced optical properties. The indirect optical bandgap was observed to decrease from 4.19 eV to 2.21 eV as the TiO<sub>2</sub> concentration increased, enhancing the material's photoresponsiveness. Additionally, the refractive index increased from 2.11 to 2.91, further supporting the potential for optical applications. EIS results showed a decrease in bulk resistance with increasing TiO<sub>2</sub> concentration, suggesting improved electrical conductivity. These findings highlight the potential of PEO/PMMA/TiO<sub>2</sub> nanocomposites for optoelectronic applications, where enhanced optical properties, such as improved light absorption, higher refractive index, and improved charge transport, are critical for device performance. The study offers an understanding of the PEO/PMMA/TiO<sub>2</sub> nanocomposites, laying a foundation for future research in their applications in optoelectronic devices.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116402"},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.optmat.2024.116409
Adriano B. Andrade , José Henrique M. de Azevedo , Giordano F.C. Bispo , Thaíse M. de Jesus , Zélia S. Macedo , Mário E.G. Valerio
This work investigates the luminescent versatility of the LiLa(1-x-y)BixCeyP4O12 system as a scintillator material capable of displaying emission in a range from the blue to the red region depending on the Ce3+ concentration. The LiLaP4O12 host has been proven to be useful as a scintillator material when doped with some rare earths and with bismuth ions. However, the process of bismuth valence change induced by X-rays, when inserted in the LiLaP4O12 matrix, is not known to date, as well as whether this can be controlled and used to enhance the luminescence emission. To determine the mechanism of interaction between the Ce3+ and Bi3+ ions in the LiLaP4O12 host, doped and co-doped samples were synthesized and investigated. Identification of crystalline phase was carried out with X-Ray Powder Diffraction. The luminescent properties were studied via photoluminescence emission and excitation using synchrotron radiation. Scintillator features were studied through radioluminescence emission spectrum. The results indicate that Ce3+ transfers either energy or electrons to Bi3+ when excited with UV (5.2 eV) or X-rays, respectively. In the first case, the overall white luminescence is improved, while in the latter, enhanced red luminescence from Bi2+ was observed, indicating the valence change of Bi ions, assisted by Ce co-dopant. A luminescent mechanism, based on the vacuum-referred binding energy model applied to the experimental data, was proposed to explain the Bi2+ emission, deepening the understanding of the Bi emission mechanism and opening the possibility of tailoring the Bi2+/Bi3+ proportion varying the Ce-co-doping concentration.
这项研究探讨了 LiLa(1-x-y)BixCeyP4O12 系统作为闪烁体材料的发光多功能性,它能够根据 Ce3+ 浓度的不同,在从蓝色到红色区域的范围内发光。事实证明,当掺杂一些稀土和铋离子时,LiLaP4O12 宿主可用作闪烁体材料。然而,迄今为止,人们还不知道铋离子插入 LiLaP4O12 基质后在 X 射线诱导下发生价态变化的过程,也不知道这种变化是否可以控制并用于增强发光发射。为了确定 Ce3+ 和 Bi3+ 离子在 LiLaP4O12 主体中的相互作用机制,我们合成并研究了掺杂和共掺杂样品。利用 X 射线粉末衍射技术对晶相进行了鉴定。利用同步辐射通过光致发光发射和激发研究了发光特性。通过辐射发光发射光谱研究了闪烁体的特征。结果表明,在紫外线(5.2 eV)或 X 射线的激发下,Ce3+ 会分别将能量或电子转移到 Bi3+。在前一种情况下,整体白色发光得到改善,而在后一种情况下,观察到来自 Bi2+ 的红色发光增强,这表明在 Ce 共掺杂剂的辅助下,Bi 离子的价态发生了变化。基于将真空参考结合能模型应用于实验数据,提出了一种发光机制来解释 Bi2+ 的发射,从而加深了对 Bi 发射机制的理解,并为改变 Ce 共掺杂浓度来定制 Bi2+/Bi3+ 比例提供了可能。
{"title":"The role of Ce3+ Co-doping in the luminescent enhancement of Bi3+ emission and Bi3+→Bi2+ conversion in LiLaP4O12 host","authors":"Adriano B. Andrade , José Henrique M. de Azevedo , Giordano F.C. Bispo , Thaíse M. de Jesus , Zélia S. Macedo , Mário E.G. Valerio","doi":"10.1016/j.optmat.2024.116409","DOIUrl":"10.1016/j.optmat.2024.116409","url":null,"abstract":"<div><div>This work investigates the luminescent versatility of the LiLa<sub>(1-x-y)</sub>Bi<sub>x</sub>Ce<sub>y</sub>P<sub>4</sub>O<sub>12</sub> system as a scintillator material capable of displaying emission in a range from the blue to the red region depending on the Ce<sup>3+</sup> concentration. The LiLaP<sub>4</sub>O<sub>12</sub> host has been proven to be useful as a scintillator material when doped with some rare earths and with bismuth ions. However, the process of bismuth valence change induced by X-rays, when inserted in the LiLaP<sub>4</sub>O<sub>12</sub> matrix, is not known to date, as well as whether this can be controlled and used to enhance the luminescence emission. To determine the mechanism of interaction between the Ce<sup>3+</sup> and Bi<sup>3+</sup> ions in the LiLaP<sub>4</sub>O<sub>12</sub> host, doped and co-doped samples were synthesized and investigated. Identification of crystalline phase was carried out with X-Ray Powder Diffraction. The luminescent properties were studied via photoluminescence emission and excitation using synchrotron radiation. Scintillator features were studied through radioluminescence emission spectrum. The results indicate that Ce<sup>3+</sup> transfers either energy or electrons to Bi<sup>3+</sup> when excited with UV (5.2 eV) or X-rays, respectively. In the first case, the overall white luminescence is improved, while in the latter, enhanced red luminescence from Bi<sup>2+</sup> was observed, indicating the valence change of Bi ions, assisted by Ce co-dopant. A luminescent mechanism, based on the vacuum-referred binding energy model applied to the experimental data, was proposed to explain the Bi<sup>2+</sup> emission, deepening the understanding of the Bi emission mechanism and opening the possibility of tailoring the Bi<sup>2+</sup>/Bi<sup>3+</sup> proportion varying the Ce-co-doping concentration.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116409"},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}