Zhang Jiang, Ava Verhoeven, Yihong Li, Romy Geertsma, Rashmi Sasidharan, Martijn van Zanten
Plants are frequently exposed to environmental challenges. Responses to sub-lethal abiotic stress combinations are complex and often distinct from responses to individual stresses and remain poorly understood. Investigating traits and molecular factors mediating acclimation to stress combinations is essential for the development of climate change-resilient field crops. Here, we studied the morphological, physiological, and molecular responses of Arabidopsis thaliana to i) co-occurring high temperature and drought and ii) flooding followed by drought, both of which have increased in frequency due to climate change, and the individual component stresses: high temperature, drought and flooding. A set of 15 physiological and morphological traits were assessed during single and combined stresses. By combining these comprehensive trait analyses with transcriptome characterization, we established the generally additive negative effects of simultaneous or sequential stresses on plant morphology and physiology compared to the corresponding individual stresses. Although drought had a mild effect on various growth, morphological and physiological traits in both stress combinations, a unique transcriptome signature emerged upon combination with high temperature simultaneously or flooding sequentially. Molecular processes identified as important for multi-stress resilience included plastid-nucleus communication, ABA signaling and photo-acclimation. Based on the RNA-seq data, a set of 39 genes was identified as potential multi-stress response regulators. Mutants were tested to validate the contribution of these genes to plant survival and phenotypic acclimation under combined stress. We confirmed the involvement of several genes in regulating phenotypic acclimation traits. Among the identified factors were EARLY FLOWERING 6 (ELF6) and ARABIDOPSIS TÓXICOS EN LEVADURA 80 (ATL80), with substantial effects on plant growth, leaf development and plant survival (wilting) during high-temperature drought and post-submergence drought, respectively.
{"title":"Deciphering Acclimation to Sublethal Combined and Sequential Abiotic Stresses in Arabidopsis thaliana","authors":"Zhang Jiang, Ava Verhoeven, Yihong Li, Romy Geertsma, Rashmi Sasidharan, Martijn van Zanten","doi":"10.1093/plphys/kiae581","DOIUrl":"https://doi.org/10.1093/plphys/kiae581","url":null,"abstract":"Plants are frequently exposed to environmental challenges. Responses to sub-lethal abiotic stress combinations are complex and often distinct from responses to individual stresses and remain poorly understood. Investigating traits and molecular factors mediating acclimation to stress combinations is essential for the development of climate change-resilient field crops. Here, we studied the morphological, physiological, and molecular responses of Arabidopsis thaliana to i) co-occurring high temperature and drought and ii) flooding followed by drought, both of which have increased in frequency due to climate change, and the individual component stresses: high temperature, drought and flooding. A set of 15 physiological and morphological traits were assessed during single and combined stresses. By combining these comprehensive trait analyses with transcriptome characterization, we established the generally additive negative effects of simultaneous or sequential stresses on plant morphology and physiology compared to the corresponding individual stresses. Although drought had a mild effect on various growth, morphological and physiological traits in both stress combinations, a unique transcriptome signature emerged upon combination with high temperature simultaneously or flooding sequentially. Molecular processes identified as important for multi-stress resilience included plastid-nucleus communication, ABA signaling and photo-acclimation. Based on the RNA-seq data, a set of 39 genes was identified as potential multi-stress response regulators. Mutants were tested to validate the contribution of these genes to plant survival and phenotypic acclimation under combined stress. We confirmed the involvement of several genes in regulating phenotypic acclimation traits. Among the identified factors were EARLY FLOWERING 6 (ELF6) and ARABIDOPSIS TÓXICOS EN LEVADURA 80 (ATL80), with substantial effects on plant growth, leaf development and plant survival (wilting) during high-temperature drought and post-submergence drought, respectively.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"1 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hardy Rolletschek, Ljudmilla Borisjuk, Eva Maria Gómez-Álvrez, Chiara Pucciariello
Seeds represent essential stages of the plant life cycle: embryogenesis, the intermittent quiescence phase and germination. Each stage has its own physiological requirements, genetic program and environmental challenges. Consequently, the effects of developmental and environmental hypoxia can vary from detrimental to beneficial. Past and recent evidence shows how low-oxygen signalling and metabolic adaptations to hypoxia affect seed development and germination. Here, we review the recent literature on seed biology in relation to hypoxia research, and present our perspective on key challenges and opportunities for future investigations.
{"title":"Advances in seed hypoxia research – an updated review","authors":"Hardy Rolletschek, Ljudmilla Borisjuk, Eva Maria Gómez-Álvrez, Chiara Pucciariello","doi":"10.1093/plphys/kiae556","DOIUrl":"https://doi.org/10.1093/plphys/kiae556","url":null,"abstract":"Seeds represent essential stages of the plant life cycle: embryogenesis, the intermittent quiescence phase and germination. Each stage has its own physiological requirements, genetic program and environmental challenges. Consequently, the effects of developmental and environmental hypoxia can vary from detrimental to beneficial. Past and recent evidence shows how low-oxygen signalling and metabolic adaptations to hypoxia affect seed development and germination. Here, we review the recent literature on seed biology in relation to hypoxia research, and present our perspective on key challenges and opportunities for future investigations.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"4 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ubiquitination plays important roles in modulating the abiotic stress tolerance of plants. Drought seriously restricts agricultural production, but how ubiquitination participates in regulating drought tolerance remains largely unknown. Here, we identified a drought-inducible gene, MYB30-INTERACTING E3 LIGASE 1 (GhMIEL1), which encodes a RING E3 ubiquitin ligase in cotton (Gossypium hirsutum). GhMIEL1 was strongly induced by polyethylene glycol (PEG-6000) and the phytohormone abscisic acid (ABA). Overexpression and knockdown of GhMIEL1 in cotton substantially enhanced and reduced drought tolerance, respectively. GhMIEL1 interacted with the MYB transcription factor GhMYB66 and could ubiquitinate and degrade it in vitro. GhMYB66 directly bound to the LONELY GUY 5 (GhLOG5) promoter, a gene encoding cytokinin riboside 5'-monophosphate phosphoribohydrolase, to repress its transcription. Overexpression of GhMIEL1 and silencing of GhMYB66 altered the homeostasis of cytokinin of plant roots, increased total root length and number of root tips, and enhanced plant drought tolerance. Conversely, silencing GhLOG5 decreased total root length and number of root tips and reduced plant drought tolerance. Our studies reveal that the GhMIEL1-GhMYB66-GhLOG5 module positively regulates drought tolerance in cotton, which deepens our understanding of plant ubiquitination-mediated drought tolerance and provides insights for improving drought tolerance.
{"title":"MYB30-INTERACTING E3 LIGASE 1 regulates LONELY GUY 5-mediated cytokinin metabolism to promote drought tolerance in cotton","authors":"Chuan Chen, Dayong Zhang, Xin Niu, Xuanxiang Jin, Huijuan Xu, Weixi Li, Wangzhen Guo","doi":"10.1093/plphys/kiae580","DOIUrl":"https://doi.org/10.1093/plphys/kiae580","url":null,"abstract":"Ubiquitination plays important roles in modulating the abiotic stress tolerance of plants. Drought seriously restricts agricultural production, but how ubiquitination participates in regulating drought tolerance remains largely unknown. Here, we identified a drought-inducible gene, MYB30-INTERACTING E3 LIGASE 1 (GhMIEL1), which encodes a RING E3 ubiquitin ligase in cotton (Gossypium hirsutum). GhMIEL1 was strongly induced by polyethylene glycol (PEG-6000) and the phytohormone abscisic acid (ABA). Overexpression and knockdown of GhMIEL1 in cotton substantially enhanced and reduced drought tolerance, respectively. GhMIEL1 interacted with the MYB transcription factor GhMYB66 and could ubiquitinate and degrade it in vitro. GhMYB66 directly bound to the LONELY GUY 5 (GhLOG5) promoter, a gene encoding cytokinin riboside 5'-monophosphate phosphoribohydrolase, to repress its transcription. Overexpression of GhMIEL1 and silencing of GhMYB66 altered the homeostasis of cytokinin of plant roots, increased total root length and number of root tips, and enhanced plant drought tolerance. Conversely, silencing GhLOG5 decreased total root length and number of root tips and reduced plant drought tolerance. Our studies reveal that the GhMIEL1-GhMYB66-GhLOG5 module positively regulates drought tolerance in cotton, which deepens our understanding of plant ubiquitination-mediated drought tolerance and provides insights for improving drought tolerance.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"105 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qi Shi, Bin He, Jürgen Knauer, Jose Javier Peguero-Pina, Shi-Bao Zhang, Wei Huang
Compared to evergreens, deciduous tree species usually have higher photosynthetic efficiency to complete vegetative and reproductive growth in a shorter growing season. However, the nutrient basis for the differentiation of photosynthesis functional traits between evergreen and deciduous tree species has not yet been clarified. Thirty evergreen and twenty deciduous angiosperm tree species from a subtropical common garden were compared in terms of photosynthetic traits and leaf nutrients. Generally, their differences in area-based photosynthetic capacity were uncorrelated with area-based leaf nutrient content but were caused by the fraction of nitrogen allocated to photosynthetic components. By comparison, the differences in mass-based photosynthetic capacity were more correlated with leaf nitrogen content than leaf phosphorus and potassium content. Convergence in phosphorus and potassium constraints to photosynthesis occurred in deciduous tree species but not in evergreen tree species. Furthermore, leaf C/N ratio played a more significant role than leaf mass per area in determining the differentiation of photosynthetic traits between evergreen and deciduous groups. Our findings provide insight into the nutrient basis for photosynthetic carbon gain and functional strategies across trees species.
{"title":"Leaf nutrient basis for the differentiation of photosynthetic traits between subtropical evergreen and deciduous trees","authors":"Qi Shi, Bin He, Jürgen Knauer, Jose Javier Peguero-Pina, Shi-Bao Zhang, Wei Huang","doi":"10.1093/plphys/kiae566","DOIUrl":"https://doi.org/10.1093/plphys/kiae566","url":null,"abstract":"Compared to evergreens, deciduous tree species usually have higher photosynthetic efficiency to complete vegetative and reproductive growth in a shorter growing season. However, the nutrient basis for the differentiation of photosynthesis functional traits between evergreen and deciduous tree species has not yet been clarified. Thirty evergreen and twenty deciduous angiosperm tree species from a subtropical common garden were compared in terms of photosynthetic traits and leaf nutrients. Generally, their differences in area-based photosynthetic capacity were uncorrelated with area-based leaf nutrient content but were caused by the fraction of nitrogen allocated to photosynthetic components. By comparison, the differences in mass-based photosynthetic capacity were more correlated with leaf nitrogen content than leaf phosphorus and potassium content. Convergence in phosphorus and potassium constraints to photosynthesis occurred in deciduous tree species but not in evergreen tree species. Furthermore, leaf C/N ratio played a more significant role than leaf mass per area in determining the differentiation of photosynthetic traits between evergreen and deciduous groups. Our findings provide insight into the nutrient basis for photosynthetic carbon gain and functional strategies across trees species.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"33 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cryptochromes (CRYs), which are responsible for sensing blue light in plants, play a critical role in regulating blue light signals and circadian rhythms. However, their functions extend beyond light detection, as they also aid plants in adapting to stress and potentially other regulatory mechanisms. Aquatic angiosperms, which independently evolved from various angiosperm lineages, have developed specific adaptations to unique light qualities and environmental stressors found in aquatic habitats compared to terrestrial ones. It was hypothesized that the sequences and regulatory networks of angiosperm CRY1/2 underwent adaptive evolution in different aquatic angiosperm lineages. To test this hypothesis, we compiled comprehensive datasets consisting of 55 green plant genomes (including 37 angiosperm genomes), 80 angiosperm transcriptomes, and 4 angiosperm expression networks. Through comparative analysis, we found that CRY1 originated from a common ancestor of seed plants, whereas CRY2 originated from a common ancestor of land plants. In angiosperms, the CRY1/2 sequences of aquatic lineages exhibited positive selection, and the conserved valine-proline (VP) motif of CRY2 showed a convergent loss in two aquatic species. Co-expressed genes associated with blue light receptors (CRY) showed adaptations to aquatic environments, specifically in relation to flooding and osmotic stress. These discoveries shed light on the adaptive evolution of CRY1/2, encompassing their origins, sequences, and regulatory networks. Furthermore, these results provide valuable insights for investigating the uncharacterized functions and regulatory pathways of CRY and offer potential targets for enhancing growth and adaptation in agricultural plants.
{"title":"Origin and evolution of the blue light receptor cryptochromes (CRY1/2) in aquatic angiosperms","authors":"Bei Lu, Wei Li, Yue Zhang, Jinming Chen","doi":"10.1093/plphys/kiae568","DOIUrl":"https://doi.org/10.1093/plphys/kiae568","url":null,"abstract":"Cryptochromes (CRYs), which are responsible for sensing blue light in plants, play a critical role in regulating blue light signals and circadian rhythms. However, their functions extend beyond light detection, as they also aid plants in adapting to stress and potentially other regulatory mechanisms. Aquatic angiosperms, which independently evolved from various angiosperm lineages, have developed specific adaptations to unique light qualities and environmental stressors found in aquatic habitats compared to terrestrial ones. It was hypothesized that the sequences and regulatory networks of angiosperm CRY1/2 underwent adaptive evolution in different aquatic angiosperm lineages. To test this hypothesis, we compiled comprehensive datasets consisting of 55 green plant genomes (including 37 angiosperm genomes), 80 angiosperm transcriptomes, and 4 angiosperm expression networks. Through comparative analysis, we found that CRY1 originated from a common ancestor of seed plants, whereas CRY2 originated from a common ancestor of land plants. In angiosperms, the CRY1/2 sequences of aquatic lineages exhibited positive selection, and the conserved valine-proline (VP) motif of CRY2 showed a convergent loss in two aquatic species. Co-expressed genes associated with blue light receptors (CRY) showed adaptations to aquatic environments, specifically in relation to flooding and osmotic stress. These discoveries shed light on the adaptive evolution of CRY1/2, encompassing their origins, sequences, and regulatory networks. Furthermore, these results provide valuable insights for investigating the uncharacterized functions and regulatory pathways of CRY and offer potential targets for enhancing growth and adaptation in agricultural plants.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"5 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Complex multicellular organisms have evolved in an oxygen-enriched atmosphere. Oxygen is therefore essential for all aerobic organisms including plants, for energy production through cellular respiration. However, plants can experience hypoxia following extreme flooding events and also under aerated conditions in proliferative organs or tissues characterized by high oxygen consumption. When oxygen availability is compromised, plants adopt different strategies to cope with hypoxia and limited aeration. A common feature among different plant species is the activation of an anaerobic fermentative metabolism to provide adenosine triphosphate (ATP) to maintain cellular homeostasis under hypoxia. Fermentation also requires many sugar substrates, which is not always feasible, and alternative metabolic strategies are thus needed. Recent findings have also shown that the hypoxic metabolism is also active in specific organs or tissues of the plant under aerated conditions. Here, we describe the regulatory mechanisms that control the metabolic strategies of plants and how they enable them to thrive despite challenging conditions. A comprehensive mechanistic understanding of the genetic and physiological components underlying hypoxic metabolism should help to provide opportunities to improve plant resilience under the current climate change scenario.
{"title":"Metabolic strategies in hypoxic plants","authors":"Hans van Veen, Paolo Maria Triozzi, Elena Loreti","doi":"10.1093/plphys/kiae564","DOIUrl":"https://doi.org/10.1093/plphys/kiae564","url":null,"abstract":"Complex multicellular organisms have evolved in an oxygen-enriched atmosphere. Oxygen is therefore essential for all aerobic organisms including plants, for energy production through cellular respiration. However, plants can experience hypoxia following extreme flooding events and also under aerated conditions in proliferative organs or tissues characterized by high oxygen consumption. When oxygen availability is compromised, plants adopt different strategies to cope with hypoxia and limited aeration. A common feature among different plant species is the activation of an anaerobic fermentative metabolism to provide adenosine triphosphate (ATP) to maintain cellular homeostasis under hypoxia. Fermentation also requires many sugar substrates, which is not always feasible, and alternative metabolic strategies are thus needed. Recent findings have also shown that the hypoxic metabolism is also active in specific organs or tissues of the plant under aerated conditions. Here, we describe the regulatory mechanisms that control the metabolic strategies of plants and how they enable them to thrive despite challenging conditions. A comprehensive mechanistic understanding of the genetic and physiological components underlying hypoxic metabolism should help to provide opportunities to improve plant resilience under the current climate change scenario.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"236 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genetic strategies can be effective in improving wheat (Triticum aestivum L.) drought stress tolerance, but accumulating evidence suggests that overexpressing drought-resistance genes, especially genes related to the abscisic acid (ABA) signaling pathway, can retard plant growth. We previously characterized the positive roles of the wheat bZIP transcription factor TaFD-Like2-1A (TaFDL2-1A) in drought stress tolerance and ABA biosynthesis and response, whereas a dwarfing shoot exhibited under normal conditions. This study determined the underlying mechanisms that allow TaFDL2-1A to affect shoot growth. Overexpressing TaFDL2-1A decreased cell length, cell width, leaf size, shoot length, and biomass in wheat. The results of RNA-seq showed that multiple differently expressed transcripts are enriched in the auxin signaling pathway. Further analysis indicated higher expression levels of Gretchen Hagen3 (GH3) genes and lower indole-3-acetic acid (IAA) concentrations in the TaFDL2-1A overexpression lines. Exogenous IAA treatment restored the phenotypes of the TaFDL2-1A overexpression lines to wild-type levels. Transcriptional regulation analysis suggested that TaFDL2-1A enhances the expression of auxin metabolism genes, such as TaGH3.2-3A, TaGH3.2-3B, TaGH3.8-2A, and TaGH3.8-2D, by directly binding to ACGT core cis-elements. Furthermore, tafdl2 knock-out plants had lower expression levels of these GH3 genes and higher IAA levels than Fielder wheat. These GH3 gene expression and IAA levels were induced and reduced in Fielder wheat and tafdl2 knock-out plants treated with exogenous ABA. Our findings elucidate mechanisms underlying the functional redundancy of TaFDL2-1A in the crosstalk between ABA and IAA to affect shoot growth and provide insights into the balance between drought resistance and yield in wheat.
{"title":"The transcription factor TaFDL2-1A functions in auxin metabolism mediated by abscisic acid to regulate shoot growth in wheat","authors":"Bingxin Wang, Ling Zhou, Liqun Li, Daqin Pang, Yanhong Lei, Haodong Qi, Birong Chen, Meirui Guo, Qinghong Zeng, Yanzhou Xie, Xuejun Li","doi":"10.1093/plphys/kiae569","DOIUrl":"https://doi.org/10.1093/plphys/kiae569","url":null,"abstract":"Genetic strategies can be effective in improving wheat (Triticum aestivum L.) drought stress tolerance, but accumulating evidence suggests that overexpressing drought-resistance genes, especially genes related to the abscisic acid (ABA) signaling pathway, can retard plant growth. We previously characterized the positive roles of the wheat bZIP transcription factor TaFD-Like2-1A (TaFDL2-1A) in drought stress tolerance and ABA biosynthesis and response, whereas a dwarfing shoot exhibited under normal conditions. This study determined the underlying mechanisms that allow TaFDL2-1A to affect shoot growth. Overexpressing TaFDL2-1A decreased cell length, cell width, leaf size, shoot length, and biomass in wheat. The results of RNA-seq showed that multiple differently expressed transcripts are enriched in the auxin signaling pathway. Further analysis indicated higher expression levels of Gretchen Hagen3 (GH3) genes and lower indole-3-acetic acid (IAA) concentrations in the TaFDL2-1A overexpression lines. Exogenous IAA treatment restored the phenotypes of the TaFDL2-1A overexpression lines to wild-type levels. Transcriptional regulation analysis suggested that TaFDL2-1A enhances the expression of auxin metabolism genes, such as TaGH3.2-3A, TaGH3.2-3B, TaGH3.8-2A, and TaGH3.8-2D, by directly binding to ACGT core cis-elements. Furthermore, tafdl2 knock-out plants had lower expression levels of these GH3 genes and higher IAA levels than Fielder wheat. These GH3 gene expression and IAA levels were induced and reduced in Fielder wheat and tafdl2 knock-out plants treated with exogenous ABA. Our findings elucidate mechanisms underlying the functional redundancy of TaFDL2-1A in the crosstalk between ABA and IAA to affect shoot growth and provide insights into the balance between drought resistance and yield in wheat.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"12 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carolin Fritz, Theresa Maria Reimann, Jeremy Adler, Johanna Knab, Sylwia Schulmeister, Choy Kriechbaum, Sabine Müller, Ingela Parmryd, Benedikt Kost
Rapid, unidirectional pollen tube tip growth is essential for fertilization and is widely employed as a model of polar cell expansion, a process crucial for plant morphogenesis. Different proteins and lipids with key functions in the control of polar cell expansion are associated with distinct domains of the plasma membrane (PM) at the pollen tube tip. These domains need to be dynamically maintained during tip growth, which depends on massive secretory and endocytic membrane trafficking. Very little is currently known about the molecular and cellular mechanisms responsible for the compartmentalization of the pollen tube PM. To provide a reliable structural framework for the further characterization of these mechanisms, an integrated quantitative map was compiled of the relative positions in normally growing Nicotiana tabacum (tobacco) pollen tubes of PM domains 1) enriched in key signaling proteins or lipids, 2) displaying high membrane order, or 3) in contact with cytoplasmic structures playing important roles in apical membrane trafficking. Previously identified secretory and endocytic PM domains were also included into this map. Internalization of regulatory proteins or lipids associated with PM regions overlapping with the lateral endocytic domain was assessed based on brefeldin A (BFA) treatment. These analyses revealed remarkable aspects of the structural organization of tobacco pollen tube tips, which 1) enhance our understanding of cellular and regulatory processes underlying tip growth, and 2) highlight important areas of future research.
{"title":"Plasma membrane and cytoplasmic compartmentalization: a dynamic structural framework required for pollen tube tip growth","authors":"Carolin Fritz, Theresa Maria Reimann, Jeremy Adler, Johanna Knab, Sylwia Schulmeister, Choy Kriechbaum, Sabine Müller, Ingela Parmryd, Benedikt Kost","doi":"10.1093/plphys/kiae558","DOIUrl":"https://doi.org/10.1093/plphys/kiae558","url":null,"abstract":"Rapid, unidirectional pollen tube tip growth is essential for fertilization and is widely employed as a model of polar cell expansion, a process crucial for plant morphogenesis. Different proteins and lipids with key functions in the control of polar cell expansion are associated with distinct domains of the plasma membrane (PM) at the pollen tube tip. These domains need to be dynamically maintained during tip growth, which depends on massive secretory and endocytic membrane trafficking. Very little is currently known about the molecular and cellular mechanisms responsible for the compartmentalization of the pollen tube PM. To provide a reliable structural framework for the further characterization of these mechanisms, an integrated quantitative map was compiled of the relative positions in normally growing Nicotiana tabacum (tobacco) pollen tubes of PM domains 1) enriched in key signaling proteins or lipids, 2) displaying high membrane order, or 3) in contact with cytoplasmic structures playing important roles in apical membrane trafficking. Previously identified secretory and endocytic PM domains were also included into this map. Internalization of regulatory proteins or lipids associated with PM regions overlapping with the lateral endocytic domain was assessed based on brefeldin A (BFA) treatment. These analyses revealed remarkable aspects of the structural organization of tobacco pollen tube tips, which 1) enhance our understanding of cellular and regulatory processes underlying tip growth, and 2) highlight important areas of future research.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"14 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photosynthetic organisms have developed mechanisms to regulate light reactions in response to varying light conditions. Photosynthetic electron transport leads to the formation of a ΔpH across the thylakoid membrane, which is crucial for regulating electron transport. However, other pH modulators remain to be identified, particularly in cyanobacteria. In this study, we evaluated the potential involvement of six Na+/H+ antiporters (NhaS1-NhaS6) in control of pH in the cyanobacterium Synechocystis sp. PCC 6803. Synechocystis showed a strong requirement for Na+ at high light intensities, with ΔnhaS1 and ΔnhaS2 strains unable to grow under high light conditions. We analyzed Na+ efflux-driven H+-uptake activities of NhaS1-NhaS6 in inverted membranes of Escherichia coli. Biological fractionation and immunoelectron microscopy revealed that NhaS1 localizes to both the plasma and thylakoid membranes while NhaS2 localizes to the plasma membrane. Measurement of photosynthesis activity indicated that NhaS2 promotes ATP production and electron transport from PQ to P700. Measurements of pH outside of the cells and in the cytoplasm suggested that both NhaS1 and NhaS2 are involved in plasma membrane-mediated light-dependent H+ uptake and cytoplasmic acidification. NhaS1 and NhaS2 were also found to prevent photoinhibition under high light treatment. These results indicate that H+ transport mediated by NhaS1 and NhaS2 plays a role in regulating intracellular pH and maintaining photosynthetic electron transport.
{"title":"Na+-driven pH regulation by Na+/H+ antiporters promotes photosynthetic efficiency in cyanobacteria.","authors":"Masaru Tsujii,Ayumu Kobayashi,Ayaka Kano,Kota Kera,Tomoko Takagi,Noriko Nagata,Seiji Kojima,Kouki Hikosaka,Riichi Oguchi,Kintake Sonoike,Chihiro Azai,Tomomi Inagaki,Yasuhiro Ishimaru,Nobuyuki Uozumi","doi":"10.1093/plphys/kiae562","DOIUrl":"https://doi.org/10.1093/plphys/kiae562","url":null,"abstract":"Photosynthetic organisms have developed mechanisms to regulate light reactions in response to varying light conditions. Photosynthetic electron transport leads to the formation of a ΔpH across the thylakoid membrane, which is crucial for regulating electron transport. However, other pH modulators remain to be identified, particularly in cyanobacteria. In this study, we evaluated the potential involvement of six Na+/H+ antiporters (NhaS1-NhaS6) in control of pH in the cyanobacterium Synechocystis sp. PCC 6803. Synechocystis showed a strong requirement for Na+ at high light intensities, with ΔnhaS1 and ΔnhaS2 strains unable to grow under high light conditions. We analyzed Na+ efflux-driven H+-uptake activities of NhaS1-NhaS6 in inverted membranes of Escherichia coli. Biological fractionation and immunoelectron microscopy revealed that NhaS1 localizes to both the plasma and thylakoid membranes while NhaS2 localizes to the plasma membrane. Measurement of photosynthesis activity indicated that NhaS2 promotes ATP production and electron transport from PQ to P700. Measurements of pH outside of the cells and in the cytoplasm suggested that both NhaS1 and NhaS2 are involved in plasma membrane-mediated light-dependent H+ uptake and cytoplasmic acidification. NhaS1 and NhaS2 were also found to prevent photoinhibition under high light treatment. These results indicate that H+ transport mediated by NhaS1 and NhaS2 plays a role in regulating intracellular pH and maintaining photosynthetic electron transport.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"14 1","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}