Mohammad S. Islam, Anwar Sadath, Md. Rakibul Islam, M. Faisal
Nowadays photonic crystal fiber (PCF) is used for sensing purposes in different fields. In this work, we have proposed a PCF based chemical (Benzene and Ethanol) sensor. Finite Element Method (FEM) based software COMSOL 5.3a is used to investigate the numerical characteristics for the proposed structure. From the numerical analysis, we obtained high sensitivity with low losses for an optimum core diameter of 210 µm. Our proposed PCF works on a broad range of core diameters and THz frequency spectra. The fabrication of this model is very simple due to its simplistic design structure. Full Text: PDF ReferencesMd.F.H. Arif, Md.J.H. Biddut, "A new structure of photonic crystal fiber with high sensitivity, high nonlinearity, high birefringence and low confinement loss for liquid analyte sensing applications", Sensing Bio-Sensing Res. 12, 8 (2017). CrossRef P. Kumar, Md.H. Bikash, K. Ahmed, S. Sen, "A Novel Hexahedron Photonic Crystal Fiber in Terahertz Propagation: Design and Analysis", Photonics 6(1), 32 (2019). CrossRef S. Asaduzzaman, K. Ahmed, T. Bhuiyan, T. Farah, "Hybrid photonic crystal fiber in chemical sensing", SpringerPlus 5, 748 (2016). CrossRef Md.S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, M.R. Islam, "Ultra low-loss hybrid core porous fiber for broadband applications", App. Opt. 56(4), 1232 (2017). CrossRef S. Atakaramians, S. Afshar, H. Ebendorff-Heidepriem, M. Nagel, B.M. Fischer, D. Abbott, T.M. Monro, "THz porous fibers: design, fabrication and experimental characterization", Opt. Expr. 17(16), 14053 (2009). CrossRef
{"title":"Comparative Analysis of Highly Sensitive PCF for Chemical Sensing in THz Regime","authors":"Mohammad S. Islam, Anwar Sadath, Md. Rakibul Islam, M. Faisal","doi":"10.4302/PLP.V12I4.999","DOIUrl":"https://doi.org/10.4302/PLP.V12I4.999","url":null,"abstract":"Nowadays photonic crystal fiber (PCF) is used for sensing purposes in different fields. In this work, we have proposed a PCF based chemical (Benzene and Ethanol) sensor. Finite Element Method (FEM) based software COMSOL 5.3a is used to investigate the numerical characteristics for the proposed structure. From the numerical analysis, we obtained high sensitivity with low losses for an optimum core diameter of 210 µm. Our proposed PCF works on a broad range of core diameters and THz frequency spectra. The fabrication of this model is very simple due to its simplistic design structure. Full Text: PDF ReferencesMd.F.H. Arif, Md.J.H. Biddut, \"A new structure of photonic crystal fiber with high sensitivity, high nonlinearity, high birefringence and low confinement loss for liquid analyte sensing applications\", Sensing Bio-Sensing Res. 12, 8 (2017). CrossRef P. Kumar, Md.H. Bikash, K. Ahmed, S. Sen, \"A Novel Hexahedron Photonic Crystal Fiber in Terahertz Propagation: Design and Analysis\", Photonics 6(1), 32 (2019). CrossRef S. Asaduzzaman, K. Ahmed, T. Bhuiyan, T. Farah, \"Hybrid photonic crystal fiber in chemical sensing\", SpringerPlus 5, 748 (2016). CrossRef Md.S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, M.R. Islam, \"Ultra low-loss hybrid core porous fiber for broadband applications\", App. Opt. 56(4), 1232 (2017). CrossRef S. Atakaramians, S. Afshar, H. Ebendorff-Heidepriem, M. Nagel, B.M. Fischer, D. Abbott, T.M. Monro, \"THz porous fibers: design, fabrication and experimental characterization\", Opt. Expr. 17(16), 14053 (2009). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44506463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Performance analysis is carried out, of a multiple input, multiple output (MIMO) ultraviolet (UV) communication system with a non-line-of-sight (NLOS) UV channel. The achievable bit error coefficient is calculated using three spatial multiplexing methods for different bitrate values, azimuthal deviation between the directional diagrams of an optical transmitter and an optical receiver, and different noise levels. Full Text: PDF ReferencesZ. Xu, B. Sadler, "Ultraviolet communications: potential and state-of-the-art", IEEE Commun. Mag. 4667-73 (2009). CrossRef D. Han, Y. Liu, K. Zhang et al., "Theoretical and experimental research on diversity reception technology in NLOS UV communication system", Opt. Expr. 20(14), 15833 (2012). CrossRef Q. Guo, N. He, Z. He, "Research on the channel performances and transmission in UV-LED scatter communications", Study Opt. Comm. 3, 64 (2013). DirectLink G. Chen, L. Liao, Z. Li et al., "Experimental and simulated evaluation of long distance NLOS UV communication", Communication Systems, Networks and Digital Signal Processing (CSND-SP), 9th Int. Symp. on IEEE, 904-909 (2014). CrossRef M.A. El-Shimy, S. Hranilovic, "Spatial-Diversity Imaging Receivers for Non-Line-of-Sight Solar-Blind UV Communications", J. Lightwave Techn. 33(11), 2246 (2015). CrossRef G. Shaw, M. Nischan, M. Iyengar, S. Kaushik, M. Griffin, NLOS UV communication for distributed sensor systems, Proc. SPIE 412683, 96 (2000). CrossRef I.S. Konstantinov, G.S. Vasyliev, O.R. Kuzichkin, D.I. Surzhik, I.A. Kurilov, S.A. Lazarev, "AUV Link Mobile Ad-Hoc Network Examination", J. Eng. Adv. Techn. 8(5S) July 2019 CrossRef I.S. Konstantinov, G.S. Vasilyev, O.R. Kuzichkin, I.A. Kurilov, S.A. Lazarev, "Modeling and Analysis of the Characteristics of Ultraviolet Channels under Different Conditions of Radiation Propagation for the Organization of Wireless AD-HOC Network", J. Adv. Res. Dynam. Contr. Syst. 07, 1853 (2018) DirectLink I.S. Konstantinov, G.S. Vasyliev, O.R. Kuzichkin, D.I. Surzhik, I.A. Kurilov, S.A. Lazarev, "Development Of Uv Communication Channels Characteristics Modeling Algorithm In A Mobile Ad-Hoc Network", J. Adv. Res. Dynam. Contr. Syst. 11(08), 1920 (2019). CrossRef G. Chen, F. Abou-Galala, Z. Xu, B.M. Sadler, "Experimental evaluation of LED-based solar blind NLOS communication links", Opt. Expr. 16(19), 15059 (2008). CrossRef
{"title":"Performance analysis of MIMO communication system with NLOS UV channel","authors":"G. Vasilyev, O. Kuzichkin, D. Surzhik","doi":"10.4302/PLP.V12I4.985","DOIUrl":"https://doi.org/10.4302/PLP.V12I4.985","url":null,"abstract":"Performance analysis is carried out, of a multiple input, multiple output (MIMO) ultraviolet (UV) communication system with a non-line-of-sight (NLOS) UV channel. The achievable bit error coefficient is calculated using three spatial multiplexing methods for different bitrate values, azimuthal deviation between the directional diagrams of an optical transmitter and an optical receiver, and different noise levels. Full Text: PDF ReferencesZ. Xu, B. Sadler, \"Ultraviolet communications: potential and state-of-the-art\", IEEE Commun. Mag. 4667-73 (2009). CrossRef D. Han, Y. Liu, K. Zhang et al., \"Theoretical and experimental research on diversity reception technology in NLOS UV communication system\", Opt. Expr. 20(14), 15833 (2012). CrossRef Q. Guo, N. He, Z. He, \"Research on the channel performances and transmission in UV-LED scatter communications\", Study Opt. Comm. 3, 64 (2013). DirectLink G. Chen, L. Liao, Z. Li et al., \"Experimental and simulated evaluation of long distance NLOS UV communication\", Communication Systems, Networks and Digital Signal Processing (CSND-SP), 9th Int. Symp. on IEEE, 904-909 (2014). CrossRef M.A. El-Shimy, S. Hranilovic, \"Spatial-Diversity Imaging Receivers for Non-Line-of-Sight Solar-Blind UV Communications\", J. Lightwave Techn. 33(11), 2246 (2015). CrossRef G. Shaw, M. Nischan, M. Iyengar, S. Kaushik, M. Griffin, NLOS UV communication for distributed sensor systems, Proc. SPIE 412683, 96 (2000). CrossRef I.S. Konstantinov, G.S. Vasyliev, O.R. Kuzichkin, D.I. Surzhik, I.A. Kurilov, S.A. Lazarev, \"AUV Link Mobile Ad-Hoc Network Examination\", J. Eng. Adv. Techn. 8(5S) July 2019 CrossRef I.S. Konstantinov, G.S. Vasilyev, O.R. Kuzichkin, I.A. Kurilov, S.A. Lazarev, \"Modeling and Analysis of the Characteristics of Ultraviolet Channels under Different Conditions of Radiation Propagation for the Organization of Wireless AD-HOC Network\", J. Adv. Res. Dynam. Contr. Syst. 07, 1853 (2018) DirectLink I.S. Konstantinov, G.S. Vasyliev, O.R. Kuzichkin, D.I. Surzhik, I.A. Kurilov, S.A. Lazarev, \"Development Of Uv Communication Channels Characteristics Modeling Algorithm In A Mobile Ad-Hoc Network\", J. Adv. Res. Dynam. Contr. Syst. 11(08), 1920 (2019). CrossRef G. Chen, F. Abou-Galala, Z. Xu, B.M. Sadler, \"Experimental evaluation of LED-based solar blind NLOS communication links\", Opt. Expr. 16(19), 15059 (2008). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43599155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. B. Pham, T. Nguyen, T. Hoang, H. Bui, Thanh Son Pham, V. D. Nguyen, Hoi V. Pham
The homogeneous distribution of nano-metallic structures on the surface-enhanced Raman (SERS) substrates plays an important factor for high-sensitive Raman scattering measurement. In this paper, we present a low-cost laser-assisted photochemical method for making a SERS probe based on silver nanostructures, which are one-timely synthesized nano-silver structures, homogeneously deposited on silica microsphere surfaces. Achieved SERS-activity substrates with a homogeneous distribution of Ag-nanostructures are verified by a mapping technique on the surface of Ag-coated microsphere for the detection of low concentration of Rhodamine 6G in aqueous solutions in a range of 10-4-10-9M. The obtained results show that a SERS microsphere probe has a good repetition of SERS-activity in any space of sensing area, and large potential for application in a biochemical sensing technique. Full Text: PDF ReferencesY. Chen et al., "Interfacial reactions in lithium batteries", J. Phys. D: Appl. Phys. 50, 02510 (2017). CrossRef T.B. Pham, H. Bui, H.T. Le, V.H. Pham, "Characteristics of the Fiber Laser Sensor System Based on Etched-Bragg Grating Sensing Probe for Determination of the Low Nitrate Concentration in Water", Sensors 17, 0007 (2017). CrossRef X. Wang, O.S. Wolfbeis, "Fiber-Optic Chemical Sensors and Biosensors (2013–2015)", Anal. Chem. 88, 203 (2016). CrossRef R. Wang, K. Kim, N. Choi, X. Wang, J. Lee, J.H. Joen, G. Rhie, J. Choo, "Highly sensitive detection of high-risk bacterial pathogens using SERS-based lateral flow assay strips", Sens. Actuators B-Chem. 270, 72 (2018). CrossRef H. Zhang et al., "Determination of Pesticides by Surface-Enhanced Raman Spectroscopy on Gold-Nanoparticle-Modified Polymethacrylate", Anal. Let. 49, 2268 (2016). CrossRef L. Chen, H. Yan, X. Xue, D. Jiang, Y. Cai, D. Liang, Y.M. Jung, X.X. Han, B. Zhao, "Surface-Enhanced Raman Scattering (SERS) Active Gold Nanoparticles Decorated on a Porous Polymer Filter", Appl. Spectrosc. 71, 1543 (2017). CrossRef A. Matikainen, T. Nuutinen, P. Vahimaa, S. Honkanen, "A solution to the fabrication and tarnishing problems of surface-enhanced Raman spectroscopy (SERS) fiber probes", Sci. Rep. 5, 8320 (2015). CrossRef J. Zhang, S. Chen, T. Gong, X. Zhang, Y. Zhu, "Tapered Fiber Probe Modified by Ag Nanoparticles for SERS Detection", Plasm. 11, 743 (2016). CrossRef W. Xu et al., "A Dual-Butterfly Structure Gyroscope", Sensors 17, 467 (2017). CrossRef K. Setoura, S. Ito, M. Yamada, H. Yamauchi, H. Miyasaka, "Fabrication of silver nanoparticles from silver salt aqueous solution at water-glass interface by visible CW laser irradiation without reducing reagents", J. Photochem. Photobio. A: Chem. 344, 168 (2017). CrossRef K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, C. Gao, "Porous Au–Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis", Nano Lett. 16, 3675 (2016). CrossRef Z. Huang, X. Lei, Y. Liu, Z. Wang, X. Wang, Z. Wang, Q. Mao, G. Meng, "Tapered Optica
纳米金属结构在表面增强拉曼(SERS)衬底上的均匀分布是实现高灵敏度拉曼散射测量的重要因素。在本文中,我们提出了一种低成本的激光辅助光化学方法来制作基于银纳米结构的SERS探针,银纳米结构是一次性合成的纳米银结构,均匀沉积在硅微球表面。通过在银包覆微球表面的测绘技术验证了具有均匀分布的银纳米结构的sers活性底物,用于检测水溶液中10-4-10-9M范围内的低浓度罗丹明6G。结果表明,SERS微球探针在传感区域的任何空间都具有良好的SERS活性重复性,在生化传感技术中具有很大的应用潜力。全文:PDF参考。Chen et al.,“锂电池的界面反应”,物理学报。D::。物理学报,50,02510(2017)。引用本文:范廷彬,裴辉,李洪涛,范卫辉,“基于蚀刻光栅传感探头的光纤激光传感系统在水中低硝酸盐浓度测定中的应用”,传感器,17(07)(2017)。Wang X. Wang, O.S. Wolfbeis,“光纤化学传感器与生物传感器(2013-2015)”,vol . 3, no . 1。化学,88,203(2016)。王晓明,王晓明,王晓明,李俊杰,李俊辉,王晓明,周俊杰,“基于sers的横向流动试验试纸的高灵敏度检测”,中国生物医学工程学报。270,72(2018)。CrossRef H. Zhang et al.,“金纳米颗粒修饰聚甲基丙烯酸酯表面增强拉曼光谱测定农药”,vol . 3;Let. 49, 2268(2016)。【交叉参考】陈丽丽,闫华,薛晓霞,姜东,蔡勇,梁东,钟彦明,韩晓霞,赵斌,“表面增强拉曼散射(SERS)活性金纳米粒子在多孔聚合物过滤器上的修饰”,应用科学,光谱学学报,2011,43(2017)。CrossRef A. Matikainen, T. Nuutinen, P. Vahimaa, S. Honkanen,“表面增强拉曼光谱(SERS)光纤探针的制备和抛光问题的解决方案”,Sci。众议员5,8320(2015)。[CrossRef]张军,陈生,龚彤,张晓霞,朱勇,“纳米Ag修饰的锥形纤维探针用于SERS检测”,高分子学报,11,743(2016)。CrossRef徐伟等,“双蝴蝶结构陀螺仪”,传感器,17,467(2017)。[CrossRef]王晓明,王晓明,王晓明,“用连续波激光辐照制备银纳米粒子的研究进展”,光化学学报。Photobio。[j] .化学学报,2016,33(5)。引用本文:刘凯,白艳,张磊,杨志强,范琪,郑宏,殷艳,高春春,“高密度高可达热点的Au-Ag纳米微球SERS分析”,纳米材料学报,16,3675(2016)。引用本文:黄志强,雷晓明,刘勇,王志强,王晓明,王志强,毛强,王志强,“基于等离子体纳米结构的锥形光纤探针在表面增强拉曼散射中的应用”,中国科学院学报(自然科学版)板牙。接口7,17247(2015)。CrossRef
{"title":"Synthesis and deposition of Silver nanostructures on the silica microsphere by laser-assisted photochemical method for SERS applications","authors":"T. B. Pham, T. Nguyen, T. Hoang, H. Bui, Thanh Son Pham, V. D. Nguyen, Hoi V. Pham","doi":"10.4302/PLP.V12I4.1049","DOIUrl":"https://doi.org/10.4302/PLP.V12I4.1049","url":null,"abstract":"The homogeneous distribution of nano-metallic structures on the surface-enhanced Raman (SERS) substrates plays an important factor for high-sensitive Raman scattering measurement. In this paper, we present a low-cost laser-assisted photochemical method for making a SERS probe based on silver nanostructures, which are one-timely synthesized nano-silver structures, homogeneously deposited on silica microsphere surfaces. Achieved SERS-activity substrates with a homogeneous distribution of Ag-nanostructures are verified by a mapping technique on the surface of Ag-coated microsphere for the detection of low concentration of Rhodamine 6G in aqueous solutions in a range of 10-4-10-9M. The obtained results show that a SERS microsphere probe has a good repetition of SERS-activity in any space of sensing area, and large potential for application in a biochemical sensing technique. Full Text: PDF ReferencesY. Chen et al., \"Interfacial reactions in lithium batteries\", J. Phys. D: Appl. Phys. 50, 02510 (2017). CrossRef T.B. Pham, H. Bui, H.T. Le, V.H. Pham, \"Characteristics of the Fiber Laser Sensor System Based on Etched-Bragg Grating Sensing Probe for Determination of the Low Nitrate Concentration in Water\", Sensors 17, 0007 (2017). CrossRef X. Wang, O.S. Wolfbeis, \"Fiber-Optic Chemical Sensors and Biosensors (2013–2015)\", Anal. Chem. 88, 203 (2016). CrossRef R. Wang, K. Kim, N. Choi, X. Wang, J. Lee, J.H. Joen, G. Rhie, J. Choo, \"Highly sensitive detection of high-risk bacterial pathogens using SERS-based lateral flow assay strips\", Sens. Actuators B-Chem. 270, 72 (2018). CrossRef H. Zhang et al., \"Determination of Pesticides by Surface-Enhanced Raman Spectroscopy on Gold-Nanoparticle-Modified Polymethacrylate\", Anal. Let. 49, 2268 (2016). CrossRef L. Chen, H. Yan, X. Xue, D. Jiang, Y. Cai, D. Liang, Y.M. Jung, X.X. Han, B. Zhao, \"Surface-Enhanced Raman Scattering (SERS) Active Gold Nanoparticles Decorated on a Porous Polymer Filter\", Appl. Spectrosc. 71, 1543 (2017). CrossRef A. Matikainen, T. Nuutinen, P. Vahimaa, S. Honkanen, \"A solution to the fabrication and tarnishing problems of surface-enhanced Raman spectroscopy (SERS) fiber probes\", Sci. Rep. 5, 8320 (2015). CrossRef J. Zhang, S. Chen, T. Gong, X. Zhang, Y. Zhu, \"Tapered Fiber Probe Modified by Ag Nanoparticles for SERS Detection\", Plasm. 11, 743 (2016). CrossRef W. Xu et al., \"A Dual-Butterfly Structure Gyroscope\", Sensors 17, 467 (2017). CrossRef K. Setoura, S. Ito, M. Yamada, H. Yamauchi, H. Miyasaka, \"Fabrication of silver nanoparticles from silver salt aqueous solution at water-glass interface by visible CW laser irradiation without reducing reagents\", J. Photochem. Photobio. A: Chem. 344, 168 (2017). CrossRef K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, C. Gao, \"Porous Au–Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis\", Nano Lett. 16, 3675 (2016). CrossRef Z. Huang, X. Lei, Y. Liu, Z. Wang, X. Wang, Z. Wang, Q. Mao, G. Meng, \"Tapered Optica","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45690185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mateusz Józwicki, M. Gargol, Małgorzata Gil-Kowalczyk, P. Mergo
The aim of the study was to verify the usefulness of commercially available granulates of PMMA (poly (methyl methacrylate) and PS (polystyrene) for the production of polymer optical fibers by extrusion method. Samples were subjected to thermal processing in various conditions (different temperatures and exposure time). Thermal (TG/DTG) and spectroscopic (ATR/FT-IR) analyses were carried out to analyze changes in the samples. Based on FT-IR analysis of liquid monomers and granulates the conversion of double bonds was calculated, which gave us a picture of the degree of monomers conversion, crucial information from the technological point of view. Full Text: PDF References O. Ziemann, J. Krauser, P.E. Zamzow, W. Daum, POF Polymer Optical Fibersfor Data Communication (Berlin: Springer 2008). DirectLink P. Stajanca et al. "Solution-mediated cladding doping of commercial polymer optical fibers", Opt. Fiber Technol. 41, 227-234, (2018). CrossRef K. Peters, "Polymer optical fiber sensors—a review", Smart Mater. Struct., 20 013002 (2011) CrossRef J. Zubia and J. Arrue, "Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications", Opt. Fiber Technol. 7 ,101-40 (2001) CrossRef M. Beckers, T. Schluter, T. Gries, G. Seide, C.-A. Bunge, "6 - Fabrication techniques for polymer optical fibres", Polymer Optical Fibres, 187-199 (2017) CrossRef M. Niedźwiedź , M. Gil, M. Gargol , W. Podkościelny, P. Mergo, "Determination of the optimal extrusion temperature of the PMMA optical fibers", Phot. Lett. Poland 11, 7-9 (2019) CrossRef
{"title":"Commercially available granulates PMMA and PS - potential problems with the production of polymer optical fibers","authors":"Mateusz Józwicki, M. Gargol, Małgorzata Gil-Kowalczyk, P. Mergo","doi":"10.4302/PLP.V12I3.1036","DOIUrl":"https://doi.org/10.4302/PLP.V12I3.1036","url":null,"abstract":"The aim of the study was to verify the usefulness of commercially available granulates of PMMA (poly (methyl methacrylate) and PS (polystyrene) for the production of polymer optical fibers by extrusion method. Samples were subjected to thermal processing in various conditions (different temperatures and exposure time). Thermal (TG/DTG) and spectroscopic (ATR/FT-IR) analyses were carried out to analyze changes in the samples. Based on FT-IR analysis of liquid monomers and granulates the conversion of double bonds was calculated, which gave us a picture of the degree of monomers conversion, crucial information from the technological point of view. Full Text: PDF References O. Ziemann, J. Krauser, P.E. Zamzow, W. Daum, POF Polymer Optical Fibersfor Data Communication (Berlin: Springer 2008). DirectLink P. Stajanca et al. \"Solution-mediated cladding doping of commercial polymer optical fibers\", Opt. Fiber Technol. 41, 227-234, (2018). CrossRef K. Peters, \"Polymer optical fiber sensors—a review\", Smart Mater. Struct., 20 013002 (2011) CrossRef J. Zubia and J. Arrue, \"Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications\", Opt. Fiber Technol. 7 ,101-40 (2001) CrossRef M. Beckers, T. Schluter, T. Gries, G. Seide, C.-A. Bunge, \"6 - Fabrication techniques for polymer optical fibres\", Polymer Optical Fibres, 187-199 (2017) CrossRef M. Niedźwiedź , M. Gil, M. Gargol , W. Podkościelny, P. Mergo, \"Determination of the optimal extrusion temperature of the PMMA optical fibers\", Phot. Lett. Poland 11, 7-9 (2019) CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"12 1","pages":"79-81"},"PeriodicalIF":0.6,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47393490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ł. Pajewski, Ł. Sójka, S. Lamrini, T. Benson, A. Seddon, S. Sujecki
In this contribution the diode pumped high-power Er:ZBLAN laser operating at around 2.8 µm is reported. The laser produces 2 W output power with the slope efficiency of 24 % measured with respect to the incident pump power. Full Text: PDF References S. D. Jackson, "Towards high-power mid-infrared emission from a fibre laser", Nature Photonics 6, 423 (2012). CrossRef V. Portosi, D. Laneve, C. M. Falconi, and F. Prudenzano, "Advances on Photonic Crystal Fiber Sensors and Applications", Sensors 19, (2019). CrossRef M. C. Falconi, D. Laneve, and F. Prudenzano, "Advances in Mid-IR Fiber Lasers: Tellurite, Fluoride and Chalcogenide", Fibers 5, 23 (2017). CrossRef M. Michalska, P. Grześ, J. Świderski, "High power, 100 W-class, thulium-doped all-fiber lasers", Phot. Lett. Poland, 11, 109 (2019). CrossRef Y. O. Aydin, V. Fortin, R. Vallee, and M. Bernier, "Towards power scaling of 2.8 μm fiber lasers", Opt. Lett. 43, 4542 (2018). CrossRef S. Crawford, D. D. Hudson, and S. D. Jackson, "High-Power Broadly Tunable 3- μm Fiber Laser for the Measurement of Optical Fiber Loss", IEEE Photonics Journal 7, 1 (2015). CrossRef V. Fortin, F. Jobin, M. Larose, M. Bernier, and R. Vallee, "10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm", Opt. Lett. 44, 491 (2019). CrossRef L. Sojka, et al., "Experimental Investigation of Mid-Infrared Laser Action From Dy 3+ Doped Fluorozirconate Fiber", IEEE Photon. Technol. Lett. 30, 1083 (2018). CrossRef M. Pollnan and S. D. Jackson, "Erbium 3 /spl mu/m fiber lasers", IEEE J. Sel. Top. in Quantum Electron., 7, 30 (2001). CrossRef Y. O. Aydin, F. Maes, V. Fortin, S. T. Bah, R. Vallee, and M. Bernier, "Endcapping of high-power 3 µm fiber lasers", Opt. Express 27, 20659 (2019). CrossRef C. A. Schafer, "Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8 μm", et al., Opt. Lett. 43, 2340 (2018). CrossRef O. Henderson-Sapir, J. Munch, and D. J. Ottaway, "New energy-transfer upconversion process in Er 3+ :ZBLAN mid-infrared fiber lasers", Opt. Express 24, 6869 (2016). CrossRef F. Maes, V. Fortin, S. Poulain, M. Poulain, J.-Y. Carree, M. Bernier, and R. Vallee, "Room-temperature fiber laser at 3.92 μm", Optica 5, 761 (2018). CrossRef R. I. Woodward, M. R. Majewski, D. D. Hudson, and S. D. Jackson, "Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing", APL Photonics 4, 020801 (2019). CrossRef M. Kochanowicz, et al., "Near-IR and mid-IR luminescence and energy transfer in fluoroindate glasses co-doped with Er 3+ /Tm 3+ ", Opt. Mater. Express 9, 4772 (2019). CrossRef M. Kochanowicz, et al., "Sensitization of Ho 3+ - doped fluoroindate glasses for near and mid-infrared emission", Optical Materials 101, 109707 (2020). CrossRef J. Wang, X. Zhu, M. Mollaee, J. Zong, and N. Peyhambarian, "Efficient energy transfer from Er 3+ to Ho 3+ and Dy 3+ in ZBLAN glass", Opt. Express 28, 5189 (2020). CrossRef M. C. Falconi, D. Laneve, V. Portosi, S. Taccheo, and F. Prudenzano, "Design of a Multi-W
{"title":"Experimental investigation of mid-infrared Er:ZBLAN fiber laser","authors":"Ł. Pajewski, Ł. Sójka, S. Lamrini, T. Benson, A. Seddon, S. Sujecki","doi":"10.4302/PLP.V12I3.989","DOIUrl":"https://doi.org/10.4302/PLP.V12I3.989","url":null,"abstract":"In this contribution the diode pumped high-power Er:ZBLAN laser operating at around 2.8 µm is reported. The laser produces 2 W output power with the slope efficiency of 24 % measured with respect to the incident pump power. Full Text: PDF References S. D. Jackson, \"Towards high-power mid-infrared emission from a fibre laser\", Nature Photonics 6, 423 (2012). CrossRef V. Portosi, D. Laneve, C. M. Falconi, and F. Prudenzano, \"Advances on Photonic Crystal Fiber Sensors and Applications\", Sensors 19, (2019). CrossRef M. C. Falconi, D. Laneve, and F. Prudenzano, \"Advances in Mid-IR Fiber Lasers: Tellurite, Fluoride and Chalcogenide\", Fibers 5, 23 (2017). CrossRef M. Michalska, P. Grześ, J. Świderski, \"High power, 100 W-class, thulium-doped all-fiber lasers\", Phot. Lett. Poland, 11, 109 (2019). CrossRef Y. O. Aydin, V. Fortin, R. Vallee, and M. Bernier, \"Towards power scaling of 2.8 μm fiber lasers\", Opt. Lett. 43, 4542 (2018). CrossRef S. Crawford, D. D. Hudson, and S. D. Jackson, \"High-Power Broadly Tunable 3- μm Fiber Laser for the Measurement of Optical Fiber Loss\", IEEE Photonics Journal 7, 1 (2015). CrossRef V. Fortin, F. Jobin, M. Larose, M. Bernier, and R. Vallee, \"10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm\", Opt. Lett. 44, 491 (2019). CrossRef L. Sojka, et al., \"Experimental Investigation of Mid-Infrared Laser Action From Dy 3+ Doped Fluorozirconate Fiber\", IEEE Photon. Technol. Lett. 30, 1083 (2018). CrossRef M. Pollnan and S. D. Jackson, \"Erbium 3 /spl mu/m fiber lasers\", IEEE J. Sel. Top. in Quantum Electron., 7, 30 (2001). CrossRef Y. O. Aydin, F. Maes, V. Fortin, S. T. Bah, R. Vallee, and M. Bernier, \"Endcapping of high-power 3 µm fiber lasers\", Opt. Express 27, 20659 (2019). CrossRef C. A. Schafer, \"Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8 μm\", et al., Opt. Lett. 43, 2340 (2018). CrossRef O. Henderson-Sapir, J. Munch, and D. J. Ottaway, \"New energy-transfer upconversion process in Er 3+ :ZBLAN mid-infrared fiber lasers\", Opt. Express 24, 6869 (2016). CrossRef F. Maes, V. Fortin, S. Poulain, M. Poulain, J.-Y. Carree, M. Bernier, and R. Vallee, \"Room-temperature fiber laser at 3.92 μm\", Optica 5, 761 (2018). CrossRef R. I. Woodward, M. R. Majewski, D. D. Hudson, and S. D. Jackson, \"Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing\", APL Photonics 4, 020801 (2019). CrossRef M. Kochanowicz, et al., \"Near-IR and mid-IR luminescence and energy transfer in fluoroindate glasses co-doped with Er 3+ /Tm 3+ \", Opt. Mater. Express 9, 4772 (2019). CrossRef M. Kochanowicz, et al., \"Sensitization of Ho 3+ - doped fluoroindate glasses for near and mid-infrared emission\", Optical Materials 101, 109707 (2020). CrossRef J. Wang, X. Zhu, M. Mollaee, J. Zong, and N. Peyhambarian, \"Efficient energy transfer from Er 3+ to Ho 3+ and Dy 3+ in ZBLAN glass\", Opt. Express 28, 5189 (2020). CrossRef M. C. Falconi, D. Laneve, V. Portosi, S. Taccheo, and F. Prudenzano, \"Design of a Multi-W","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"12 1","pages":"73-75"},"PeriodicalIF":0.6,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49367934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this letter, a TM-polarization C-band pass one-dimensional photonic crystal strip waveguide (1D-PCSW) is presented. The waveguide structure is based on a silicon-on-insulator platform which is easy to realize using standard CMOS technology. The numerical study is conducted via 3D-finite element method (FEM). The transmittance and polarization extinction ratio (PER) is enhanced by optimizing the geometric parameters of the device. As a result, a TM polarized light can travel in the waveguide with ~2 dB loss for all C-band telecommunication wavelength window whereas the TE polarized light suffers a high transmission loss of >30 dB. As a result, a PER of ~28.5 dB can be obtained for the whole C-band wavelengths range. The total length of the proposed device is around 8.4 µm long including 1 µm silicon strip waveguide segment on both ends. Based on our study presented in this paper, several photonic devices can be realized where strict polarization filtering is required. Full Text: PDF References B. Wang, S. Blaize, R.S-Montiel, "Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics", Nanoscale, 11, 20685 (2019). CrossRef D. Dai, J.E. Bowers, "Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects", Nanophotonics, 3, 283 (2014). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "Optical elements based on silicon photonics", Computer Optics, 43, 1079 (2019). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "Compact design of a polarization beam splitter based on silicon-on-insulator platform", Laser Physics, 28, 116202 (2018). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "A T-shaped 1 × 8 balanced optical power splitter based on 90° bend asymmetric vertical slot waveguides", Laser Physics, 29, 046207 (2019). CrossRef Q. Wang, S.-T. Ho, "Ultracompact TM-Pass Silicon Nanophotonic Waveguide Polarizer and Design", IEEE Photonics J., 2, 49 (2010). CrossRef C.-H. Chen, L. Pang, C.-H. Tsai, U. Levy, Y. Fainman, "Compact and integrated TM-pass waveguide polarizer", Opt. Express, 13, 5347 (2005). CrossRef S. Yuan, Y. Wang, Q. Huang, J. Xia, J. Yu, "Ultracompact TM-pass/TE-reflected integrated polarizer based on a hybrid plasmonic waveguide for silicon photonics", in 11th International Conference on Group IV Photonics (GFP) (IEEE, 2014), pp. 183-184. CrossRef X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, D. Dai, "Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide", Opt. Lett., 39, 4514 (2014). CrossRef A.E.- S. Abd-Elkader, M.F. O. Hameed, N.F. Areed, H.E.-D. Mostafa, and S.S. Obayya, "Ultracompact AZO-based TE-pass and TM-pass hybrid plasmonic polarizers", J.Opt. Soc. Am. B., 36, 652 (2019). CrossRef J. Li et al., "Photonic Crystal Waveguide Electro-Optic Modulator With a Wide Bandwidth", Journal of Lightwave Technology, 31, 1601-1607 (2013). CrossRef N. Skivesen et al., "Photonic-crystal waveguide biosensor", Optics Express, 15, 3169-3176 (2007)
{"title":"One-dimensional photonic crystal waveguide based on SOI platform for transverse magnetic polarization-maintaining devices","authors":"N. L. Kazanskiy, M. A. Butt","doi":"10.4302/PLP.V12I3.1044","DOIUrl":"https://doi.org/10.4302/PLP.V12I3.1044","url":null,"abstract":"In this letter, a TM-polarization C-band pass one-dimensional photonic crystal strip waveguide (1D-PCSW) is presented. The waveguide structure is based on a silicon-on-insulator platform which is easy to realize using standard CMOS technology. The numerical study is conducted via 3D-finite element method (FEM). The transmittance and polarization extinction ratio (PER) is enhanced by optimizing the geometric parameters of the device. As a result, a TM polarized light can travel in the waveguide with ~2 dB loss for all C-band telecommunication wavelength window whereas the TE polarized light suffers a high transmission loss of >30 dB. As a result, a PER of ~28.5 dB can be obtained for the whole C-band wavelengths range. The total length of the proposed device is around 8.4 µm long including 1 µm silicon strip waveguide segment on both ends. Based on our study presented in this paper, several photonic devices can be realized where strict polarization filtering is required. Full Text: PDF References B. Wang, S. Blaize, R.S-Montiel, \"Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics\", Nanoscale, 11, 20685 (2019). CrossRef D. Dai, J.E. Bowers, \"Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects\", Nanophotonics, 3, 283 (2014). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, \"Optical elements based on silicon photonics\", Computer Optics, 43, 1079 (2019). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, \"Compact design of a polarization beam splitter based on silicon-on-insulator platform\", Laser Physics, 28, 116202 (2018). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, \"A T-shaped 1 × 8 balanced optical power splitter based on 90° bend asymmetric vertical slot waveguides\", Laser Physics, 29, 046207 (2019). CrossRef Q. Wang, S.-T. Ho, \"Ultracompact TM-Pass Silicon Nanophotonic Waveguide Polarizer and Design\", IEEE Photonics J., 2, 49 (2010). CrossRef C.-H. Chen, L. Pang, C.-H. Tsai, U. Levy, Y. Fainman, \"Compact and integrated TM-pass waveguide polarizer\", Opt. Express, 13, 5347 (2005). CrossRef S. Yuan, Y. Wang, Q. Huang, J. Xia, J. Yu, \"Ultracompact TM-pass/TE-reflected integrated polarizer based on a hybrid plasmonic waveguide for silicon photonics\", in 11th International Conference on Group IV Photonics (GFP) (IEEE, 2014), pp. 183-184. CrossRef X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, D. Dai, \"Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide\", Opt. Lett., 39, 4514 (2014). CrossRef A.E.- S. Abd-Elkader, M.F. O. Hameed, N.F. Areed, H.E.-D. Mostafa, and S.S. Obayya, \"Ultracompact AZO-based TE-pass and TM-pass hybrid plasmonic polarizers\", J.Opt. Soc. Am. B., 36, 652 (2019). CrossRef J. Li et al., \"Photonic Crystal Waveguide Electro-Optic Modulator With a Wide Bandwidth\", Journal of Lightwave Technology, 31, 1601-1607 (2013). CrossRef N. Skivesen et al., \"Photonic-crystal waveguide biosensor\", Optics Express, 15, 3169-3176 (2007)","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"12 1","pages":"85-87"},"PeriodicalIF":0.6,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41817310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, miniaturized design of a plasmonic Bragg grating filter is investigated via the finite element method (FEM). The filter is based on a plasmonic metal-insulator-metal waveguide deposited on a quartz substrate. The corrugated Bragg grating designed for near-infrared wavelength range is structured on both sides of the waveguide. The spectral characteristics of the filter are studied by varying the geometric parameters of the filter design. As a result, the maximum ER and bandwidth of 36.2 dB and 173 nm is obtained at λ Bragg =976 nm with a filter footprint of as small as 1.0 x 8.75 µm 2 , respectively. The ER and bandwidth can be further improved by increasing the number of grating periods and the strength of the grating, respectively. Moreover, the Bragg grating structure is quite receptive to the refractive index of the medium. These features allow the employment of materials such as polymers in the metal-insulator-metal waveguide which can be externally tuned or it can be used for refractive index sensing applications. The sensitivity of the proposed Bragg grating structure can offer a sensitivity of 950 nm/RIU. We believe that the study presented in this paper provides a guideline for the realization of small footprint plasmonic Bragg grating structures which can be employed in filter and refractive index sensing applications. Full Text: PDF References J. W. Field et al., "Miniaturised, Planar, Integrated Bragg Grating Spectrometer", 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 2019, CrossRef L. Cheng, S. Mao, Z. Li, Y. Han, H.Y. Fu, "Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues", Micromachines, 11, 666 (2020). CrossRef J. Missinne, N. T. Beneitez, M-A. Mattelin, A. Lamberti, G. Luyckx, W. V. Paepegem, G. V. Steenberge, "Bragg-Grating-Based Photonic Strain and Temperature Sensor Foils Realized Using Imprinting and Operating at Very Near Infrared Wavelengths", Sensors, 18, 2717 (2018). CrossRef M. A. Butt, S.N. Khonina, N.L. Kazanskiy, "Numerical analysis of a miniaturized design of a Fabry–Perot resonator based on silicon strip and slot waveguides for bio-sensing applications", Journal of Modern Optics, 66, 1172-1178 (2019). CrossRef H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, X. Jiang, "Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide", Optics Letters, 41, 2450 (2016). CrossRef M. A. Butt, S.N. Khonina, N.L. Kazanskiy, "Optical elements based on silicon photonics", Computer Optics, 43, 1079-1083 (2019). CrossRef N. L. Kazanskiy, S.N. Khonina, M.A. Butt, "Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review", Physica E, 117, 113798 (2020). CrossRef L. Lu et al, "Mode-Selective Hybrid Plasmonic Bragg Grating Reflector", IEEE Photonics Technology Letters, 22, 1765-1
{"title":"Numerical investigation of a small footprint plasmonic Bragg grating structure with a high extinction ratio","authors":"M. A. Butt","doi":"10.4302/PLP.V12I3.1042","DOIUrl":"https://doi.org/10.4302/PLP.V12I3.1042","url":null,"abstract":"In this paper, miniaturized design of a plasmonic Bragg grating filter is investigated via the finite element method (FEM). The filter is based on a plasmonic metal-insulator-metal waveguide deposited on a quartz substrate. The corrugated Bragg grating designed for near-infrared wavelength range is structured on both sides of the waveguide. The spectral characteristics of the filter are studied by varying the geometric parameters of the filter design. As a result, the maximum ER and bandwidth of 36.2 dB and 173 nm is obtained at λ Bragg =976 nm with a filter footprint of as small as 1.0 x 8.75 µm 2 , respectively. The ER and bandwidth can be further improved by increasing the number of grating periods and the strength of the grating, respectively. Moreover, the Bragg grating structure is quite receptive to the refractive index of the medium. These features allow the employment of materials such as polymers in the metal-insulator-metal waveguide which can be externally tuned or it can be used for refractive index sensing applications. The sensitivity of the proposed Bragg grating structure can offer a sensitivity of 950 nm/RIU. We believe that the study presented in this paper provides a guideline for the realization of small footprint plasmonic Bragg grating structures which can be employed in filter and refractive index sensing applications. Full Text: PDF References J. W. Field et al., \"Miniaturised, Planar, Integrated Bragg Grating Spectrometer\", 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 2019, CrossRef L. Cheng, S. Mao, Z. Li, Y. Han, H.Y. Fu, \"Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues\", Micromachines, 11, 666 (2020). CrossRef J. Missinne, N. T. Beneitez, M-A. Mattelin, A. Lamberti, G. Luyckx, W. V. Paepegem, G. V. Steenberge, \"Bragg-Grating-Based Photonic Strain and Temperature Sensor Foils Realized Using Imprinting and Operating at Very Near Infrared Wavelengths\", Sensors, 18, 2717 (2018). CrossRef M. A. Butt, S.N. Khonina, N.L. Kazanskiy, \"Numerical analysis of a miniaturized design of a Fabry–Perot resonator based on silicon strip and slot waveguides for bio-sensing applications\", Journal of Modern Optics, 66, 1172-1178 (2019). CrossRef H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, X. Jiang, \"Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide\", Optics Letters, 41, 2450 (2016). CrossRef M. A. Butt, S.N. Khonina, N.L. Kazanskiy, \"Optical elements based on silicon photonics\", Computer Optics, 43, 1079-1083 (2019). CrossRef N. L. Kazanskiy, S.N. Khonina, M.A. Butt, \"Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review\", Physica E, 117, 113798 (2020). CrossRef L. Lu et al, \"Mode-Selective Hybrid Plasmonic Bragg Grating Reflector\", IEEE Photonics Technology Letters, 22, 1765-1","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"12 1","pages":"82-84"},"PeriodicalIF":0.6,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48465978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We presented a numerical investigation of a metamaterial narrowband perfect absorber conducted via a finite element method based on commercially available COMSOL software. The periodic array of silicon meta-atoms (MAs) are placed on 80 nm thick gold layer. The broadband light at normal incidence is blocked by the gold layer and silicon MAs are used to excite the surface plasmon by scattering light through it. Maximum absorption of 95.7 % is obtained at the resonance wavelength of 1137.5 nm due to the perfect impedance matching of the electric and magnetic dipoles. The absorption is insensitive to the wide-angle of incidence ranging from 0 to 80 degrees. We believe that the proposed metamaterial device can be utilized in solar photovoltaic and biochemical sensing applications. Full Text: PDF References Y. Cheng, X.S. Mao, C. Wu, L. Wu, R.Z. Gong, "Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing", Optical Materials, 53, 195-200 (2016). CrossRef S. S. Mirshafieyan, D.A. Gregory, "Electrically tunable perfect light absorbers as color filters and modulators", Scientific Reports,8, 2635 (2018). CrossRef D.M. Nguyen, D. Lee, J. Rho, "Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths", Scientific Reports, 7, 2611 (2017). CrossRef Y. Sun, Y. Ling, T. Liu, L. Huang, "Electro-optical switch based on continuous metasurface embedded in Si substrate", AIP Advances, 5, 117221 (2015). CrossRef H. Chu, Q. Li, B. Liu, J. Luo, S. Sun, Z. H. Hang, L. Zhou, Y. Lai, "A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials", Light: Science & Applications, 7, 50 (2018). CrossRef S. K. Patel, S. Charola, J. Parmar, M. Ladumor, "Broadband metasurface solar absorber in the visible and near-infrared region", Materials Research Express, 6, 086213 (2019). CrossRef Q. Qian, S. Ti, C. Wang, "All-dielectric ultra-thin metasurface angular filter", Optics Letters, 44, 3984 (2019). CrossRef P. Yu et al., "Broadband Metamaterial Absorbers", Advanced Optical Materials, 7, 1800995 (2019). CrossRef Y. J. Kim et al., "Flexible ultrathin metamaterial absorber for wide frequency band, based on conductive fibers", Science and Technology of advanced materials, 19, 711-717 (2018). CrossRef N.L. Kazanskiy, S.N. Khonina, M.A. Butt, "Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review", Physica E, 117, 113798 (2020). CrossRef H. E. Nejad, A. Mir, A. Farmani, "Supersensitive and Tunable Nano-Biosensor for Cancer Detection", IEEE Sensors Journal, 19, 4874-4881 (2019). CrossRef
本文采用基于COMSOL软件的有限元方法对一种超材料窄带完美吸收体进行了数值研究。在80 nm厚的金层上放置硅元原子(MAs)的周期阵列。正入射的宽带光被金层阻挡,硅MAs通过散射光来激发表面等离子体。由于电偶极子和磁偶极子的完美阻抗匹配,在1137.5 nm的共振波长处获得了95.7%的最大吸收。吸收对0 ~ 80度的广角入射角不敏感。我们认为所提出的超材料器件可用于太阳能光伏和生化传感应用。程艳,毛小生,吴春林,龚仁哲,“红外非平面等离子体完美吸收体增强敏感折射率传感”,光学材料,53,195-200(2016)。引用本文:陈晓明,陈晓明,“电可调谐光吸收材料的研究进展”,《科学通报》,2018年第8期。引用本文:阮德明,李德明,李金杰,“基于等离子体光栅的可见光和近红外波长完美吸收体的光吸收控制”,科学通报,7,2611(2017)。引用本文:孙艳,凌云,刘涛,黄磊,“基于连续超表面嵌入硅衬底的电光开关”,光电工程学报,5,(2015)朱红红,李强,刘波,罗军,孙生,韩志辉,周磊,赖勇,“基于透明超表面和零折射率材料集成的混合隐形斗篷”,光科学与应用,7,50(2018)。CrossRef S. K. Patel, S. Charola, J. Parmar, M. Ladumor,“可见光和近红外波段的宽带超表面太阳能吸收体”,材料工程,6(6):213(2019)。引用本文:钱强,王超,“全介电超薄超表面角滤波器”,光学学报,44,39(2019)。CrossRef . Yu等,“宽带超材料吸收剂”,光学学报,7,1800995(2019)。引用本文:王晓明,王晓明,“基于导电纤维的柔性超薄超材料吸收体的研究”,材料科学与工程,19,(2018):711-717。[CrossRef] N.L. Kazanskiy, S.N. Khonina, M.A. Butt,“基于金属绝缘体-金属波导的等离子体传感器在折射率传感中的应用:综述”,物理学报,11,11(2020)。陈晓明,张晓明,张晓明,“超灵敏可调纳米生物传感器在癌症检测中的应用”,中国生物医学工程学报,2019,33(4):448 - 448。CrossRef
{"title":"Narrowband perfect metasurface absorber based on impedance matching","authors":"M. A. Butt, N. Kazansky","doi":"10.4302/PLP.V12I3.1041","DOIUrl":"https://doi.org/10.4302/PLP.V12I3.1041","url":null,"abstract":"We presented a numerical investigation of a metamaterial narrowband perfect absorber conducted via a finite element method based on commercially available COMSOL software. The periodic array of silicon meta-atoms (MAs) are placed on 80 nm thick gold layer. The broadband light at normal incidence is blocked by the gold layer and silicon MAs are used to excite the surface plasmon by scattering light through it. Maximum absorption of 95.7 % is obtained at the resonance wavelength of 1137.5 nm due to the perfect impedance matching of the electric and magnetic dipoles. The absorption is insensitive to the wide-angle of incidence ranging from 0 to 80 degrees. We believe that the proposed metamaterial device can be utilized in solar photovoltaic and biochemical sensing applications. Full Text: PDF References Y. Cheng, X.S. Mao, C. Wu, L. Wu, R.Z. Gong, \"Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing\", Optical Materials, 53, 195-200 (2016). CrossRef S. S. Mirshafieyan, D.A. Gregory, \"Electrically tunable perfect light absorbers as color filters and modulators\", Scientific Reports,8, 2635 (2018). CrossRef D.M. Nguyen, D. Lee, J. Rho, \"Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths\", Scientific Reports, 7, 2611 (2017). CrossRef Y. Sun, Y. Ling, T. Liu, L. Huang, \"Electro-optical switch based on continuous metasurface embedded in Si substrate\", AIP Advances, 5, 117221 (2015). CrossRef H. Chu, Q. Li, B. Liu, J. Luo, S. Sun, Z. H. Hang, L. Zhou, Y. Lai, \"A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials\", Light: Science & Applications, 7, 50 (2018). CrossRef S. K. Patel, S. Charola, J. Parmar, M. Ladumor, \"Broadband metasurface solar absorber in the visible and near-infrared region\", Materials Research Express, 6, 086213 (2019). CrossRef Q. Qian, S. Ti, C. Wang, \"All-dielectric ultra-thin metasurface angular filter\", Optics Letters, 44, 3984 (2019). CrossRef P. Yu et al., \"Broadband Metamaterial Absorbers\", Advanced Optical Materials, 7, 1800995 (2019). CrossRef Y. J. Kim et al., \"Flexible ultrathin metamaterial absorber for wide frequency band, based on conductive fibers\", Science and Technology of advanced materials, 19, 711-717 (2018). CrossRef N.L. Kazanskiy, S.N. Khonina, M.A. Butt, \"Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review\", Physica E, 117, 113798 (2020). CrossRef H. E. Nejad, A. Mir, A. Farmani, \"Supersensitive and Tunable Nano-Biosensor for Cancer Detection\", IEEE Sensors Journal, 19, 4874-4881 (2019). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"12 1","pages":"88-90"},"PeriodicalIF":0.6,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42748135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L-valine L-valinium perchlorate monohydrate single crystal has been synthesized by slow evaporation technique at room temperature. The crystal structure and space group of the crystal were confirmed by single crystal X-ray diffractometer. Optical behavior of the crystal was analyzed by using UV-visible spectrophotometer. Thermal stability was discussed by using thermo gravimetric analysis. Mechanical strength of the grown crystal was studied using Vickers microhardness tester. Nonlinear optical property was explored to confirm the second harmonic generation efficiency of the grown crystal. These preliminary investigations suggest that the title compound can serve as a potential material for photonics applications. Full Text: PDF References D. J. Williams, "Nonlinear Optical Properties of Organic and Polymer Materials" (ACS Symposium series 233, American Chemical Society, Washington, DC, 1983). CrossRef K. Bouchouit, Z. Sofiani, B. Derkowska, S. Abed, N. Benali-cherif, M. Bakasse and B. Sahraoui, "Investigation of crystal structure and nonlinear optical properties of 2-methoxyanilinium nitrate", Opt. Commun. 278, 180 (2007), CrossRef K. Bouchouit, H. Bougharraf, B. Derkowska-zielinska, N. Benali-cherif and B. Sahraoui, "Reversible phase transition in semi-organic compound p-Nitroanilinium sulfate detected using second harmonic generation as a tool", Opt.Mater. 48, 215 (2015), CrossRef J. H. Joshi, S. Kalainathan, M. J. Joshi and K. D. Parikh, "Crystal growth, spectroscopic, second and third order nonlinear optical spectroscopic studies of L-phenylalanine doped ammonium dihydrogen phosphate single crystals", Arab. J. Chem. 13, 5018 (2020), CrossRef A. Vijayakumar, A. Ponnuvel and A. Sasikala, "Growth and characterization of α and β form of L-histidine dihydrochloride single crystals", Mater. Today 14, 338 (2019), CrossRef C. Usha, R. Sathakuamri, Lynnette Joseph, D.Sajan, R.Meenakshi, and A.Sinthiya, "Growth and combined experimental and quantum chemical study of glycyl-L-Valine crystal", Heliyon 5, e01574 (2019), CrossRef P. Maadeshwaran and J. Chandrasekaran, "Synthesis, growth and characterization of l-valine cadmium chloride monohydrate—A novel semiorganic nonlinear optical crystal", Optik 122, 1128 (2011) CrossRef S. Pandiyaran, M. Umadevi, R. K. Rajaraman and V. K. Ramakrishnan, "Infrared and Raman spectroscopic studies of l-valine l-valinium perchlorate monohydrate", Spectrochim. Act A Mol. 62, 630 (2005) CrossRef S. Pandiarajan, B. Sridhar and R. K. Rajaram, "L-Valine L-valinium perchlorate monohydrate", Acta Crystallogr. E, 57, 0466 (2001) CrossRef M. Lydia Caroline and S. Vasudevan, "Growth and characterization of l-phenylalanine nitric acid, a new organic nonlinear optical material", Mater. Lett. 63, 41 (2009) CrossRef J. Tauc, R. Grigorovici and A. Vancu, "Optical Properties and Electronic Structure of Amorphous Germanium", Phy. Solid. Stat. 15, 627 (1966), CrossRef J. Tauc, A. Menth and D.L. Wood, "Optical and Magnetic Investigations o
{"title":"Synthesis and Characterization of NLO Material L-Valine L-Valinium Perchlorate Monohydrate for Photonics Applications","authors":"P. Vasudevan, D. Jayaraman","doi":"10.4302/PLP.V12I3.1004","DOIUrl":"https://doi.org/10.4302/PLP.V12I3.1004","url":null,"abstract":"L-valine L-valinium perchlorate monohydrate single crystal has been synthesized by slow evaporation technique at room temperature. The crystal structure and space group of the crystal were confirmed by single crystal X-ray diffractometer. Optical behavior of the crystal was analyzed by using UV-visible spectrophotometer. Thermal stability was discussed by using thermo gravimetric analysis. Mechanical strength of the grown crystal was studied using Vickers microhardness tester. Nonlinear optical property was explored to confirm the second harmonic generation efficiency of the grown crystal. These preliminary investigations suggest that the title compound can serve as a potential material for photonics applications. Full Text: PDF References D. J. Williams, \"Nonlinear Optical Properties of Organic and Polymer Materials\" (ACS Symposium series 233, American Chemical Society, Washington, DC, 1983). CrossRef K. Bouchouit, Z. Sofiani, B. Derkowska, S. Abed, N. Benali-cherif, M. Bakasse and B. Sahraoui, \"Investigation of crystal structure and nonlinear optical properties of 2-methoxyanilinium nitrate\", Opt. Commun. 278, 180 (2007), CrossRef K. Bouchouit, H. Bougharraf, B. Derkowska-zielinska, N. Benali-cherif and B. Sahraoui, \"Reversible phase transition in semi-organic compound p-Nitroanilinium sulfate detected using second harmonic generation as a tool\", Opt.Mater. 48, 215 (2015), CrossRef J. H. Joshi, S. Kalainathan, M. J. Joshi and K. D. Parikh, \"Crystal growth, spectroscopic, second and third order nonlinear optical spectroscopic studies of L-phenylalanine doped ammonium dihydrogen phosphate single crystals\", Arab. J. Chem. 13, 5018 (2020), CrossRef A. Vijayakumar, A. Ponnuvel and A. Sasikala, \"Growth and characterization of α and β form of L-histidine dihydrochloride single crystals\", Mater. Today 14, 338 (2019), CrossRef C. Usha, R. Sathakuamri, Lynnette Joseph, D.Sajan, R.Meenakshi, and A.Sinthiya, \"Growth and combined experimental and quantum chemical study of glycyl-L-Valine crystal\", Heliyon 5, e01574 (2019), CrossRef P. Maadeshwaran and J. Chandrasekaran, \"Synthesis, growth and characterization of l-valine cadmium chloride monohydrate—A novel semiorganic nonlinear optical crystal\", Optik 122, 1128 (2011) CrossRef S. Pandiyaran, M. Umadevi, R. K. Rajaraman and V. K. Ramakrishnan, \"Infrared and Raman spectroscopic studies of l-valine l-valinium perchlorate monohydrate\", Spectrochim. Act A Mol. 62, 630 (2005) CrossRef S. Pandiarajan, B. Sridhar and R. K. Rajaram, \"L-Valine L-valinium perchlorate monohydrate\", Acta Crystallogr. E, 57, 0466 (2001) CrossRef M. Lydia Caroline and S. Vasudevan, \"Growth and characterization of l-phenylalanine nitric acid, a new organic nonlinear optical material\", Mater. Lett. 63, 41 (2009) CrossRef J. Tauc, R. Grigorovici and A. Vancu, \"Optical Properties and Electronic Structure of Amorphous Germanium\", Phy. Solid. Stat. 15, 627 (1966), CrossRef J. Tauc, A. Menth and D.L. Wood, \"Optical and Magnetic Investigations o","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"12 1","pages":"76-78"},"PeriodicalIF":0.6,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43552882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, many attempts have been made to improve the sensory properties of SnO2, including design of sensors based on one-dimensional nanostructures of this material, such as nanofibers, nanotubes or nanowires. One of the simpler methods of producing one-dimensional tin oxide nanomaterials is to combine the electrospinning method with a sol-gel process. The purpose of this work was to produce SnO2 nanowires using a hybrid electrospinning method combined with a heat treatment process at the temperature of 600 °C and to analyze the morphology and structure of the one-dimensional nanomaterial produced in this way. Analysis of the morphology of composite one-dimensional tin oxide nanostructures showed that smooth, homogeneous and crystalline nanowires were obtained. Full Text: PDF References N. Dharmaraj, C.H. Kim, K.W. Kim, H.Y. Kim, E.K. Suh, "Spectral studies of SnO 2 nanofibres prepared by electrospinning method", Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 64, (2006) CrossRef N. Gao, H.Y. Li, W. Zhang, Y. Zhang, Y. Zeng, H. Zhixiang, ... & H. Liu, "QCM-based humidity sensor and sensing properties employing colloidal SnO 2 nanowires", Sens. Actuators B Chem. 293, (2019), 129-135. CrossRef W. Ge, Y. Chang, V. Natarajan, Z. Feng, J. Zhan, X. Ma, "In 2 O 3 -SnO 2 hybrid porous nanostructures delivering enhanced formaldehyde sensing performance", J.Alloys and Comp. 746, (2018) CrossRef M. Zhang, Y. Zhen, F. Sun, C. Xu, "Hydrothermally synthesized SnO 2 -graphene composites for H 2 sensing at low operating temperature", Mater. Sci. Eng. B. 209, (2016), 37-44. CrossRef Y. Zhang, X. He, J. Li, Z. Miao, F. Huang, "Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO 2 nanofibers", Sens. Actuators B Chem. 132, (2008), 67-73. CrossRef W.Q. Li, S.Y. Ma, J. Luo, Y.Z. Mao, L. Cheng, D.J. Gengzang, X.L. Xu, S H. Yan, "Synthesis of hollow SnO 2 nanobelts and their application in acetone sensor", Mater. Lett. 132, (2014), 338-341. CrossRef E. Mudra, I. Shepa, O. Milkovic, Z. Dankova, A. Kovalcikova, A. Annusova, E. Majkova, J. Dusza, "Effect of iron doping on the properties of SnO 2 nano/microfibers", Appl. Surf. Sci. 480, (2019), 876-881. CrossRef P. Mohanapriya, H. Segawa, K. Watanabe, K. Watanabe, S. Samitsu, T.S. Natarajan, N.V. Jaya, N. Ohashi, "Enhanced ethanol-gas sensing performance of Ce-doped SnO 2 hollow nanofibers prepared by electrospinning", Sens. Actuators B Chem. 188, (2013), 872-878. CrossRef W.Q. Li, S.Y. Ma, Y.F. Li, X.B. Li, C.Y. Wang, X.H. Yang, L. Cheng, Y.Z. Mao, J. Luo, D.J. Gengzang, G.X. Wan, X.L. Xu, "Preparation of Pr-doped SnO 2 hollow nanofibers by electrospinning method and their gas sensing properties", J.Alloys and Comp. 605, (2014), 80-88. CrossRef X.H. Xu, S.Y. Ma, X.L. Xu, T. Han, S.T. Pei, Y. Tie, P.F. Cao, W.W. Liu, B.J. Wang, R. Zhang, J.L. Zhang, "Ultra-sensitive glycol sensing performance with rapid-recovery based on heterostructured ZnO-SnO 2 hollow nanotube", Mater. Lett
近年来,人们已经进行了许多尝试来改善SnO2的传感性能,包括设计基于这种材料的一维纳米结构的传感器,例如纳米纤维、纳米管或纳米线。生产一维氧化锡纳米材料的一种更简单的方法是将静电纺丝法与溶胶-凝胶法相结合。本工作的目的是使用混合静电纺丝方法结合600°C温度下的热处理工艺生产SnO2纳米线,并分析以这种方式生产的一维纳米材料的形态和结构。对复合一维氧化锡纳米结构的形貌分析表明,获得了光滑、均匀、结晶的纳米线。全文:PDF参考文献N.Dharmaraj,C.H.Kim,K.W.Kim,H.Y.Kim,E.K.Suh,“通过静电纺丝方法制备的SnO2纳米纤维的光谱研究”,Spectrochim。Acta-Part A Mol.Biomol。Spectrosc。64,(2006)交叉参考高,李,张,张,曾,志祥,…&H.刘,“基于QCM的湿度传感器和采用胶体SnO2纳米线的传感特性”,Sens.Actuators B Chem。293,(2019),129-135。CrossRef W.Ge,Y.Chang,V.Natarajan,Z.Feng,J.Zhan,X.Ma,“提供增强甲醛传感性能的In2 O3-SnO2杂化多孔纳米结构”,J.Alloys and Comp。746,(2018)CrossRef M.Zhang,Y.Zhen,F.Sun,C.Xu,“低温下用于H2传感的水热合成SnO2-石墨烯复合材料”,Mater。科学。Eng.B.209,(2016),37-44。张,何,李,苗,黄,“基于电纺SnO2纳米纤维的微型气体传感器的制备及乙醇传感性能”,Sens.Actuators B Chem。132.(2008),67-73。李,马,罗,毛,程,耿藏,徐,严,“中空SnO2纳米带的合成及其在丙酮传感器中的应用”,Mater。Lett。132,(2014),338-341。CrossRef E.Mudra,I.Shepa,O.Milkovic,Z.Dankova,A.Kovalcikova,A.Annusova,E.Majkova,J.Dusza,“铁掺杂对SnO2纳米/微纤维性能的影响”,Appl。冲浪科学。480,(2019),876-881。CrossRef P.Mohanapriya,H.Segawa,K.Watanabe,K.Watanabe,S.Samitsu,T.S.Natarajan,N.V.Jaya,N.Ohashi,“通过静电纺丝制备的Ce掺杂SnO2中空纳米纤维的增强乙醇气敏性能”,Sens.Actuators B Chem。188,(2013),872-878。CrossRef W.Q.Li,S.Y.Ma,Y.F.Li,X.B.Li,C.Y.Wang,X.H.Yang,L.Cheng,Y.Z.Mao,J.Luo,D.J.耿藏,G.X.Wan,X.L.Xu,“静电纺丝法制备掺Pr的SnO2中空纳米纤维及其气敏性能”,合金与材料。605,(2014),80-88。CrossRef Xu,S.Y.Ma,X.L.Xu,T.Han,S.T.Pei,Y.Tie,P.F.Cao,W.W.Liu,B.J.Wang,R.Zhang,J.L.Zhang,“基于异质结构ZnO SnO2空心纳米管的快速恢复超灵敏乙二醇传感性能”,Mater。Lett,273,(2020),127967。CrossRef F.Li,X.Gao,R.Wang,T.Zhang,G.Lu,Sens.“不同功函数的TiO2-SnO2核壳异质结构纳米纤维及其在气体传感器中的应用研究”,Actuators B Chem,248,(2017),812-819。CrossRef S.Bai,W.Guo,J.Sun,J.Li,Y.Tian,A.Chen,R.Luo,D.Li,“静电纺丝合成SnO2–CuO异质结及其在CO检测中的应用”,Sens Actuators B Chem,226,(2016),96-103。CrossRef H.Du,P.J.Yao,Y.Sun,J.Wang,H.Wang,N.Yu,“高气敏活性同质异质结中的静电纺丝异质纳米纤维”,传感器,17,(2017),1822。王,范,任,“具有高光催化性能的静电纺丝中空SnO2微管”,Catal。Commun。31,(2013),37-41。CrossRef L.Cheng,S.Y.Ma,T.T.Wang,X.B.Li,J.Luo,W.Q.Li,Y.Z.Mao,D.J Gengzang,“用于乙醇传感性能的SnO2中空纳米纤维的静电纺丝合成与表征”,Mater。Lett。131,(2014),23-26。CrossRef P.H.Phuoc,C.M.Hung,N.V.Toan,N.V.Duy,N.D.Hoa,N.V.Hieu,“用于亚ppm H2S检测的SnO2多孔纳米纤维气体传感器的一步制造”,Sens.Actuators A Phys。303,(2020),111722。CrossRef A.E.Deniz,H.A.Vural,B.Ortac,T.Uyar,“通过激光烧蚀和静电纺丝的金纳米粒子/聚合物纳米纤维复合材料”,物质。Lett。65,(2011),2941-2943。CrossRef S.Sagadvan,J.Podder,“Zn掺杂SnO2纳米颗粒的结构、表面形态和介电性能研究”,Mater。Res.19,(2016),420-425。CrossRef
{"title":"Morphology and structure characterization of crystalline SnO2 1D nanostructures","authors":"W. Matysiak, T. Tański, W. Smok","doi":"10.4302/PLP.V12I3.1019","DOIUrl":"https://doi.org/10.4302/PLP.V12I3.1019","url":null,"abstract":"In recent years, many attempts have been made to improve the sensory properties of SnO2, including design of sensors based on one-dimensional nanostructures of this material, such as nanofibers, nanotubes or nanowires. One of the simpler methods of producing one-dimensional tin oxide nanomaterials is to combine the electrospinning method with a sol-gel process. The purpose of this work was to produce SnO2 nanowires using a hybrid electrospinning method combined with a heat treatment process at the temperature of 600 °C and to analyze the morphology and structure of the one-dimensional nanomaterial produced in this way. Analysis of the morphology of composite one-dimensional tin oxide nanostructures showed that smooth, homogeneous and crystalline nanowires were obtained. Full Text: PDF References N. Dharmaraj, C.H. Kim, K.W. Kim, H.Y. Kim, E.K. Suh, \"Spectral studies of SnO 2 nanofibres prepared by electrospinning method\", Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 64, (2006) CrossRef N. Gao, H.Y. Li, W. Zhang, Y. Zhang, Y. Zeng, H. Zhixiang, ... & H. Liu, \"QCM-based humidity sensor and sensing properties employing colloidal SnO 2 nanowires\", Sens. Actuators B Chem. 293, (2019), 129-135. CrossRef W. Ge, Y. Chang, V. Natarajan, Z. Feng, J. Zhan, X. Ma, \"In 2 O 3 -SnO 2 hybrid porous nanostructures delivering enhanced formaldehyde sensing performance\", J.Alloys and Comp. 746, (2018) CrossRef M. Zhang, Y. Zhen, F. Sun, C. Xu, \"Hydrothermally synthesized SnO 2 -graphene composites for H 2 sensing at low operating temperature\", Mater. Sci. Eng. B. 209, (2016), 37-44. CrossRef Y. Zhang, X. He, J. Li, Z. Miao, F. Huang, \"Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO 2 nanofibers\", Sens. Actuators B Chem. 132, (2008), 67-73. CrossRef W.Q. Li, S.Y. Ma, J. Luo, Y.Z. Mao, L. Cheng, D.J. Gengzang, X.L. Xu, S H. Yan, \"Synthesis of hollow SnO 2 nanobelts and their application in acetone sensor\", Mater. Lett. 132, (2014), 338-341. CrossRef E. Mudra, I. Shepa, O. Milkovic, Z. Dankova, A. Kovalcikova, A. Annusova, E. Majkova, J. Dusza, \"Effect of iron doping on the properties of SnO 2 nano/microfibers\", Appl. Surf. Sci. 480, (2019), 876-881. CrossRef P. Mohanapriya, H. Segawa, K. Watanabe, K. Watanabe, S. Samitsu, T.S. Natarajan, N.V. Jaya, N. Ohashi, \"Enhanced ethanol-gas sensing performance of Ce-doped SnO 2 hollow nanofibers prepared by electrospinning\", Sens. Actuators B Chem. 188, (2013), 872-878. CrossRef W.Q. Li, S.Y. Ma, Y.F. Li, X.B. Li, C.Y. Wang, X.H. Yang, L. Cheng, Y.Z. Mao, J. Luo, D.J. Gengzang, G.X. Wan, X.L. Xu, \"Preparation of Pr-doped SnO 2 hollow nanofibers by electrospinning method and their gas sensing properties\", J.Alloys and Comp. 605, (2014), 80-88. CrossRef X.H. Xu, S.Y. Ma, X.L. Xu, T. Han, S.T. Pei, Y. Tie, P.F. Cao, W.W. Liu, B.J. Wang, R. Zhang, J.L. Zhang, \"Ultra-sensitive glycol sensing performance with rapid-recovery based on heterostructured ZnO-SnO 2 hollow nanotube\", Mater. Lett","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"12 1","pages":"70-72"},"PeriodicalIF":0.6,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42847022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}