首页 > 最新文献

Photonics Letters of Poland最新文献

英文 中文
Comparative Analysis of Highly Sensitive PCF for Chemical Sensing in THz Regime 太赫兹区高灵敏PCF化学传感的比较分析
IF 0.6 Q4 OPTICS Pub Date : 2020-12-17 DOI: 10.4302/PLP.V12I4.999
Mohammad S. Islam, Anwar Sadath, Md. Rakibul Islam, M. Faisal
Nowadays photonic crystal fiber (PCF) is used for sensing purposes in different fields. In this work, we have proposed a PCF based chemical (Benzene and Ethanol) sensor. Finite Element Method (FEM) based software COMSOL 5.3a is used to investigate the numerical characteristics for the proposed structure. From the numerical analysis, we obtained high sensitivity with low losses for an optimum core diameter of 210 µm. Our proposed PCF works on a broad range of core diameters and THz frequency spectra. The fabrication of this model is very simple due to its simplistic design structure. Full Text: PDF ReferencesMd.F.H. Arif, Md.J.H. Biddut, "A new structure of photonic crystal fiber with high sensitivity, high nonlinearity, high birefringence and low confinement loss for liquid analyte sensing applications", Sensing Bio-Sensing Res. 12, 8 (2017). CrossRef P. Kumar, Md.H. Bikash, K. Ahmed, S. Sen, "A Novel Hexahedron Photonic Crystal Fiber in Terahertz Propagation: Design and Analysis", Photonics 6(1), 32 (2019). CrossRef S. Asaduzzaman, K. Ahmed, T. Bhuiyan, T. Farah, "Hybrid photonic crystal fiber in chemical sensing", SpringerPlus 5, 748 (2016). CrossRef Md.S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, M.R. Islam, "Ultra low-loss hybrid core porous fiber for broadband applications", App. Opt. 56(4), 1232 (2017). CrossRef S. Atakaramians, S. Afshar, H. Ebendorff-Heidepriem, M. Nagel, B.M. Fischer, D. Abbott, T.M. Monro, "THz porous fibers: design, fabrication and experimental characterization", Opt. Expr. 17(16), 14053 (2009). CrossRef
目前,光子晶体光纤(PCF)被用于不同领域的传感目的。在这项工作中,我们提出了一种基于PCF的化学(苯和乙醇)传感器。使用基于有限元法(FEM)的软件COMSOL 5.3a来研究所提出的结构的数值特性。从数值分析中,我们获得了高灵敏度和低损耗的最佳芯直径210µm。我们提出的PCF适用于广泛的核心直径和太赫兹频谱。由于其简单的设计结构,该模型的制造非常简单。全文:PDF参考文献Md.F.H.Arif,Md.J.H.Biddut,“一种用于液体分析物传感应用的具有高灵敏度、高非线性、高双折射和低限制损耗的新型光子晶体光纤结构”,传感生物传感研究,12,8(2017)。CrossRef P.Kumar,Md.H.Bikash,K.Ahmed,S.Sen,“太赫兹传播中的新型六面体光子晶体光纤:设计与分析”,《光子学》6(1),32(2019)。CrossRef S.Asaduzzaman,K.Ahmed,T.Bhuiyan,T.Farah,“化学传感中的混合光子晶体光纤”,SpringerPlus 5,748(2016)。CrossRef Md.S.Islam,J.Sultana,J.Atai,D.Abbott,S.Rana,M.R.Islam,“宽带应用的超低损耗混合芯多孔光纤”,应用。选择56(4),1232(2017)。CrossRef S.Atakaramaians,S.Afshar,H.Ebendorff Heideprime,M.Nagel,B.M.Fischer,D.Abbott,T.M.Monro,“太赫兹多孔纤维:设计、制造和实验表征”,Opt。Expr。17(16),14053(2009)。CrossRef
{"title":"Comparative Analysis of Highly Sensitive PCF for Chemical Sensing in THz Regime","authors":"Mohammad S. Islam, Anwar Sadath, Md. Rakibul Islam, M. Faisal","doi":"10.4302/PLP.V12I4.999","DOIUrl":"https://doi.org/10.4302/PLP.V12I4.999","url":null,"abstract":"Nowadays photonic crystal fiber (PCF) is used for sensing purposes in different fields. In this work, we have proposed a PCF based chemical (Benzene and Ethanol) sensor. Finite Element Method (FEM) based software COMSOL 5.3a is used to investigate the numerical characteristics for the proposed structure. From the numerical analysis, we obtained high sensitivity with low losses for an optimum core diameter of 210 µm. Our proposed PCF works on a broad range of core diameters and THz frequency spectra. The fabrication of this model is very simple due to its simplistic design structure. Full Text: PDF ReferencesMd.F.H. Arif, Md.J.H. Biddut, \"A new structure of photonic crystal fiber with high sensitivity, high nonlinearity, high birefringence and low confinement loss for liquid analyte sensing applications\", Sensing Bio-Sensing Res. 12, 8 (2017). CrossRef P. Kumar, Md.H. Bikash, K. Ahmed, S. Sen, \"A Novel Hexahedron Photonic Crystal Fiber in Terahertz Propagation: Design and Analysis\", Photonics 6(1), 32 (2019). CrossRef S. Asaduzzaman, K. Ahmed, T. Bhuiyan, T. Farah, \"Hybrid photonic crystal fiber in chemical sensing\", SpringerPlus 5, 748 (2016). CrossRef Md.S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, M.R. Islam, \"Ultra low-loss hybrid core porous fiber for broadband applications\", App. Opt. 56(4), 1232 (2017). CrossRef S. Atakaramians, S. Afshar, H. Ebendorff-Heidepriem, M. Nagel, B.M. Fischer, D. Abbott, T.M. Monro, \"THz porous fibers: design, fabrication and experimental characterization\", Opt. Expr. 17(16), 14053 (2009). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44506463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance analysis of MIMO communication system with NLOS UV channel 具有NLOS UV信道的MIMO通信系统性能分析
IF 0.6 Q4 OPTICS Pub Date : 2020-12-17 DOI: 10.4302/PLP.V12I4.985
G. Vasilyev, O. Kuzichkin, D. Surzhik
Performance analysis is carried out, of a multiple input, multiple output (MIMO) ultraviolet (UV) communication system with a non-line-of-sight (NLOS) UV channel. The achievable bit error coefficient is calculated using three spatial multiplexing methods for different bitrate values, azimuthal deviation between the directional diagrams of an optical transmitter and an optical receiver, and different noise levels. Full Text: PDF ReferencesZ. Xu, B. Sadler, "Ultraviolet communications: potential and state-of-the-art", IEEE Commun. Mag. 4667-73 (2009). CrossRef D. Han, Y. Liu, K. Zhang et al., "Theoretical and experimental research on diversity reception technology in NLOS UV communication system", Opt. Expr. 20(14), 15833 (2012). CrossRef Q. Guo, N. He, Z. He, "Research on the channel performances and transmission in UV-LED scatter communications", Study Opt. Comm. 3, 64 (2013). DirectLink G. Chen, L. Liao, Z. Li et al., "Experimental and simulated evaluation of long distance NLOS UV communication", Communication Systems, Networks and Digital Signal Processing (CSND-SP), 9th Int. Symp. on IEEE, 904-909 (2014). CrossRef M.A. El-Shimy, S. Hranilovic, "Spatial-Diversity Imaging Receivers for Non-Line-of-Sight Solar-Blind UV Communications", J. Lightwave Techn. 33(11), 2246 (2015). CrossRef G. Shaw, M. Nischan, M. Iyengar, S. Kaushik, M. Griffin, NLOS UV communication for distributed sensor systems, Proc. SPIE 412683, 96 (2000). CrossRef I.S. Konstantinov, G.S. Vasyliev, O.R. Kuzichkin, D.I. Surzhik, I.A. Kurilov, S.A. Lazarev, "AUV Link Mobile Ad-Hoc Network Examination", J. Eng. Adv. Techn. 8(5S) July 2019 CrossRef I.S. Konstantinov, G.S. Vasilyev, O.R. Kuzichkin, I.A. Kurilov, S.A. Lazarev, "Modeling and Analysis of the Characteristics of Ultraviolet Channels under Different Conditions of Radiation Propagation for the Organization of Wireless AD-HOC Network", J. Adv. Res. Dynam. Contr. Syst. 07, 1853 (2018) DirectLink I.S. Konstantinov, G.S. Vasyliev, O.R. Kuzichkin, D.I. Surzhik, I.A. Kurilov, S.A. Lazarev, "Development Of Uv Communication Channels Characteristics Modeling Algorithm In A Mobile Ad-Hoc Network", J. Adv. Res. Dynam. Contr. Syst. 11(08), 1920 (2019). CrossRef G. Chen, F. Abou-Galala, Z. Xu, B.M. Sadler, "Experimental evaluation of LED-based solar blind NLOS communication links", Opt. Expr. 16(19), 15059 (2008). CrossRef
对具有非直瞄(NLOS)紫外信道的多输入多输出(MIMO)紫外(UV)通信系统进行了性能分析。对于不同的比特率值、光发射机和光接收机的方向图之间的方位角偏差以及不同的噪声水平,使用三种空间复用方法来计算可实现的比特误差系数。全文:PDF参考Z。徐,B.萨德勒,“紫外线通信:潜力和最先进技术”,IEEE通讯社。杂志4667-73(2009)。韩,刘,张等,“非直瞄紫外通信系统分集接收技术的理论与实验研究”,Opt。Expr。20(14),15833(2012)。郭,何,何,“UV-LED散射通信信道性能与传输的研究”,研究选择。通信3,64(2013)。DirectLink G.Chen,L.Liao,Z.Li等,“长距离非直瞄紫外通信的实验与仿真评估”,通信系统、网络与数字信号处理(CSND-SP),第九届国际学术研讨会。关于IEEE,904-909(2014)。CrossRef M.A.El Shimy,S.Hranilovic,“用于非视线日盲紫外线通信的空间分集成像接收器”,光波技术杂志,33(11),2246(2015)。CrossRef G.Shaw,M.Nischan,M.Iyengar,S.Kaushik,M.Griffin,分布式传感器系统的非直瞄紫外通信,Proc。SPIE 412683,96(2000)。CrossRef I.S.Konstantinov,G.S.Vasyliev,O.R.Kuzichkin,D.I.Surzhik,I.A.Kurilov,美国Lazarev,“AUV链接移动Ad-Hoc网络检查”,J.Eng.Adv.Techn,8(5S)2019年7月,“无线AD-HOC网络组织中不同辐射传播条件下紫外线信道特性的建模和分析”,J.Adv.Res.Dynam。对照。系统。071853(2018)DirectLink I.S.Konstantinov,G.S.Vasyliev,O.R.Kuzichkin,D.I.Surzhik,I.A.Kurilov,美国Lazarev,“移动Ad-Hoc网络中Uv通信信道特性建模算法的开发”,J.Adv.Res.Dynam。对照。系统。1920(2019)年11月8日。CrossRef G.Chen,F.Abou Galala,Z.Xu,B.M.Sadler,“基于LED的日盲非直瞄通信链路的实验评估”,Opt。Expr。16(19),15059(2008)。CrossRef
{"title":"Performance analysis of MIMO communication system with NLOS UV channel","authors":"G. Vasilyev, O. Kuzichkin, D. Surzhik","doi":"10.4302/PLP.V12I4.985","DOIUrl":"https://doi.org/10.4302/PLP.V12I4.985","url":null,"abstract":"Performance analysis is carried out, of a multiple input, multiple output (MIMO) ultraviolet (UV) communication system with a non-line-of-sight (NLOS) UV channel. The achievable bit error coefficient is calculated using three spatial multiplexing methods for different bitrate values, azimuthal deviation between the directional diagrams of an optical transmitter and an optical receiver, and different noise levels. Full Text: PDF ReferencesZ. Xu, B. Sadler, \"Ultraviolet communications: potential and state-of-the-art\", IEEE Commun. Mag. 4667-73 (2009). CrossRef D. Han, Y. Liu, K. Zhang et al., \"Theoretical and experimental research on diversity reception technology in NLOS UV communication system\", Opt. Expr. 20(14), 15833 (2012). CrossRef Q. Guo, N. He, Z. He, \"Research on the channel performances and transmission in UV-LED scatter communications\", Study Opt. Comm. 3, 64 (2013). DirectLink G. Chen, L. Liao, Z. Li et al., \"Experimental and simulated evaluation of long distance NLOS UV communication\", Communication Systems, Networks and Digital Signal Processing (CSND-SP), 9th Int. Symp. on IEEE, 904-909 (2014). CrossRef M.A. El-Shimy, S. Hranilovic, \"Spatial-Diversity Imaging Receivers for Non-Line-of-Sight Solar-Blind UV Communications\", J. Lightwave Techn. 33(11), 2246 (2015). CrossRef G. Shaw, M. Nischan, M. Iyengar, S. Kaushik, M. Griffin, NLOS UV communication for distributed sensor systems, Proc. SPIE 412683, 96 (2000). CrossRef I.S. Konstantinov, G.S. Vasyliev, O.R. Kuzichkin, D.I. Surzhik, I.A. Kurilov, S.A. Lazarev, \"AUV Link Mobile Ad-Hoc Network Examination\", J. Eng. Adv. Techn. 8(5S) July 2019 CrossRef I.S. Konstantinov, G.S. Vasilyev, O.R. Kuzichkin, I.A. Kurilov, S.A. Lazarev, \"Modeling and Analysis of the Characteristics of Ultraviolet Channels under Different Conditions of Radiation Propagation for the Organization of Wireless AD-HOC Network\", J. Adv. Res. Dynam. Contr. Syst. 07, 1853 (2018) DirectLink I.S. Konstantinov, G.S. Vasyliev, O.R. Kuzichkin, D.I. Surzhik, I.A. Kurilov, S.A. Lazarev, \"Development Of Uv Communication Channels Characteristics Modeling Algorithm In A Mobile Ad-Hoc Network\", J. Adv. Res. Dynam. Contr. Syst. 11(08), 1920 (2019). CrossRef G. Chen, F. Abou-Galala, Z. Xu, B.M. Sadler, \"Experimental evaluation of LED-based solar blind NLOS communication links\", Opt. Expr. 16(19), 15059 (2008). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43599155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and deposition of Silver nanostructures on the silica microsphere by laser-assisted photochemical method for SERS applications 激光辅助光化学法在二氧化硅微球上合成和沉积银纳米结构用于SERS应用
IF 0.6 Q4 OPTICS Pub Date : 2020-12-17 DOI: 10.4302/PLP.V12I4.1049
T. B. Pham, T. Nguyen, T. Hoang, H. Bui, Thanh Son Pham, V. D. Nguyen, Hoi V. Pham
The homogeneous distribution of nano-metallic structures on the surface-enhanced Raman (SERS) substrates plays an important factor for high-sensitive Raman scattering measurement. In this paper, we present a low-cost laser-assisted photochemical method for making a SERS probe based on silver nanostructures, which are one-timely synthesized nano-silver structures, homogeneously deposited on silica microsphere surfaces. Achieved SERS-activity substrates with a homogeneous distribution of Ag-nanostructures are verified by a mapping technique on the surface of Ag-coated microsphere for the detection of low concentration of Rhodamine 6G in aqueous solutions in a range of 10-4-10-9M. The obtained results show that a SERS microsphere probe has a good repetition of SERS-activity in any space of sensing area, and large potential for application in a biochemical sensing technique. Full Text: PDF ReferencesY. Chen et al., "Interfacial reactions in lithium batteries", J. Phys. D: Appl. Phys. 50, 02510 (2017). CrossRef T.B. Pham, H. Bui, H.T. Le, V.H. Pham, "Characteristics of the Fiber Laser Sensor System Based on Etched-Bragg Grating Sensing Probe for Determination of the Low Nitrate Concentration in Water", Sensors 17, 0007 (2017). CrossRef X. Wang, O.S. Wolfbeis, "Fiber-Optic Chemical Sensors and Biosensors (2013–2015)", Anal. Chem. 88, 203 (2016). CrossRef R. Wang, K. Kim, N. Choi, X. Wang, J. Lee, J.H. Joen, G. Rhie, J. Choo, "Highly sensitive detection of high-risk bacterial pathogens using SERS-based lateral flow assay strips", Sens. Actuators B-Chem. 270, 72 (2018). CrossRef H. Zhang et al., "Determination of Pesticides by Surface-Enhanced Raman Spectroscopy on Gold-Nanoparticle-Modified Polymethacrylate", Anal. Let. 49, 2268 (2016). CrossRef L. Chen, H. Yan, X. Xue, D. Jiang, Y. Cai, D. Liang, Y.M. Jung, X.X. Han, B. Zhao, "Surface-Enhanced Raman Scattering (SERS) Active Gold Nanoparticles Decorated on a Porous Polymer Filter", Appl. Spectrosc. 71, 1543 (2017). CrossRef A. Matikainen, T. Nuutinen, P. Vahimaa, S. Honkanen, "A solution to the fabrication and tarnishing problems of surface-enhanced Raman spectroscopy (SERS) fiber probes", Sci. Rep. 5, 8320 (2015). CrossRef J. Zhang, S. Chen, T. Gong, X. Zhang, Y. Zhu, "Tapered Fiber Probe Modified by Ag Nanoparticles for SERS Detection", Plasm. 11, 743 (2016). CrossRef W. Xu et al., "A Dual-Butterfly Structure Gyroscope", Sensors 17, 467 (2017). CrossRef K. Setoura, S. Ito, M. Yamada, H. Yamauchi, H. Miyasaka, "Fabrication of silver nanoparticles from silver salt aqueous solution at water-glass interface by visible CW laser irradiation without reducing reagents", J. Photochem. Photobio. A: Chem. 344, 168 (2017). CrossRef K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, C. Gao, "Porous Au–Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis", Nano Lett. 16, 3675 (2016). CrossRef Z. Huang, X. Lei, Y. Liu, Z. Wang, X. Wang, Z. Wang, Q. Mao, G. Meng, "Tapered Optica
纳米金属结构在表面增强拉曼(SERS)衬底上的均匀分布是实现高灵敏度拉曼散射测量的重要因素。在本文中,我们提出了一种低成本的激光辅助光化学方法来制作基于银纳米结构的SERS探针,银纳米结构是一次性合成的纳米银结构,均匀沉积在硅微球表面。通过在银包覆微球表面的测绘技术验证了具有均匀分布的银纳米结构的sers活性底物,用于检测水溶液中10-4-10-9M范围内的低浓度罗丹明6G。结果表明,SERS微球探针在传感区域的任何空间都具有良好的SERS活性重复性,在生化传感技术中具有很大的应用潜力。全文:PDF参考。Chen et al.,“锂电池的界面反应”,物理学报。D::。物理学报,50,02510(2017)。引用本文:范廷彬,裴辉,李洪涛,范卫辉,“基于蚀刻光栅传感探头的光纤激光传感系统在水中低硝酸盐浓度测定中的应用”,传感器,17(07)(2017)。Wang X. Wang, O.S. Wolfbeis,“光纤化学传感器与生物传感器(2013-2015)”,vol . 3, no . 1。化学,88,203(2016)。王晓明,王晓明,王晓明,李俊杰,李俊辉,王晓明,周俊杰,“基于sers的横向流动试验试纸的高灵敏度检测”,中国生物医学工程学报。270,72(2018)。CrossRef H. Zhang et al.,“金纳米颗粒修饰聚甲基丙烯酸酯表面增强拉曼光谱测定农药”,vol . 3;Let. 49, 2268(2016)。【交叉参考】陈丽丽,闫华,薛晓霞,姜东,蔡勇,梁东,钟彦明,韩晓霞,赵斌,“表面增强拉曼散射(SERS)活性金纳米粒子在多孔聚合物过滤器上的修饰”,应用科学,光谱学学报,2011,43(2017)。CrossRef A. Matikainen, T. Nuutinen, P. Vahimaa, S. Honkanen,“表面增强拉曼光谱(SERS)光纤探针的制备和抛光问题的解决方案”,Sci。众议员5,8320(2015)。[CrossRef]张军,陈生,龚彤,张晓霞,朱勇,“纳米Ag修饰的锥形纤维探针用于SERS检测”,高分子学报,11,743(2016)。CrossRef徐伟等,“双蝴蝶结构陀螺仪”,传感器,17,467(2017)。[CrossRef]王晓明,王晓明,王晓明,“用连续波激光辐照制备银纳米粒子的研究进展”,光化学学报。Photobio。[j] .化学学报,2016,33(5)。引用本文:刘凯,白艳,张磊,杨志强,范琪,郑宏,殷艳,高春春,“高密度高可达热点的Au-Ag纳米微球SERS分析”,纳米材料学报,16,3675(2016)。引用本文:黄志强,雷晓明,刘勇,王志强,王晓明,王志强,毛强,王志强,“基于等离子体纳米结构的锥形光纤探针在表面增强拉曼散射中的应用”,中国科学院学报(自然科学版)板牙。接口7,17247(2015)。CrossRef
{"title":"Synthesis and deposition of Silver nanostructures on the silica microsphere by laser-assisted photochemical method for SERS applications","authors":"T. B. Pham, T. Nguyen, T. Hoang, H. Bui, Thanh Son Pham, V. D. Nguyen, Hoi V. Pham","doi":"10.4302/PLP.V12I4.1049","DOIUrl":"https://doi.org/10.4302/PLP.V12I4.1049","url":null,"abstract":"The homogeneous distribution of nano-metallic structures on the surface-enhanced Raman (SERS) substrates plays an important factor for high-sensitive Raman scattering measurement. In this paper, we present a low-cost laser-assisted photochemical method for making a SERS probe based on silver nanostructures, which are one-timely synthesized nano-silver structures, homogeneously deposited on silica microsphere surfaces. Achieved SERS-activity substrates with a homogeneous distribution of Ag-nanostructures are verified by a mapping technique on the surface of Ag-coated microsphere for the detection of low concentration of Rhodamine 6G in aqueous solutions in a range of 10-4-10-9M. The obtained results show that a SERS microsphere probe has a good repetition of SERS-activity in any space of sensing area, and large potential for application in a biochemical sensing technique. Full Text: PDF ReferencesY. Chen et al., \"Interfacial reactions in lithium batteries\", J. Phys. D: Appl. Phys. 50, 02510 (2017). CrossRef T.B. Pham, H. Bui, H.T. Le, V.H. Pham, \"Characteristics of the Fiber Laser Sensor System Based on Etched-Bragg Grating Sensing Probe for Determination of the Low Nitrate Concentration in Water\", Sensors 17, 0007 (2017). CrossRef X. Wang, O.S. Wolfbeis, \"Fiber-Optic Chemical Sensors and Biosensors (2013–2015)\", Anal. Chem. 88, 203 (2016). CrossRef R. Wang, K. Kim, N. Choi, X. Wang, J. Lee, J.H. Joen, G. Rhie, J. Choo, \"Highly sensitive detection of high-risk bacterial pathogens using SERS-based lateral flow assay strips\", Sens. Actuators B-Chem. 270, 72 (2018). CrossRef H. Zhang et al., \"Determination of Pesticides by Surface-Enhanced Raman Spectroscopy on Gold-Nanoparticle-Modified Polymethacrylate\", Anal. Let. 49, 2268 (2016). CrossRef L. Chen, H. Yan, X. Xue, D. Jiang, Y. Cai, D. Liang, Y.M. Jung, X.X. Han, B. Zhao, \"Surface-Enhanced Raman Scattering (SERS) Active Gold Nanoparticles Decorated on a Porous Polymer Filter\", Appl. Spectrosc. 71, 1543 (2017). CrossRef A. Matikainen, T. Nuutinen, P. Vahimaa, S. Honkanen, \"A solution to the fabrication and tarnishing problems of surface-enhanced Raman spectroscopy (SERS) fiber probes\", Sci. Rep. 5, 8320 (2015). CrossRef J. Zhang, S. Chen, T. Gong, X. Zhang, Y. Zhu, \"Tapered Fiber Probe Modified by Ag Nanoparticles for SERS Detection\", Plasm. 11, 743 (2016). CrossRef W. Xu et al., \"A Dual-Butterfly Structure Gyroscope\", Sensors 17, 467 (2017). CrossRef K. Setoura, S. Ito, M. Yamada, H. Yamauchi, H. Miyasaka, \"Fabrication of silver nanoparticles from silver salt aqueous solution at water-glass interface by visible CW laser irradiation without reducing reagents\", J. Photochem. Photobio. A: Chem. 344, 168 (2017). CrossRef K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, C. Gao, \"Porous Au–Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis\", Nano Lett. 16, 3675 (2016). CrossRef Z. Huang, X. Lei, Y. Liu, Z. Wang, X. Wang, Z. Wang, Q. Mao, G. Meng, \"Tapered Optica","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45690185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commercially available granulates PMMA and PS - potential problems with the production of polymer optical fibers 商用颗粒PMMA和PS-聚合物光纤生产的潜在问题
IF 0.6 Q4 OPTICS Pub Date : 2020-09-30 DOI: 10.4302/PLP.V12I3.1036
Mateusz Józwicki, M. Gargol, Małgorzata Gil-Kowalczyk, P. Mergo
The aim of the study was to verify the usefulness of commercially available granulates of PMMA (poly (methyl methacrylate) and PS (polystyrene) for the production of polymer optical fibers by extrusion method. Samples were subjected to thermal processing in various conditions (different temperatures and exposure time). Thermal (TG/DTG) and spectroscopic (ATR/FT-IR) analyses were carried out to analyze changes in the samples. Based on FT-IR analysis of liquid monomers and granulates the conversion of double bonds was calculated, which gave us a picture of the degree of monomers conversion, crucial information from the technological point of view. Full Text: PDF References O. Ziemann, J. Krauser, P.E. Zamzow, W. Daum, POF Polymer Optical Fibersfor Data Communication (Berlin: Springer 2008). DirectLink P. Stajanca et al. "Solution-mediated cladding doping of commercial polymer optical fibers", Opt. Fiber Technol. 41, 227-234, (2018). CrossRef K. Peters, "Polymer optical fiber sensors—a review", Smart Mater. Struct., 20 013002 (2011) CrossRef J. Zubia and J. Arrue, "Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications", Opt. Fiber Technol. 7 ,101-40 (2001) CrossRef M. Beckers, T. Schluter, T. Gries, G. Seide, C.-A. Bunge, "6 - Fabrication techniques for polymer optical fibres", Polymer Optical Fibres, 187-199 (2017) CrossRef M. Niedźwiedź , M. Gil, M. Gargol , W. Podkościelny, P. Mergo, "Determination of the optimal extrusion temperature of the PMMA optical fibers", Phot. Lett. Poland 11, 7-9 (2019) CrossRef
本研究的目的是验证市售PMMA(聚甲基丙烯酸甲酯)和PS(聚苯乙烯)颗粒在通过挤出法生产聚合物光纤方面的有用性。样品在各种条件下(不同的温度和暴露时间)进行热处理。进行热分析(TG/DTG)和光谱分析(ATR/FT-IR)以分析样品中的变化。基于对液体单体和颗粒的FT-IR分析,计算了双键的转化率,这为我们提供了单体转化率的图像,这是从技术角度的关键信息。全文:PDF参考文献O.Ziemann,J.Krauser,P.E.Zamzow,W.Daum,数据通信用POF聚合物光纤(柏林:施普林格,2008年)。DirectLink P.Stajanca等人“商业聚合物光纤的溶液介导包层掺杂”,Opt。纤维技术。41227-234,(2018)。CrossRef K.Peters,“聚合物光纤传感器——综述”,Smart Mater。结构。,20 013002(2011)CrossRef J.Zubia和J.Arrue,“塑料光纤:介绍其技术过程和应用”,Opt。纤维技术。7101-40(2001)CrossRef M.Beckers,T.Schluter,T.Gries,G.Seide,C.-A.Bunge,“6-聚合物光纤的制造技术”,《聚合物光纤》,187-199(2017),CrossRef M.Nied罗兹,M.Gil,M.Gargol,W.Podkościelny,P.Mergo,“确定PMMA光纤的最佳挤出温度”,Phot。Lett。波兰11,7-9(2019)CrossRef
{"title":"Commercially available granulates PMMA and PS - potential problems with the production of polymer optical fibers","authors":"Mateusz Józwicki, M. Gargol, Małgorzata Gil-Kowalczyk, P. Mergo","doi":"10.4302/PLP.V12I3.1036","DOIUrl":"https://doi.org/10.4302/PLP.V12I3.1036","url":null,"abstract":"The aim of the study was to verify the usefulness of commercially available granulates of PMMA (poly (methyl methacrylate) and PS (polystyrene) for the production of polymer optical fibers by extrusion method. Samples were subjected to thermal processing in various conditions (different temperatures and exposure time). Thermal (TG/DTG) and spectroscopic (ATR/FT-IR) analyses were carried out to analyze changes in the samples. Based on FT-IR analysis of liquid monomers and granulates the conversion of double bonds was calculated, which gave us a picture of the degree of monomers conversion, crucial information from the technological point of view. Full Text: PDF References O. Ziemann, J. Krauser, P.E. Zamzow, W. Daum, POF Polymer Optical Fibersfor Data Communication (Berlin: Springer 2008). DirectLink P. Stajanca et al. \"Solution-mediated cladding doping of commercial polymer optical fibers\", Opt. Fiber Technol. 41, 227-234, (2018). CrossRef K. Peters, \"Polymer optical fiber sensors—a review\", Smart Mater. Struct., 20 013002 (2011) CrossRef J. Zubia and J. Arrue, \"Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications\", Opt. Fiber Technol. 7 ,101-40 (2001) CrossRef M. Beckers, T. Schluter, T. Gries, G. Seide, C.-A. Bunge, \"6 - Fabrication techniques for polymer optical fibres\", Polymer Optical Fibres, 187-199 (2017) CrossRef M. Niedźwiedź , M. Gil, M. Gargol , W. Podkościelny, P. Mergo, \"Determination of the optimal extrusion temperature of the PMMA optical fibers\", Phot. Lett. Poland 11, 7-9 (2019) CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"12 1","pages":"79-81"},"PeriodicalIF":0.6,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47393490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation of mid-infrared Er:ZBLAN fiber laser 中红外Er:ZBLAN光纤激光器的实验研究
IF 0.6 Q4 OPTICS Pub Date : 2020-09-30 DOI: 10.4302/PLP.V12I3.989
Ł. Pajewski, Ł. Sójka, S. Lamrini, T. Benson, A. Seddon, S. Sujecki
In this contribution the diode pumped high-power Er:ZBLAN laser operating at around 2.8 µm is reported. The laser produces 2 W output power with the slope efficiency of 24 % measured with respect to the incident pump power. Full Text: PDF References S. D. Jackson, "Towards high-power mid-infrared emission from a fibre laser", Nature Photonics 6, 423 (2012). CrossRef V. Portosi, D. Laneve, C. M. Falconi, and F. Prudenzano, "Advances on Photonic Crystal Fiber Sensors and Applications", Sensors 19, (2019). CrossRef M. C. Falconi, D. Laneve, and F. Prudenzano, "Advances in Mid-IR Fiber Lasers: Tellurite, Fluoride and Chalcogenide", Fibers 5, 23 (2017). CrossRef M. Michalska, P. Grześ, J. Świderski, "High power, 100 W-class, thulium-doped all-fiber lasers", Phot. Lett. Poland, 11, 109 (2019). CrossRef Y. O. Aydin, V. Fortin, R. Vallee, and M. Bernier, "Towards power scaling of 2.8  μm fiber lasers", Opt. Lett. 43, 4542 (2018). CrossRef S. Crawford, D. D. Hudson, and S. D. Jackson, "High-Power Broadly Tunable 3- μm Fiber Laser for the Measurement of Optical Fiber Loss", IEEE Photonics Journal 7, 1 (2015). CrossRef V. Fortin, F. Jobin, M. Larose, M. Bernier, and R. Vallee, "10-W-level monolithic dysprosium-doped fiber laser at 3.24  μm", Opt. Lett. 44, 491 (2019). CrossRef L. Sojka, et al., "Experimental Investigation of Mid-Infrared Laser Action From Dy 3+ Doped Fluorozirconate Fiber", IEEE Photon. Technol. Lett. 30, 1083 (2018). CrossRef M. Pollnan and S. D. Jackson, "Erbium 3 /spl mu/m fiber lasers", IEEE J. Sel. Top. in Quantum Electron., 7, 30 (2001). CrossRef Y. O. Aydin, F. Maes, V. Fortin, S. T. Bah, R. Vallee, and M. Bernier, "Endcapping of high-power 3 µm fiber lasers", Opt. Express 27, 20659 (2019). CrossRef C. A. Schafer, "Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8  μm", et al., Opt. Lett. 43, 2340 (2018). CrossRef O. Henderson-Sapir, J. Munch, and D. J. Ottaway, "New energy-transfer upconversion process in Er 3+ :ZBLAN mid-infrared fiber lasers", Opt. Express 24, 6869 (2016). CrossRef F. Maes, V. Fortin, S. Poulain, M. Poulain, J.-Y. Carree, M. Bernier, and R. Vallee, "Room-temperature fiber laser at 3.92  μm", Optica 5, 761 (2018). CrossRef R. I. Woodward, M. R. Majewski, D. D. Hudson, and S. D. Jackson, "Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing", APL Photonics 4, 020801 (2019). CrossRef M. Kochanowicz, et al., "Near-IR and mid-IR luminescence and energy transfer in fluoroindate glasses co-doped with Er 3+ /Tm 3+ ", Opt. Mater. Express 9, 4772 (2019). CrossRef M. Kochanowicz, et al., "Sensitization of Ho 3+ - doped fluoroindate glasses for near and mid-infrared emission", Optical Materials 101, 109707 (2020). CrossRef J. Wang, X. Zhu, M. Mollaee, J. Zong, and N. Peyhambarian, "Efficient energy transfer from Er 3+ to Ho 3+ and Dy 3+ in ZBLAN glass", Opt. Express 28, 5189 (2020). CrossRef M. C. Falconi, D. Laneve, V. Portosi, S. Taccheo, and F. Prudenzano, "Design of a Multi-W
在这篇文章中,报道了二极管泵浦的高功率Er:ZBLAN激光器在2.8µm左右工作。激光器产生2W输出功率,相对于入射泵浦功率测量的斜率效率为24%。全文:PDF参考文献S.D.Jackson,“光纤激光器的高功率中红外发射”,《自然光子学》6423(2012)。CrossRef V.Portosi、D.Laneve、C.M.Falconi和F.Prudenzano,“光子晶体光纤传感器及其应用进展”,传感器19,(2019)。CrossRef M.C.Falconi、D.Laneve和F.Prudenzano,“中红外光纤激光器的进展:碲化物、氟化物和硫族化合物”,Fibers 5,23(2017)。CrossRef M.Michalska,P.Grześ,J.widerski,“高功率,100W级,掺铊全光纤激光器”,Phot。Lett。波兰,11209(2019)。CrossRef Y.O.Aydin、V.Fortin、R.Vallee和M.Bernier,“迈向2.8的功率缩放  μm光纤激光器”,Opt.Lett.434452(2018)。CrossRef S.Crawford、D.D.Hudson和S.D.Jackson,“用于测量光纤损耗的高功率宽调谐3-μm光纤激光”,IEEE光子杂志7,1(2015)。CrossRef V.Fortin、F.Jobin、m.Larose、m.Bernier和R.Vallee,“3.24时的10-W级单片掺镝光纤激光器  μm”,Opt.Lett.44491(2019)。CrossRef L.Sojka等人,“掺Dy3+氟锆酸盐光纤中红外激光作用的实验研究”,IEEE Photon.Technol.Lett.301083(2018)。CrossRef m.Pollnan和S.D.Jackson,“Erbium 3/splμ/m光纤激光器”,IEEE J.Sel.Top.in Quantum Electron.,7,30(2001)。CrossRef Y.O.Aydin,F.Maes,V.Fortin,S.T.Bah,R。Vallee和M.Bernier,“高功率3µM光纤激光器的端盖”,Opt。《快报》2720659(2019)。CrossRef C.A.Schafer,“2.8时用于高功率光纤激光器的氟化物光纤侧泵浦耦合器  μm”,等人,Opt.Lett.432340(2018)。CrossRef O.Henderson Sapir、J.Munch和D.J.Ottaway,“Er3+中的新能量传输上转换过程:ZBLAN中红外光纤激光器”,Opt.Express 246869(2016)。CrossRef F.Maes、V.Fortin、S.Poulain、m.Poulain,J.-Y.Carree、m.Bernier和R.Vallee,“3.92室温光纤激光器  μm”,Optica 5761(2018)。CrossRef R.I.Woodward,m.R.Majewski,D.D.Hudson和S.D.Jackson,“用于实时氨气传感的扫描波长中红外光纤激光器”,APL Photonics 4200801(2019)。CrossRef m.Kochanowicz等人,“与Er 3+/Tm 3+共掺杂的氟茚酸盐玻璃中的近红外和中红外发光和能量转移”,Opt.Mater.Express 94772(2019),CrossRef m。Kochanowicz等人,“掺杂Ho3+的氟茚酸盐玻璃对近红外和中红外发射的增敏作用”,光学材料101109707(2020)。CrossRef J.Wang,X.Zhu,M.Mollaee,J.Zong和N.Peyhambarian,“ZBLAN玻璃中Er3+到Ho3+和Dy3+的有效能量转移”,Opt。Express 285189(2020)。CrossRef M.C.Falconi、D.Laneve、V.Portosi、S.Taccheo和F.Prudenzano,“基于Tm:Er:Yb:Ho共掺杂锗酸盐玻璃的多波长光纤激光器的设计”,光波技术杂志1(2020)。CrossRef K.Anders,A.Jusza,P.Komorowski,P.Andrejuk和R.Piramidowicz,“掺Er3+和Yb3+ZBLAN玻璃中的短波长上转换发射研究”,J.Lumin。201227(2018)。CrossRef P.Komorowski,K。安德斯,U。Zdulska,R。Piramidowicz R.“掺铒ZBLAN光纤激光器在可见光中的可行性研究”,Photonics Lett Pol 9,85(2017)。CrossRef J.Swiderski、M.Michalska和P.Grzes,“在由2µM锁模光纤激光器和放大器直接泵浦的ZBLAN光纤中,以3.52W时间平均功率产生宽带和顶部平坦的中红外超连续谱”,应用物理学B 124152(2018)。CrossRef V.Fortin、M.Bernier、S.T.Bah和R.Vallee,“30  W氟化玻璃全光纤激光器2.94  μm”,Opt.Lett.402882(2015)。交叉参考
{"title":"Experimental investigation of mid-infrared Er:ZBLAN fiber laser","authors":"Ł. Pajewski, Ł. Sójka, S. Lamrini, T. Benson, A. Seddon, S. Sujecki","doi":"10.4302/PLP.V12I3.989","DOIUrl":"https://doi.org/10.4302/PLP.V12I3.989","url":null,"abstract":"In this contribution the diode pumped high-power Er:ZBLAN laser operating at around 2.8 µm is reported. The laser produces 2 W output power with the slope efficiency of 24 % measured with respect to the incident pump power. Full Text: PDF References S. D. Jackson, \"Towards high-power mid-infrared emission from a fibre laser\", Nature Photonics 6, 423 (2012). CrossRef V. Portosi, D. Laneve, C. M. Falconi, and F. Prudenzano, \"Advances on Photonic Crystal Fiber Sensors and Applications\", Sensors 19, (2019). CrossRef M. C. Falconi, D. Laneve, and F. Prudenzano, \"Advances in Mid-IR Fiber Lasers: Tellurite, Fluoride and Chalcogenide\", Fibers 5, 23 (2017). CrossRef M. Michalska, P. Grześ, J. Świderski, \"High power, 100 W-class, thulium-doped all-fiber lasers\", Phot. Lett. Poland, 11, 109 (2019). CrossRef Y. O. Aydin, V. Fortin, R. Vallee, and M. Bernier, \"Towards power scaling of 2.8  μm fiber lasers\", Opt. Lett. 43, 4542 (2018). CrossRef S. Crawford, D. D. Hudson, and S. D. Jackson, \"High-Power Broadly Tunable 3- μm Fiber Laser for the Measurement of Optical Fiber Loss\", IEEE Photonics Journal 7, 1 (2015). CrossRef V. Fortin, F. Jobin, M. Larose, M. Bernier, and R. Vallee, \"10-W-level monolithic dysprosium-doped fiber laser at 3.24  μm\", Opt. Lett. 44, 491 (2019). CrossRef L. Sojka, et al., \"Experimental Investigation of Mid-Infrared Laser Action From Dy 3+ Doped Fluorozirconate Fiber\", IEEE Photon. Technol. Lett. 30, 1083 (2018). CrossRef M. Pollnan and S. D. Jackson, \"Erbium 3 /spl mu/m fiber lasers\", IEEE J. Sel. Top. in Quantum Electron., 7, 30 (2001). CrossRef Y. O. Aydin, F. Maes, V. Fortin, S. T. Bah, R. Vallee, and M. Bernier, \"Endcapping of high-power 3 µm fiber lasers\", Opt. Express 27, 20659 (2019). CrossRef C. A. Schafer, \"Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8  μm\", et al., Opt. Lett. 43, 2340 (2018). CrossRef O. Henderson-Sapir, J. Munch, and D. J. Ottaway, \"New energy-transfer upconversion process in Er 3+ :ZBLAN mid-infrared fiber lasers\", Opt. Express 24, 6869 (2016). CrossRef F. Maes, V. Fortin, S. Poulain, M. Poulain, J.-Y. Carree, M. Bernier, and R. Vallee, \"Room-temperature fiber laser at 3.92  μm\", Optica 5, 761 (2018). CrossRef R. I. Woodward, M. R. Majewski, D. D. Hudson, and S. D. Jackson, \"Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing\", APL Photonics 4, 020801 (2019). CrossRef M. Kochanowicz, et al., \"Near-IR and mid-IR luminescence and energy transfer in fluoroindate glasses co-doped with Er 3+ /Tm 3+ \", Opt. Mater. Express 9, 4772 (2019). CrossRef M. Kochanowicz, et al., \"Sensitization of Ho 3+ - doped fluoroindate glasses for near and mid-infrared emission\", Optical Materials 101, 109707 (2020). CrossRef J. Wang, X. Zhu, M. Mollaee, J. Zong, and N. Peyhambarian, \"Efficient energy transfer from Er 3+ to Ho 3+ and Dy 3+ in ZBLAN glass\", Opt. Express 28, 5189 (2020). CrossRef M. C. Falconi, D. Laneve, V. Portosi, S. Taccheo, and F. Prudenzano, \"Design of a Multi-W","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"12 1","pages":"73-75"},"PeriodicalIF":0.6,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49367934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-dimensional photonic crystal waveguide based on SOI platform for transverse magnetic polarization-maintaining devices 基于SOI平台的一维横向磁保偏光子晶体波导
IF 0.6 Q4 OPTICS Pub Date : 2020-09-30 DOI: 10.4302/PLP.V12I3.1044
N. L. Kazanskiy, M. A. Butt
In this letter, a TM-polarization C-band pass one-dimensional photonic crystal strip waveguide (1D-PCSW) is presented. The waveguide structure is based on a silicon-on-insulator platform which is easy to realize using standard CMOS technology. The numerical study is conducted via 3D-finite element method (FEM). The transmittance and polarization extinction ratio (PER) is enhanced by optimizing the geometric parameters of the device. As a result, a TM polarized light can travel in the waveguide with ~2 dB loss for all C-band telecommunication wavelength window whereas the TE polarized light suffers a high transmission loss of >30 dB. As a result, a PER of ~28.5 dB can be obtained for the whole C-band wavelengths range. The total length of the proposed device is around 8.4 µm long including 1 µm silicon strip waveguide segment on both ends. Based on our study presented in this paper, several photonic devices can be realized where strict polarization filtering is required. Full Text: PDF References B. Wang, S. Blaize, R.S-Montiel, "Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics", Nanoscale, 11, 20685 (2019). CrossRef D. Dai, J.E. Bowers, "Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects", Nanophotonics, 3, 283 (2014). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "Optical elements based on silicon photonics", Computer Optics, 43, 1079 (2019). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "Compact design of a polarization beam splitter based on silicon-on-insulator platform", Laser Physics, 28, 116202 (2018). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "A T-shaped 1  ×  8 balanced optical power splitter based on 90° bend asymmetric vertical slot waveguides", Laser Physics, 29, 046207 (2019). CrossRef Q. Wang, S.-T. Ho, "Ultracompact TM-Pass Silicon Nanophotonic Waveguide Polarizer and Design", IEEE Photonics J., 2, 49 (2010). CrossRef C.-H. Chen, L. Pang, C.-H. Tsai, U. Levy, Y. Fainman, "Compact and integrated TM-pass waveguide polarizer", Opt. Express, 13, 5347 (2005). CrossRef S. Yuan, Y. Wang, Q. Huang, J. Xia, J. Yu, "Ultracompact TM-pass/TE-reflected integrated polarizer based on a hybrid plasmonic waveguide for silicon photonics", in 11th International Conference on Group IV Photonics (GFP) (IEEE, 2014), pp. 183-184. CrossRef X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, D. Dai, "Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide", Opt. Lett., 39, 4514 (2014). CrossRef A.E.- S. Abd-Elkader, M.F. O. Hameed, N.F. Areed, H.E.-D. Mostafa, and S.S. Obayya, "Ultracompact AZO-based TE-pass and TM-pass hybrid plasmonic polarizers", J.Opt. Soc. Am. B., 36, 652 (2019). CrossRef J. Li et al., "Photonic Crystal Waveguide Electro-Optic Modulator With a Wide Bandwidth", Journal of Lightwave Technology, 31, 1601-1607 (2013). CrossRef N. Skivesen et al., "Photonic-crystal waveguide biosensor", Optics Express, 15, 3169-3176 (2007)
本文提出了一种TM偏振C带通一维光子晶体条形波导(1D-PCSW)。波导结构基于绝缘体上硅平台,使用标准CMOS技术很容易实现。数值研究采用三维有限元法进行。通过优化器件的几何参数,提高了透射率和偏振消光比。因此,对于所有C波段电信波长窗口,TM偏振光可以在波导中传播,损耗约为2dB,而TE偏振光的传输损耗高达>30dB。因此,对于整个C波段波长范围,可以获得约28.5dB的PER。所提出的器件的总长度约为8.4µm,包括两端的1µm硅带波导段。基于我们在本文中提出的研究,在需要严格偏振滤波的情况下,可以实现几种光子器件。全文:PDF参考文献B.Wang,S.Blaize,R.S-Montiel,“集成在硅光子学上的纳米级等离子体TM通偏振器”,Nanoscale,1120685(2019)。CrossRef D.Dai,J.E.Bowers,“用于Peta-bit光学互连的基于硅的片上复用技术和器件”,纳米光子学,3283(2014)。CrossRef M.A.Butt,S.N.Khonina,N.L.Kazanskiy,“基于硅光子学的光学元件”,计算机光学,431079(2019)。CrossRef M.A.Butt,S.N.Khonina,N.L.Kazanskiy,“基于绝缘体上硅平台的偏振分束器的紧凑设计”,激光物理学,2811202(2018)。CrossRef M.A.Butt,S.N.Khonina,N.L.Kazanskiy,“T形1  ×  8基于90°弯曲非对称垂直缝隙波导的平衡光功率分配器”,激光物理,29046207(2019)。CrossRef Q.Wang,S.-T.Ho,“超紧凑TM通硅纳米光子波导偏振器与设计”,IEEE Photonics J.,2,49(2010)。CrossRef C.-H.Chen,L.Pang,C.-H.Cai,U.Levy,Y。Fainman,“紧凑型集成TM通波导偏振器”,Opt。Express,135347(2005)。CrossRef S.Yuan,Y.Wang,Q.Huang,J.Xia,J.Yu,“用于硅光子学的基于混合等离子体波导的超紧凑TM通/TE反射集成偏振器”,第11届国际第四组光子会议(GFP)(IEEE,2014),第183-184页。关,陈,陈,徐,施,戴,“硅亚波长光栅波导低损耗超小型横向磁通偏振器”,Opt。Lett。,394514(2014)。CrossRef A.E.-S.Abd Elkader,M.F.O.Hameed,N.F.Areed,H.E.D.Mostafa和S.S.Obayya,“超紧凑AZO基TE通和TM通混合等离子体偏振器”,J.Opt.Soc.Am.B.,36652(2019)。CrossRef J.Li等人,“宽带宽光子晶体波导电光调制器”,光波技术杂志,311601-1607(2013)。CrossRef N.Skivesen等人,“光子晶体波导生物传感器”,Optics Express,153169-3176(2007)。CrossRef S.Lin,J.Hu,L.Kimerling,K.Crozier,“用于单个纳米颗粒捕获和检测的纳米槽光子晶体波导腔的设计”,Optics Letters,3451-3453(2009)。CrossRef T.Liu,A.R.Zakharian,M.Fallahi,J.V.Moloney,M.Mansuripur,“基于紧凑型光子晶体的偏振分束器的设计”,IEEE光子技术快报,17435-1437(2005)。CrossRef R.K.Sinha,Y.Kalra,“利用光子带隙设计光波导偏振器”,Optics Express,1410790(2006)。CrossRef
{"title":"One-dimensional photonic crystal waveguide based on SOI platform for transverse magnetic polarization-maintaining devices","authors":"N. L. Kazanskiy, M. A. Butt","doi":"10.4302/PLP.V12I3.1044","DOIUrl":"https://doi.org/10.4302/PLP.V12I3.1044","url":null,"abstract":"In this letter, a TM-polarization C-band pass one-dimensional photonic crystal strip waveguide (1D-PCSW) is presented. The waveguide structure is based on a silicon-on-insulator platform which is easy to realize using standard CMOS technology. The numerical study is conducted via 3D-finite element method (FEM). The transmittance and polarization extinction ratio (PER) is enhanced by optimizing the geometric parameters of the device. As a result, a TM polarized light can travel in the waveguide with ~2 dB loss for all C-band telecommunication wavelength window whereas the TE polarized light suffers a high transmission loss of >30 dB. As a result, a PER of ~28.5 dB can be obtained for the whole C-band wavelengths range. The total length of the proposed device is around 8.4 µm long including 1 µm silicon strip waveguide segment on both ends. Based on our study presented in this paper, several photonic devices can be realized where strict polarization filtering is required. Full Text: PDF References B. Wang, S. Blaize, R.S-Montiel, \"Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics\", Nanoscale, 11, 20685 (2019). CrossRef D. Dai, J.E. Bowers, \"Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects\", Nanophotonics, 3, 283 (2014). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, \"Optical elements based on silicon photonics\", Computer Optics, 43, 1079 (2019). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, \"Compact design of a polarization beam splitter based on silicon-on-insulator platform\", Laser Physics, 28, 116202 (2018). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, \"A T-shaped 1  ×  8 balanced optical power splitter based on 90° bend asymmetric vertical slot waveguides\", Laser Physics, 29, 046207 (2019). CrossRef Q. Wang, S.-T. Ho, \"Ultracompact TM-Pass Silicon Nanophotonic Waveguide Polarizer and Design\", IEEE Photonics J., 2, 49 (2010). CrossRef C.-H. Chen, L. Pang, C.-H. Tsai, U. Levy, Y. Fainman, \"Compact and integrated TM-pass waveguide polarizer\", Opt. Express, 13, 5347 (2005). CrossRef S. Yuan, Y. Wang, Q. Huang, J. Xia, J. Yu, \"Ultracompact TM-pass/TE-reflected integrated polarizer based on a hybrid plasmonic waveguide for silicon photonics\", in 11th International Conference on Group IV Photonics (GFP) (IEEE, 2014), pp. 183-184. CrossRef X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, D. Dai, \"Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide\", Opt. Lett., 39, 4514 (2014). CrossRef A.E.- S. Abd-Elkader, M.F. O. Hameed, N.F. Areed, H.E.-D. Mostafa, and S.S. Obayya, \"Ultracompact AZO-based TE-pass and TM-pass hybrid plasmonic polarizers\", J.Opt. Soc. Am. B., 36, 652 (2019). CrossRef J. Li et al., \"Photonic Crystal Waveguide Electro-Optic Modulator With a Wide Bandwidth\", Journal of Lightwave Technology, 31, 1601-1607 (2013). CrossRef N. Skivesen et al., \"Photonic-crystal waveguide biosensor\", Optics Express, 15, 3169-3176 (2007)","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"12 1","pages":"85-87"},"PeriodicalIF":0.6,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41817310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Numerical investigation of a small footprint plasmonic Bragg grating structure with a high extinction ratio 高消光比小足迹等离子体布拉格光栅结构的数值研究
IF 0.6 Q4 OPTICS Pub Date : 2020-09-30 DOI: 10.4302/PLP.V12I3.1042
M. A. Butt
In this paper, miniaturized design of a plasmonic Bragg grating filter is investigated via the finite element method (FEM). The filter is based on a plasmonic metal-insulator-metal waveguide deposited on a quartz substrate. The corrugated Bragg grating designed for near-infrared wavelength range is structured on both sides of the waveguide. The spectral characteristics of the filter are studied by varying the geometric parameters of the filter design. As a result, the maximum ER and bandwidth of 36.2 dB and 173 nm is obtained at λ Bragg =976 nm with a filter footprint of as small as 1.0 x 8.75 µm 2 , respectively. The ER and bandwidth can be further improved by increasing the number of grating periods and the strength of the grating, respectively. Moreover, the Bragg grating structure is quite receptive to the refractive index of the medium. These features allow the employment of materials such as polymers in the metal-insulator-metal waveguide which can be externally tuned or it can be used for refractive index sensing applications. The sensitivity of the proposed Bragg grating structure can offer a sensitivity of 950 nm/RIU. We believe that the study presented in this paper provides a guideline for the realization of small footprint plasmonic Bragg grating structures which can be employed in filter and refractive index sensing applications. Full Text: PDF References J. W. Field et al., "Miniaturised, Planar, Integrated Bragg Grating Spectrometer", 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 2019, CrossRef L. Cheng, S. Mao, Z. Li, Y. Han, H.Y. Fu, "Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues", Micromachines, 11, 666 (2020). CrossRef J. Missinne, N. T. Beneitez, M-A. Mattelin, A. Lamberti, G. Luyckx, W. V. Paepegem, G. V. Steenberge, "Bragg-Grating-Based Photonic Strain and Temperature Sensor Foils Realized Using Imprinting and Operating at Very Near Infrared Wavelengths", Sensors, 18, 2717 (2018). CrossRef M. A. Butt, S.N. Khonina, N.L. Kazanskiy, "Numerical analysis of a miniaturized design of a Fabry–Perot resonator based on silicon strip and slot waveguides for bio-sensing applications", Journal of Modern Optics, 66, 1172-1178 (2019). CrossRef H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, X. Jiang, "Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide", Optics Letters, 41, 2450 (2016). CrossRef M. A. Butt, S.N. Khonina, N.L. Kazanskiy, "Optical elements based on silicon photonics", Computer Optics, 43, 1079-1083 (2019). CrossRef N. L. Kazanskiy, S.N. Khonina, M.A. Butt, "Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review", Physica E, 117, 113798 (2020). CrossRef L. Lu et al, "Mode-Selective Hybrid Plasmonic Bragg Grating Reflector", IEEE Photonics Technology Letters, 22, 1765-1
巴特,波兰光子学快报,12,1-3(2020)。CrossRef Guo,K.Wen,Q.Hu,W.Lai,J.Lin,Y.Fang,“基于亚波长切环金属-绝缘体-金属波导的等离子体多通道折射率传感器”,传感器,181348(2018)。CrossRef
{"title":"Numerical investigation of a small footprint plasmonic Bragg grating structure with a high extinction ratio","authors":"M. A. Butt","doi":"10.4302/PLP.V12I3.1042","DOIUrl":"https://doi.org/10.4302/PLP.V12I3.1042","url":null,"abstract":"In this paper, miniaturized design of a plasmonic Bragg grating filter is investigated via the finite element method (FEM). The filter is based on a plasmonic metal-insulator-metal waveguide deposited on a quartz substrate. The corrugated Bragg grating designed for near-infrared wavelength range is structured on both sides of the waveguide. The spectral characteristics of the filter are studied by varying the geometric parameters of the filter design. As a result, the maximum ER and bandwidth of 36.2 dB and 173 nm is obtained at λ Bragg =976 nm with a filter footprint of as small as 1.0 x 8.75 µm 2 , respectively. The ER and bandwidth can be further improved by increasing the number of grating periods and the strength of the grating, respectively. Moreover, the Bragg grating structure is quite receptive to the refractive index of the medium. These features allow the employment of materials such as polymers in the metal-insulator-metal waveguide which can be externally tuned or it can be used for refractive index sensing applications. The sensitivity of the proposed Bragg grating structure can offer a sensitivity of 950 nm/RIU. We believe that the study presented in this paper provides a guideline for the realization of small footprint plasmonic Bragg grating structures which can be employed in filter and refractive index sensing applications. Full Text: PDF References J. W. Field et al., \"Miniaturised, Planar, Integrated Bragg Grating Spectrometer\", 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 2019, CrossRef L. Cheng, S. Mao, Z. Li, Y. Han, H.Y. Fu, \"Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues\", Micromachines, 11, 666 (2020). CrossRef J. Missinne, N. T. Beneitez, M-A. Mattelin, A. Lamberti, G. Luyckx, W. V. Paepegem, G. V. Steenberge, \"Bragg-Grating-Based Photonic Strain and Temperature Sensor Foils Realized Using Imprinting and Operating at Very Near Infrared Wavelengths\", Sensors, 18, 2717 (2018). CrossRef M. A. Butt, S.N. Khonina, N.L. Kazanskiy, \"Numerical analysis of a miniaturized design of a Fabry–Perot resonator based on silicon strip and slot waveguides for bio-sensing applications\", Journal of Modern Optics, 66, 1172-1178 (2019). CrossRef H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, X. Jiang, \"Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide\", Optics Letters, 41, 2450 (2016). CrossRef M. A. Butt, S.N. Khonina, N.L. Kazanskiy, \"Optical elements based on silicon photonics\", Computer Optics, 43, 1079-1083 (2019). CrossRef N. L. Kazanskiy, S.N. Khonina, M.A. Butt, \"Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review\", Physica E, 117, 113798 (2020). CrossRef L. Lu et al, \"Mode-Selective Hybrid Plasmonic Bragg Grating Reflector\", IEEE Photonics Technology Letters, 22, 1765-1","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"12 1","pages":"82-84"},"PeriodicalIF":0.6,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48465978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Narrowband perfect metasurface absorber based on impedance matching 基于阻抗匹配的窄带完美超表面吸收器
IF 0.6 Q4 OPTICS Pub Date : 2020-09-30 DOI: 10.4302/PLP.V12I3.1041
M. A. Butt, N. Kazansky
We presented a numerical investigation of a metamaterial narrowband perfect absorber conducted via a finite element method based on commercially available COMSOL software. The periodic array of silicon meta-atoms (MAs) are placed on 80 nm thick gold layer. The broadband light at normal incidence is blocked by the gold layer and silicon MAs are used to excite the surface plasmon by scattering light through it. Maximum absorption of 95.7 % is obtained at the resonance wavelength of 1137.5 nm due to the perfect impedance matching of the electric and magnetic dipoles. The absorption is insensitive to the wide-angle of incidence ranging from 0 to 80 degrees. We believe that the proposed metamaterial device can be utilized in solar photovoltaic and biochemical sensing applications. Full Text: PDF References Y. Cheng, X.S. Mao, C. Wu, L. Wu, R.Z. Gong, "Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing", Optical Materials, 53, 195-200 (2016). CrossRef S. S. Mirshafieyan, D.A. Gregory, "Electrically tunable perfect light absorbers as color filters and modulators", Scientific Reports,8, 2635 (2018). CrossRef D.M. Nguyen, D. Lee, J. Rho, "Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths", Scientific Reports, 7, 2611 (2017). CrossRef Y. Sun, Y. Ling, T. Liu, L. Huang, "Electro-optical switch based on continuous metasurface embedded in Si substrate", AIP Advances, 5, 117221 (2015). CrossRef H. Chu, Q. Li, B. Liu, J. Luo, S. Sun, Z. H. Hang, L. Zhou, Y. Lai, "A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials", Light: Science & Applications, 7, 50 (2018). CrossRef S. K. Patel, S. Charola, J. Parmar, M. Ladumor, "Broadband metasurface solar absorber in the visible and near-infrared region", Materials Research Express, 6, 086213 (2019). CrossRef Q. Qian, S. Ti, C. Wang, "All-dielectric ultra-thin metasurface angular filter", Optics Letters, 44, 3984 (2019). CrossRef P. Yu et al., "Broadband Metamaterial Absorbers", Advanced Optical Materials, 7, 1800995 (2019). CrossRef Y. J. Kim et al., "Flexible ultrathin metamaterial absorber for wide frequency band, based on conductive fibers", Science and Technology of advanced materials, 19, 711-717 (2018). CrossRef N.L. Kazanskiy, S.N. Khonina, M.A. Butt, "Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review", Physica E, 117, 113798 (2020). CrossRef H. E. Nejad, A. Mir, A. Farmani, "Supersensitive and Tunable Nano-Biosensor for Cancer Detection", IEEE Sensors Journal, 19, 4874-4881 (2019). CrossRef
本文采用基于COMSOL软件的有限元方法对一种超材料窄带完美吸收体进行了数值研究。在80 nm厚的金层上放置硅元原子(MAs)的周期阵列。正入射的宽带光被金层阻挡,硅MAs通过散射光来激发表面等离子体。由于电偶极子和磁偶极子的完美阻抗匹配,在1137.5 nm的共振波长处获得了95.7%的最大吸收。吸收对0 ~ 80度的广角入射角不敏感。我们认为所提出的超材料器件可用于太阳能光伏和生化传感应用。程艳,毛小生,吴春林,龚仁哲,“红外非平面等离子体完美吸收体增强敏感折射率传感”,光学材料,53,195-200(2016)。引用本文:陈晓明,陈晓明,“电可调谐光吸收材料的研究进展”,《科学通报》,2018年第8期。引用本文:阮德明,李德明,李金杰,“基于等离子体光栅的可见光和近红外波长完美吸收体的光吸收控制”,科学通报,7,2611(2017)。引用本文:孙艳,凌云,刘涛,黄磊,“基于连续超表面嵌入硅衬底的电光开关”,光电工程学报,5,(2015)朱红红,李强,刘波,罗军,孙生,韩志辉,周磊,赖勇,“基于透明超表面和零折射率材料集成的混合隐形斗篷”,光科学与应用,7,50(2018)。CrossRef S. K. Patel, S. Charola, J. Parmar, M. Ladumor,“可见光和近红外波段的宽带超表面太阳能吸收体”,材料工程,6(6):213(2019)。引用本文:钱强,王超,“全介电超薄超表面角滤波器”,光学学报,44,39(2019)。CrossRef . Yu等,“宽带超材料吸收剂”,光学学报,7,1800995(2019)。引用本文:王晓明,王晓明,“基于导电纤维的柔性超薄超材料吸收体的研究”,材料科学与工程,19,(2018):711-717。[CrossRef] N.L. Kazanskiy, S.N. Khonina, M.A. Butt,“基于金属绝缘体-金属波导的等离子体传感器在折射率传感中的应用:综述”,物理学报,11,11(2020)。陈晓明,张晓明,张晓明,“超灵敏可调纳米生物传感器在癌症检测中的应用”,中国生物医学工程学报,2019,33(4):448 - 448。CrossRef
{"title":"Narrowband perfect metasurface absorber based on impedance matching","authors":"M. A. Butt, N. Kazansky","doi":"10.4302/PLP.V12I3.1041","DOIUrl":"https://doi.org/10.4302/PLP.V12I3.1041","url":null,"abstract":"We presented a numerical investigation of a metamaterial narrowband perfect absorber conducted via a finite element method based on commercially available COMSOL software. The periodic array of silicon meta-atoms (MAs) are placed on 80 nm thick gold layer. The broadband light at normal incidence is blocked by the gold layer and silicon MAs are used to excite the surface plasmon by scattering light through it. Maximum absorption of 95.7 % is obtained at the resonance wavelength of 1137.5 nm due to the perfect impedance matching of the electric and magnetic dipoles. The absorption is insensitive to the wide-angle of incidence ranging from 0 to 80 degrees. We believe that the proposed metamaterial device can be utilized in solar photovoltaic and biochemical sensing applications. Full Text: PDF References Y. Cheng, X.S. Mao, C. Wu, L. Wu, R.Z. Gong, \"Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing\", Optical Materials, 53, 195-200 (2016). CrossRef S. S. Mirshafieyan, D.A. Gregory, \"Electrically tunable perfect light absorbers as color filters and modulators\", Scientific Reports,8, 2635 (2018). CrossRef D.M. Nguyen, D. Lee, J. Rho, \"Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths\", Scientific Reports, 7, 2611 (2017). CrossRef Y. Sun, Y. Ling, T. Liu, L. Huang, \"Electro-optical switch based on continuous metasurface embedded in Si substrate\", AIP Advances, 5, 117221 (2015). CrossRef H. Chu, Q. Li, B. Liu, J. Luo, S. Sun, Z. H. Hang, L. Zhou, Y. Lai, \"A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials\", Light: Science & Applications, 7, 50 (2018). CrossRef S. K. Patel, S. Charola, J. Parmar, M. Ladumor, \"Broadband metasurface solar absorber in the visible and near-infrared region\", Materials Research Express, 6, 086213 (2019). CrossRef Q. Qian, S. Ti, C. Wang, \"All-dielectric ultra-thin metasurface angular filter\", Optics Letters, 44, 3984 (2019). CrossRef P. Yu et al., \"Broadband Metamaterial Absorbers\", Advanced Optical Materials, 7, 1800995 (2019). CrossRef Y. J. Kim et al., \"Flexible ultrathin metamaterial absorber for wide frequency band, based on conductive fibers\", Science and Technology of advanced materials, 19, 711-717 (2018). CrossRef N.L. Kazanskiy, S.N. Khonina, M.A. Butt, \"Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review\", Physica E, 117, 113798 (2020). CrossRef H. E. Nejad, A. Mir, A. Farmani, \"Supersensitive and Tunable Nano-Biosensor for Cancer Detection\", IEEE Sensors Journal, 19, 4874-4881 (2019). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"12 1","pages":"88-90"},"PeriodicalIF":0.6,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42748135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Synthesis and Characterization of NLO Material L-Valine L-Valinium Perchlorate Monohydrate for Photonics Applications 高氯酸一水合l -缬氨酸NLO材料的合成与表征
IF 0.6 Q4 OPTICS Pub Date : 2020-09-30 DOI: 10.4302/PLP.V12I3.1004
P. Vasudevan, D. Jayaraman
L-valine L-valinium perchlorate monohydrate single crystal has been synthesized by slow evaporation technique at room temperature. The crystal structure and space group of the crystal were confirmed by single crystal X-ray diffractometer. Optical behavior of the crystal was analyzed by using UV-visible spectrophotometer. Thermal stability was discussed by using thermo gravimetric analysis. Mechanical strength of the grown crystal was studied using Vickers microhardness tester. Nonlinear optical property was explored to confirm the second harmonic generation efficiency of the grown crystal. These preliminary investigations suggest that the title compound can serve as a potential material for photonics applications. Full Text: PDF References D. J. Williams, "Nonlinear Optical Properties of Organic and Polymer Materials" (ACS Symposium series 233, American Chemical Society, Washington, DC, 1983). CrossRef K. Bouchouit, Z. Sofiani, B. Derkowska, S. Abed, N. Benali-cherif, M. Bakasse and B. Sahraoui, "Investigation of crystal structure and nonlinear optical properties of 2-methoxyanilinium nitrate", Opt. Commun. 278, 180 (2007), CrossRef K. Bouchouit, H. Bougharraf, B. Derkowska-zielinska, N. Benali-cherif and B. Sahraoui, "Reversible phase transition in semi-organic compound p-Nitroanilinium sulfate detected using second harmonic generation as a tool", Opt.Mater. 48, 215 (2015), CrossRef J. H. Joshi, S. Kalainathan, M. J. Joshi and K. D. Parikh, "Crystal growth, spectroscopic, second and third order nonlinear optical spectroscopic studies of L-phenylalanine doped ammonium dihydrogen phosphate single crystals", Arab. J. Chem. 13, 5018 (2020), CrossRef A. Vijayakumar, A. Ponnuvel and A. Sasikala, "Growth and characterization of α and β form of L-histidine dihydrochloride single crystals", Mater. Today 14, 338 (2019), CrossRef C. Usha, R. Sathakuamri, Lynnette Joseph, D.Sajan, R.Meenakshi, and A.Sinthiya, "Growth and combined experimental and quantum chemical study of glycyl-L-Valine crystal", Heliyon 5, e01574 (2019), CrossRef P. Maadeshwaran and J. Chandrasekaran, "Synthesis, growth and characterization of l-valine cadmium chloride monohydrate—A novel semiorganic nonlinear optical crystal", Optik 122, 1128 (2011) CrossRef S. Pandiyaran, M. Umadevi, R. K. Rajaraman and V. K. Ramakrishnan, "Infrared and Raman spectroscopic studies of l-valine l-valinium perchlorate monohydrate", Spectrochim. Act A Mol. 62, 630 (2005) CrossRef S. Pandiarajan, B. Sridhar and R. K. Rajaram, "L-Valine L-valinium perchlorate monohydrate", Acta Crystallogr. E, 57, 0466 (2001) CrossRef M. Lydia Caroline and S. Vasudevan, "Growth and characterization of l-phenylalanine nitric acid, a new organic nonlinear optical material", Mater. Lett. 63, 41 (2009) CrossRef J. Tauc, R. Grigorovici and A. Vancu, "Optical Properties and Electronic Structure of Amorphous Germanium", Phy. Solid. Stat. 15, 627 (1966), CrossRef J. Tauc, A. Menth and D.L. Wood, "Optical and Magnetic Investigations o
采用室温慢蒸发法合成了L-缬氨酸-L-高氯酸缬氨酸单晶。用单晶X射线衍射仪确定了该晶体的晶体结构和空间群。用紫外可见分光光度计分析了晶体的光学行为。采用热重分析法对其热稳定性进行了讨论。用维氏显微硬度计研究了生长晶体的力学强度。对非线性光学性质进行了探索,以证实生长的晶体的二次谐波产生效率。这些初步研究表明,标题化合物可以作为光子学应用的潜在材料。全文:PDF参考文献D.J.Williams,“有机和聚合物材料的非线性光学性质”(ACS研讨会系列233,美国化学学会,华盛顿特区,1983年)。CrossRef K.Bouchouit,Z.Sofiani,B.Derkowska,S.Abed,N.Benali-cherif,M.Bakasse和B.Sahraoui,“2-甲氧基苯胺硝酸盐的晶体结构和非线性光学性质的研究”,Opt。Commun。278180(2007),CrossRef K.Bouchouit,H.Bougharaf,B.Derkowska zielinska,N.Benali cherif和B.Sahraoui,“使用二次谐波生成作为工具检测到的半有机化合物对硝基苯胺硫酸根的可逆相变”,Opt.Water.482215(2015),CrossRef J.H.Joshi,S.Kalainathan,M.J.Joshi和K.D.Parikh,“L-苯丙氨酸掺杂磷酸二氢铵单晶的晶体生长、光谱、二阶和三阶非线性光学光谱研究”,阿拉伯。J.化学。135018(2020),CrossRef A.Vijayakumar,A.Ponnuvel和A.Sasikala,“L-组氨酸盐酸盐单晶的α和β形式的生长和表征”,Mater。今日14338(2019),CrossRef C.Usha、R.Sathakuamri、Lynnette Joseph、D.Sajan、R.Meenakshi和A.Sinthiya,“甘氨酰-L-缬氨酸晶体的生长及其实验和量子化学联合研究”,Heliyon 5,e01574(2019)、CrossRef P.Maadeshwaran和J.Chandrasekaran,“l-缬氨酸氯化镉一水合物的合成、生长和表征——一种新型半有机非线性光学晶体”,Optik 1221128(2011)CrossRef S.Pandiyaran,M.Umadevi,R.K.Rajaraman和V.K.Ramakrishnan,“l-valine l-高氯酸缬氨酸一水合物的红外和拉曼光谱研究”,Spectrochim。法案A Mol.626330(2005)CrossRef S.Pandiarajan、B.Sridhar和R.K.Rajaram,“L-缬氨酸-L-高氯酸缬氨酸一水合物”,晶体学报。E、 570466(2001)CrossRef M.Lydia Caroline和S.Vasudevan,“一种新型有机非线性光学材料l-苯丙氨酸硝酸的生长和表征”,Mater。Lett。63,41(2009)CrossRef J.Tauc,R.Grigorovici和A.Vancu,“非晶态锗的光学性质和电子结构”,Phy。固体Stat.15227(1966),CrossRef J.Tauc,A.Menth和D.L.Wood,“半导体玻璃中局域态的光学和磁性研究”,Phys。Rev.Lett。25749(1970)CrossRef B.Thirumalaiselvam,R.Kanagadurai,D.Jayaraman和V.Natarajan,“4-甲基苯磺酰胺单晶的生长和表征”,Opt.Mater.37,74(2014)CrossRef.J.Bowman和M.Bevis,“通过维氏显微硬度测试评估加工塑料的结构和硬度”,胶体聚合物。科学。255954(1977)CrossRef S.K.Kurtz和T.T.Perry,“评价非线性光学材料的粉末技术”,J.Appl。Phy。39,3798(1968)CrossRef M.Prakash,D.Geetha和M.Lydia Caroline,“硝酸三(l-苯丙氨酸)l-苯丙氨酸的晶体生长、结构、光学、光谱和热研究:一种新的有机非线性光学材料”,Spectrochim。法案A摩尔81,48(2011)交叉参考
{"title":"Synthesis and Characterization of NLO Material L-Valine L-Valinium Perchlorate Monohydrate for Photonics Applications","authors":"P. Vasudevan, D. Jayaraman","doi":"10.4302/PLP.V12I3.1004","DOIUrl":"https://doi.org/10.4302/PLP.V12I3.1004","url":null,"abstract":"L-valine L-valinium perchlorate monohydrate single crystal has been synthesized by slow evaporation technique at room temperature. The crystal structure and space group of the crystal were confirmed by single crystal X-ray diffractometer. Optical behavior of the crystal was analyzed by using UV-visible spectrophotometer. Thermal stability was discussed by using thermo gravimetric analysis. Mechanical strength of the grown crystal was studied using Vickers microhardness tester. Nonlinear optical property was explored to confirm the second harmonic generation efficiency of the grown crystal. These preliminary investigations suggest that the title compound can serve as a potential material for photonics applications. Full Text: PDF References D. J. Williams, \"Nonlinear Optical Properties of Organic and Polymer Materials\" (ACS Symposium series 233, American Chemical Society, Washington, DC, 1983). CrossRef K. Bouchouit, Z. Sofiani, B. Derkowska, S. Abed, N. Benali-cherif, M. Bakasse and B. Sahraoui, \"Investigation of crystal structure and nonlinear optical properties of 2-methoxyanilinium nitrate\", Opt. Commun. 278, 180 (2007), CrossRef K. Bouchouit, H. Bougharraf, B. Derkowska-zielinska, N. Benali-cherif and B. Sahraoui, \"Reversible phase transition in semi-organic compound p-Nitroanilinium sulfate detected using second harmonic generation as a tool\", Opt.Mater. 48, 215 (2015), CrossRef J. H. Joshi, S. Kalainathan, M. J. Joshi and K. D. Parikh, \"Crystal growth, spectroscopic, second and third order nonlinear optical spectroscopic studies of L-phenylalanine doped ammonium dihydrogen phosphate single crystals\", Arab. J. Chem. 13, 5018 (2020), CrossRef A. Vijayakumar, A. Ponnuvel and A. Sasikala, \"Growth and characterization of α and β form of L-histidine dihydrochloride single crystals\", Mater. Today 14, 338 (2019), CrossRef C. Usha, R. Sathakuamri, Lynnette Joseph, D.Sajan, R.Meenakshi, and A.Sinthiya, \"Growth and combined experimental and quantum chemical study of glycyl-L-Valine crystal\", Heliyon 5, e01574 (2019), CrossRef P. Maadeshwaran and J. Chandrasekaran, \"Synthesis, growth and characterization of l-valine cadmium chloride monohydrate—A novel semiorganic nonlinear optical crystal\", Optik 122, 1128 (2011) CrossRef S. Pandiyaran, M. Umadevi, R. K. Rajaraman and V. K. Ramakrishnan, \"Infrared and Raman spectroscopic studies of l-valine l-valinium perchlorate monohydrate\", Spectrochim. Act A Mol. 62, 630 (2005) CrossRef S. Pandiarajan, B. Sridhar and R. K. Rajaram, \"L-Valine L-valinium perchlorate monohydrate\", Acta Crystallogr. E, 57, 0466 (2001) CrossRef M. Lydia Caroline and S. Vasudevan, \"Growth and characterization of l-phenylalanine nitric acid, a new organic nonlinear optical material\", Mater. Lett. 63, 41 (2009) CrossRef J. Tauc, R. Grigorovici and A. Vancu, \"Optical Properties and Electronic Structure of Amorphous Germanium\", Phy. Solid. Stat. 15, 627 (1966), CrossRef J. Tauc, A. Menth and D.L. Wood, \"Optical and Magnetic Investigations o","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"12 1","pages":"76-78"},"PeriodicalIF":0.6,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43552882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Morphology and structure characterization of crystalline SnO2 1D nanostructures 晶体SnO2 1D纳米结构的形貌和结构表征
IF 0.6 Q4 OPTICS Pub Date : 2020-09-30 DOI: 10.4302/PLP.V12I3.1019
W. Matysiak, T. Tański, W. Smok
In recent years, many attempts have been made to improve the sensory properties of SnO2, including design of sensors based on one-dimensional nanostructures of this material, such as nanofibers, nanotubes or nanowires. One of the simpler methods of producing one-dimensional tin oxide nanomaterials is to combine the electrospinning method with a sol-gel process. The purpose of this work was to produce SnO2 nanowires using a hybrid electrospinning method combined with a heat treatment process at the temperature of 600 °C and to analyze the morphology and structure of the one-dimensional nanomaterial produced in this way. Analysis of the morphology of composite one-dimensional tin oxide nanostructures showed that smooth, homogeneous and crystalline nanowires were obtained. Full Text: PDF References N. Dharmaraj, C.H. Kim, K.W. Kim, H.Y. Kim, E.K. Suh, "Spectral studies of SnO 2 nanofibres prepared by electrospinning method", Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 64, (2006) CrossRef N. Gao, H.Y. Li, W. Zhang, Y. Zhang, Y. Zeng, H. Zhixiang, ... & H. Liu, "QCM-based humidity sensor and sensing properties employing colloidal SnO 2 nanowires", Sens. Actuators B Chem. 293, (2019), 129-135. CrossRef W. Ge, Y. Chang, V. Natarajan, Z. Feng, J. Zhan, X. Ma, "In 2 O 3 -SnO 2 hybrid porous nanostructures delivering enhanced formaldehyde sensing performance", J.Alloys and Comp. 746, (2018) CrossRef M. Zhang, Y. Zhen, F. Sun, C. Xu, "Hydrothermally synthesized SnO 2 -graphene composites for H 2 sensing at low operating temperature", Mater. Sci. Eng. B. 209, (2016), 37-44. CrossRef Y. Zhang, X. He, J. Li, Z. Miao, F. Huang, "Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO 2 nanofibers", Sens. Actuators B Chem. 132, (2008), 67-73. CrossRef W.Q. Li, S.Y. Ma, J. Luo, Y.Z. Mao, L. Cheng, D.J. Gengzang, X.L. Xu, S H. Yan, "Synthesis of hollow SnO 2 nanobelts and their application in acetone sensor", Mater. Lett. 132, (2014), 338-341. CrossRef E. Mudra, I. Shepa, O. Milkovic, Z. Dankova, A. Kovalcikova, A. Annusova, E. Majkova, J. Dusza, "Effect of iron doping on the properties of SnO 2 nano/microfibers", Appl. Surf. Sci. 480, (2019), 876-881. CrossRef P. Mohanapriya, H. Segawa, K. Watanabe, K. Watanabe, S. Samitsu, T.S. Natarajan, N.V. Jaya, N. Ohashi, "Enhanced ethanol-gas sensing performance of Ce-doped SnO 2 hollow nanofibers prepared by electrospinning", Sens. Actuators B Chem. 188, (2013), 872-878. CrossRef W.Q. Li, S.Y. Ma, Y.F. Li, X.B. Li, C.Y. Wang, X.H. Yang, L. Cheng, Y.Z. Mao, J. Luo, D.J. Gengzang, G.X. Wan, X.L. Xu, "Preparation of Pr-doped SnO 2 hollow nanofibers by electrospinning method and their gas sensing properties", J.Alloys and Comp. 605, (2014), 80-88. CrossRef X.H. Xu, S.Y. Ma, X.L. Xu, T. Han, S.T. Pei, Y. Tie, P.F. Cao, W.W. Liu, B.J. Wang, R. Zhang, J.L. Zhang, "Ultra-sensitive glycol sensing performance with rapid-recovery based on heterostructured ZnO-SnO 2 hollow nanotube", Mater. Lett
近年来,人们已经进行了许多尝试来改善SnO2的传感性能,包括设计基于这种材料的一维纳米结构的传感器,例如纳米纤维、纳米管或纳米线。生产一维氧化锡纳米材料的一种更简单的方法是将静电纺丝法与溶胶-凝胶法相结合。本工作的目的是使用混合静电纺丝方法结合600°C温度下的热处理工艺生产SnO2纳米线,并分析以这种方式生产的一维纳米材料的形态和结构。对复合一维氧化锡纳米结构的形貌分析表明,获得了光滑、均匀、结晶的纳米线。全文:PDF参考文献N.Dharmaraj,C.H.Kim,K.W.Kim,H.Y.Kim,E.K.Suh,“通过静电纺丝方法制备的SnO2纳米纤维的光谱研究”,Spectrochim。Acta-Part A Mol.Biomol。Spectrosc。64,(2006)交叉参考高,李,张,张,曾,志祥,…&H.刘,“基于QCM的湿度传感器和采用胶体SnO2纳米线的传感特性”,Sens.Actuators B Chem。293,(2019),129-135。CrossRef W.Ge,Y.Chang,V.Natarajan,Z.Feng,J.Zhan,X.Ma,“提供增强甲醛传感性能的In2 O3-SnO2杂化多孔纳米结构”,J.Alloys and Comp。746,(2018)CrossRef M.Zhang,Y.Zhen,F.Sun,C.Xu,“低温下用于H2传感的水热合成SnO2-石墨烯复合材料”,Mater。科学。Eng.B.209,(2016),37-44。张,何,李,苗,黄,“基于电纺SnO2纳米纤维的微型气体传感器的制备及乙醇传感性能”,Sens.Actuators B Chem。132.(2008),67-73。李,马,罗,毛,程,耿藏,徐,严,“中空SnO2纳米带的合成及其在丙酮传感器中的应用”,Mater。Lett。132,(2014),338-341。CrossRef E.Mudra,I.Shepa,O.Milkovic,Z.Dankova,A.Kovalcikova,A.Annusova,E.Majkova,J.Dusza,“铁掺杂对SnO2纳米/微纤维性能的影响”,Appl。冲浪科学。480,(2019),876-881。CrossRef P.Mohanapriya,H.Segawa,K.Watanabe,K.Watanabe,S.Samitsu,T.S.Natarajan,N.V.Jaya,N.Ohashi,“通过静电纺丝制备的Ce掺杂SnO2中空纳米纤维的增强乙醇气敏性能”,Sens.Actuators B Chem。188,(2013),872-878。CrossRef W.Q.Li,S.Y.Ma,Y.F.Li,X.B.Li,C.Y.Wang,X.H.Yang,L.Cheng,Y.Z.Mao,J.Luo,D.J.耿藏,G.X.Wan,X.L.Xu,“静电纺丝法制备掺Pr的SnO2中空纳米纤维及其气敏性能”,合金与材料。605,(2014),80-88。CrossRef Xu,S.Y.Ma,X.L.Xu,T.Han,S.T.Pei,Y.Tie,P.F.Cao,W.W.Liu,B.J.Wang,R.Zhang,J.L.Zhang,“基于异质结构ZnO SnO2空心纳米管的快速恢复超灵敏乙二醇传感性能”,Mater。Lett,273,(2020),127967。CrossRef F.Li,X.Gao,R.Wang,T.Zhang,G.Lu,Sens.“不同功函数的TiO2-SnO2核壳异质结构纳米纤维及其在气体传感器中的应用研究”,Actuators B Chem,248,(2017),812-819。CrossRef S.Bai,W.Guo,J.Sun,J.Li,Y.Tian,A.Chen,R.Luo,D.Li,“静电纺丝合成SnO2–CuO异质结及其在CO检测中的应用”,Sens Actuators B Chem,226,(2016),96-103。CrossRef H.Du,P.J.Yao,Y.Sun,J.Wang,H.Wang,N.Yu,“高气敏活性同质异质结中的静电纺丝异质纳米纤维”,传感器,17,(2017),1822。王,范,任,“具有高光催化性能的静电纺丝中空SnO2微管”,Catal。Commun。31,(2013),37-41。CrossRef L.Cheng,S.Y.Ma,T.T.Wang,X.B.Li,J.Luo,W.Q.Li,Y.Z.Mao,D.J Gengzang,“用于乙醇传感性能的SnO2中空纳米纤维的静电纺丝合成与表征”,Mater。Lett。131,(2014),23-26。CrossRef P.H.Phuoc,C.M.Hung,N.V.Toan,N.V.Duy,N.D.Hoa,N.V.Hieu,“用于亚ppm H2S检测的SnO2多孔纳米纤维气体传感器的一步制造”,Sens.Actuators A Phys。303,(2020),111722。CrossRef A.E.Deniz,H.A.Vural,B.Ortac,T.Uyar,“通过激光烧蚀和静电纺丝的金纳米粒子/聚合物纳米纤维复合材料”,物质。Lett。65,(2011),2941-2943。CrossRef S.Sagadvan,J.Podder,“Zn掺杂SnO2纳米颗粒的结构、表面形态和介电性能研究”,Mater。Res.19,(2016),420-425。CrossRef
{"title":"Morphology and structure characterization of crystalline SnO2 1D nanostructures","authors":"W. Matysiak, T. Tański, W. Smok","doi":"10.4302/PLP.V12I3.1019","DOIUrl":"https://doi.org/10.4302/PLP.V12I3.1019","url":null,"abstract":"In recent years, many attempts have been made to improve the sensory properties of SnO2, including design of sensors based on one-dimensional nanostructures of this material, such as nanofibers, nanotubes or nanowires. One of the simpler methods of producing one-dimensional tin oxide nanomaterials is to combine the electrospinning method with a sol-gel process. The purpose of this work was to produce SnO2 nanowires using a hybrid electrospinning method combined with a heat treatment process at the temperature of 600 °C and to analyze the morphology and structure of the one-dimensional nanomaterial produced in this way. Analysis of the morphology of composite one-dimensional tin oxide nanostructures showed that smooth, homogeneous and crystalline nanowires were obtained. Full Text: PDF References N. Dharmaraj, C.H. Kim, K.W. Kim, H.Y. Kim, E.K. Suh, \"Spectral studies of SnO 2 nanofibres prepared by electrospinning method\", Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 64, (2006) CrossRef N. Gao, H.Y. Li, W. Zhang, Y. Zhang, Y. Zeng, H. Zhixiang, ... & H. Liu, \"QCM-based humidity sensor and sensing properties employing colloidal SnO 2 nanowires\", Sens. Actuators B Chem. 293, (2019), 129-135. CrossRef W. Ge, Y. Chang, V. Natarajan, Z. Feng, J. Zhan, X. Ma, \"In 2 O 3 -SnO 2 hybrid porous nanostructures delivering enhanced formaldehyde sensing performance\", J.Alloys and Comp. 746, (2018) CrossRef M. Zhang, Y. Zhen, F. Sun, C. Xu, \"Hydrothermally synthesized SnO 2 -graphene composites for H 2 sensing at low operating temperature\", Mater. Sci. Eng. B. 209, (2016), 37-44. CrossRef Y. Zhang, X. He, J. Li, Z. Miao, F. Huang, \"Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO 2 nanofibers\", Sens. Actuators B Chem. 132, (2008), 67-73. CrossRef W.Q. Li, S.Y. Ma, J. Luo, Y.Z. Mao, L. Cheng, D.J. Gengzang, X.L. Xu, S H. Yan, \"Synthesis of hollow SnO 2 nanobelts and their application in acetone sensor\", Mater. Lett. 132, (2014), 338-341. CrossRef E. Mudra, I. Shepa, O. Milkovic, Z. Dankova, A. Kovalcikova, A. Annusova, E. Majkova, J. Dusza, \"Effect of iron doping on the properties of SnO 2 nano/microfibers\", Appl. Surf. Sci. 480, (2019), 876-881. CrossRef P. Mohanapriya, H. Segawa, K. Watanabe, K. Watanabe, S. Samitsu, T.S. Natarajan, N.V. Jaya, N. Ohashi, \"Enhanced ethanol-gas sensing performance of Ce-doped SnO 2 hollow nanofibers prepared by electrospinning\", Sens. Actuators B Chem. 188, (2013), 872-878. CrossRef W.Q. Li, S.Y. Ma, Y.F. Li, X.B. Li, C.Y. Wang, X.H. Yang, L. Cheng, Y.Z. Mao, J. Luo, D.J. Gengzang, G.X. Wan, X.L. Xu, \"Preparation of Pr-doped SnO 2 hollow nanofibers by electrospinning method and their gas sensing properties\", J.Alloys and Comp. 605, (2014), 80-88. CrossRef X.H. Xu, S.Y. Ma, X.L. Xu, T. Han, S.T. Pei, Y. Tie, P.F. Cao, W.W. Liu, B.J. Wang, R. Zhang, J.L. Zhang, \"Ultra-sensitive glycol sensing performance with rapid-recovery based on heterostructured ZnO-SnO 2 hollow nanotube\", Mater. Lett","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"12 1","pages":"70-72"},"PeriodicalIF":0.6,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42847022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Photonics Letters of Poland
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1