{"title":"Rooting for order: How CIKs keep lateral growth in check.","authors":"Alicja B Kunkowska, Nicola Trozzi","doi":"10.1093/plphys/kiae621","DOIUrl":"10.1093/plphys/kiae621","url":null,"abstract":"","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142688606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As major contributors to flavor in many fruit species, volatile esters are useful for investigating the regulation of the biosynthesis pathways of volatile aroma compounds in plants. Ethylene promotes the biosynthesis of volatile esters during fruit storage while accelerating fruit ripening; thus, the ethylene perception inhibitor 1-methylcyclopropene (1-MCP) is employed to prolong the shelf life of fruits. However, the mechanisms by which 1-MCP regulates volatiles synthesis remain unclear. In this study, we analyzed the pathway of 1-MCP-mediated volatile ester synthesis in 'Nanguo' pear (Pyrus ussuriensis). 1-MCP significantly decreased volatile ester synthesis during storage. Comparative transcriptome analysis showed that the genes encoding two transcription factors (PuNAC37 and PuWRKY74) and a RING-type E3 ubiquitin ligase that have a domain of unknown function (PuRDUF2) were expressed at high levels, whereas ALCOHOL ACYLTRANSFERASE 1 (PuAAT1), encoding an enzyme responsible for volatile ester synthesis, was expressed at low levels in 1-MCP-treated fruit. Moreover, PuNAC37 inhibited the expression of PuWRKY74 via transcriptional regulation, whereas PuNAC37 and PuWRKY74, after directly binding to the promoter of PuAAT1, synergistically inhibited its expression in 1-MCP-treated fruit. In addition, in vitro and in vivo ubiquitination experiments revealed that PuRDUF2 functions as an E3 ubiquitin ligase that ubiquitinates PuAAT1, causing its degradation via the 26S proteasome pathway following 1-MCP treatment. Subsequent PuAAT1 degradation resulted in a reduction of volatile esters during fruit storage. Our findings provide insights into the complex transcriptional regulation of volatile ester formation in 'Nanguo' pears and contribute to future research on AAT protein ubiquitination in other species.
{"title":"Transcription factors PuNAC37/PuWRKY74 and E3 ubiquitin ligase PuRDUF2 inhibit volatile ester synthesis in 'Nanguo' pear.","authors":"Nannan Zang, Xiaojing Li, Zhuoran Zhang, Weiting Liu, Liyong Qi, Yueming Yang, Qitian Sun, Zepeng Yin, Aide Wang","doi":"10.1093/plphys/kiae635","DOIUrl":"10.1093/plphys/kiae635","url":null,"abstract":"<p><p>As major contributors to flavor in many fruit species, volatile esters are useful for investigating the regulation of the biosynthesis pathways of volatile aroma compounds in plants. Ethylene promotes the biosynthesis of volatile esters during fruit storage while accelerating fruit ripening; thus, the ethylene perception inhibitor 1-methylcyclopropene (1-MCP) is employed to prolong the shelf life of fruits. However, the mechanisms by which 1-MCP regulates volatiles synthesis remain unclear. In this study, we analyzed the pathway of 1-MCP-mediated volatile ester synthesis in 'Nanguo' pear (Pyrus ussuriensis). 1-MCP significantly decreased volatile ester synthesis during storage. Comparative transcriptome analysis showed that the genes encoding two transcription factors (PuNAC37 and PuWRKY74) and a RING-type E3 ubiquitin ligase that have a domain of unknown function (PuRDUF2) were expressed at high levels, whereas ALCOHOL ACYLTRANSFERASE 1 (PuAAT1), encoding an enzyme responsible for volatile ester synthesis, was expressed at low levels in 1-MCP-treated fruit. Moreover, PuNAC37 inhibited the expression of PuWRKY74 via transcriptional regulation, whereas PuNAC37 and PuWRKY74, after directly binding to the promoter of PuAAT1, synergistically inhibited its expression in 1-MCP-treated fruit. In addition, in vitro and in vivo ubiquitination experiments revealed that PuRDUF2 functions as an E3 ubiquitin ligase that ubiquitinates PuAAT1, causing its degradation via the 26S proteasome pathway following 1-MCP treatment. Subsequent PuAAT1 degradation resulted in a reduction of volatile esters during fruit storage. Our findings provide insights into the complex transcriptional regulation of volatile ester formation in 'Nanguo' pears and contribute to future research on AAT protein ubiquitination in other species.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142740121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingxia Li, Takahiro Ishii, Miki Yoshioka, Yuta Hino, Mika Nomoto, Yasuomi Tada, Hirofumi Yoshioka, Hirokazu Takahashi, Takaki Yamauchi, Mikio Nakazono
CALCIUM-DEPENDENT PROTEIN KINASE (CDPK) stimulates reactive oxygen species (ROS)-dependent signaling by activating RESPIRATORY BURST OXIDASE HOMOLOG (RBOH). The lysigenous aerenchyma is a gas space created by cortical cell death that facilitates oxygen diffusion from the shoot to the root tips. Previously, we showed that RBOHH is indispensable for the induction of aerenchyma formation in rice (Oryza sativa) roots under low-oxygen conditions. Here, we showed that CDPK5 and CDPK13 localize to the plasma membrane where RBOHH functions. Mutation analysis of the serine at residues 92 and 107 of RBOHH revealed that these residues are required for CDPK5- and CDPK13-mediated activation of ROS production. The requirement of Ca2+ for CDPK5 and CDPK13 function was confirmed using in vitro kinase assays. CRISPR/Cas9-based mutagenesis of CDPK5 and/or CDPK13 revealed that the double knockout almost completely suppressed inducible aerenchyma formation, whereas the effects were limited in the single knockout of either CDPK5 or CDPK13. Interestingly, the double knockout almost suppressed the induction of adventitious root formation, which is widely conserved in vascular plants, under low-oxygen conditions. Our results suggest that CDPKs are essential for the acclimation of rice to low-oxygen conditions and also for many other plant species conserving CDPK-targeted phosphorylation sites in RBOH homologs.
{"title":"CDPK5 and CDPK13 play key roles in acclimation to low oxygen through the control of RBOH-mediated ROS production in rice.","authors":"Jingxia Li, Takahiro Ishii, Miki Yoshioka, Yuta Hino, Mika Nomoto, Yasuomi Tada, Hirofumi Yoshioka, Hirokazu Takahashi, Takaki Yamauchi, Mikio Nakazono","doi":"10.1093/plphys/kiae293","DOIUrl":"10.1093/plphys/kiae293","url":null,"abstract":"<p><p>CALCIUM-DEPENDENT PROTEIN KINASE (CDPK) stimulates reactive oxygen species (ROS)-dependent signaling by activating RESPIRATORY BURST OXIDASE HOMOLOG (RBOH). The lysigenous aerenchyma is a gas space created by cortical cell death that facilitates oxygen diffusion from the shoot to the root tips. Previously, we showed that RBOHH is indispensable for the induction of aerenchyma formation in rice (Oryza sativa) roots under low-oxygen conditions. Here, we showed that CDPK5 and CDPK13 localize to the plasma membrane where RBOHH functions. Mutation analysis of the serine at residues 92 and 107 of RBOHH revealed that these residues are required for CDPK5- and CDPK13-mediated activation of ROS production. The requirement of Ca2+ for CDPK5 and CDPK13 function was confirmed using in vitro kinase assays. CRISPR/Cas9-based mutagenesis of CDPK5 and/or CDPK13 revealed that the double knockout almost completely suppressed inducible aerenchyma formation, whereas the effects were limited in the single knockout of either CDPK5 or CDPK13. Interestingly, the double knockout almost suppressed the induction of adventitious root formation, which is widely conserved in vascular plants, under low-oxygen conditions. Our results suggest that CDPKs are essential for the acclimation of rice to low-oxygen conditions and also for many other plant species conserving CDPK-targeted phosphorylation sites in RBOH homologs.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663579/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141288437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enhanced autoimmunity often leads to impaired plant growth and development, and the coordination of immunity and growth in Populus remains elusive. In this study, we have identified the transcription factors PagWRKY33a/b as key regulators of immune response and growth maintenance in Populus. The disruption of PagWRKY33a/b causes growth issues and autoimmunity while conferring resistance to anthracnose caused by Colletotrichum gloeosporioides. PagWRKY33a/b binds to the promoters of N requirement gene 1.1 (NRG1.1) and Gibberellic Acid-Stimulated in Arabidopsis (GASA14) during infection, activating their transcription. This process maintains disease resistance and engages in GA signaling to reduce growth costs from immune activation. The oxPagWRKY33a/nrg1.1 mutant results in reduced resistance to C. gloeosporioides. Further, PagWRKY33a/b is phosphorylated and activated by mitogen-activated protein kinase kinase 1, which inhibits respiratory burst oxidase homolog D (RBOHD) and respiratory burst oxidase homolog I (RBOHI) transcription, causing reactive oxygen species bursts in wrky33a/b double mutants. This leads to an upregulation of PagNRG1.1 in the absence of pathogens. However, the wrky33a/b/nrg1.1 and wrky33a/b/rbohd triple mutants show compromised defense responses, underscoring the complexity of WRKY33 regulation. Additionally, the stability of PagWRKY33 is modulated by Ring Finger Protein 5 (PagRNF5)-mediated ubiquitination, balancing plant immunity and growth. Together, our results provide key insights into the complex function of WRKY33 in Populus autoimmunity and its impact on growth and development.
{"title":"Transcription factor PagWRKY33 regulates gibberellin signaling and immune receptor pathways in Populus.","authors":"Xiao-Qian Yu, Hao-Qiang Niu, Yue-Mei Zhang, Xiao-Xu Shan, Chao Liu, Hou-Ling Wang, Weilun Yin, Xinli Xia","doi":"10.1093/plphys/kiae593","DOIUrl":"10.1093/plphys/kiae593","url":null,"abstract":"<p><p>Enhanced autoimmunity often leads to impaired plant growth and development, and the coordination of immunity and growth in Populus remains elusive. In this study, we have identified the transcription factors PagWRKY33a/b as key regulators of immune response and growth maintenance in Populus. The disruption of PagWRKY33a/b causes growth issues and autoimmunity while conferring resistance to anthracnose caused by Colletotrichum gloeosporioides. PagWRKY33a/b binds to the promoters of N requirement gene 1.1 (NRG1.1) and Gibberellic Acid-Stimulated in Arabidopsis (GASA14) during infection, activating their transcription. This process maintains disease resistance and engages in GA signaling to reduce growth costs from immune activation. The oxPagWRKY33a/nrg1.1 mutant results in reduced resistance to C. gloeosporioides. Further, PagWRKY33a/b is phosphorylated and activated by mitogen-activated protein kinase kinase 1, which inhibits respiratory burst oxidase homolog D (RBOHD) and respiratory burst oxidase homolog I (RBOHI) transcription, causing reactive oxygen species bursts in wrky33a/b double mutants. This leads to an upregulation of PagNRG1.1 in the absence of pathogens. However, the wrky33a/b/nrg1.1 and wrky33a/b/rbohd triple mutants show compromised defense responses, underscoring the complexity of WRKY33 regulation. Additionally, the stability of PagWRKY33 is modulated by Ring Finger Protein 5 (PagRNF5)-mediated ubiquitination, balancing plant immunity and growth. Together, our results provide key insights into the complex function of WRKY33 in Populus autoimmunity and its impact on growth and development.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenfei Xie, Yuang Zhao, Xianwang Deng, Ruixin Chen, Zhiquan Qiang, Pedro García-Caparros, Tonglin Mao, Tao Qin
Microtubules play pivotal roles in establishing trichome branching patterns, which is a model system for studying cell-shape control in Arabidopsis (Arabidopsis thaliana). However, the signaling pathway that regulates microtubule reorganization during trichome branching remains poorly understood. In this study, we report that MICROTUBULE-DESTABILIZING PROTEIN25 (MDP25) is involved in GLABRA3 (GL3)-mediated trichome branching by regulating microtubule stability. Loss of MDP25 function led to excessive trichome branching, and this phenotype in mdp25 could not be rescued by the MDP25 K7A or MDP25 K18A mutated variants. Pharmacological treatment and live-cell imaging revealed increased microtubule stability in the mdp25 mutant. Furthermore, the microtubule collar observed during trichome branching remained more intact in mdp25 compared to the WT under oryzalin treatment. Results of genetic assays further demonstrated that knocking out MDP25 rescued the reduced branching phenotype of gl3 trichomes. In gl3 trichomes, normal microtubule organization was disrupted, and microtubule stability was significantly compromised. Moreover, GL3 physically bound to the MDP25 promoter, thereby inhibiting its expression. Overexpression of GL3 negated the effects of PMDP25-driven MDP25 or its mutant proteins on trichome branching and microtubules in the mdp25 background. Overall, our study uncovers a mechanism by which GL3 inhibits MDP25 transcription, thereby influencing microtubule stability and regulating trichome branching. This mechanism provides a connection between early regulatory components and microtubules during trichome development.
{"title":"GLABRA3-mediated trichome branching requires transcriptional repression of MICROTUBULE-DESTABILIZING PROTEIN25.","authors":"Wenfei Xie, Yuang Zhao, Xianwang Deng, Ruixin Chen, Zhiquan Qiang, Pedro García-Caparros, Tonglin Mao, Tao Qin","doi":"10.1093/plphys/kiae563","DOIUrl":"10.1093/plphys/kiae563","url":null,"abstract":"<p><p>Microtubules play pivotal roles in establishing trichome branching patterns, which is a model system for studying cell-shape control in Arabidopsis (Arabidopsis thaliana). However, the signaling pathway that regulates microtubule reorganization during trichome branching remains poorly understood. In this study, we report that MICROTUBULE-DESTABILIZING PROTEIN25 (MDP25) is involved in GLABRA3 (GL3)-mediated trichome branching by regulating microtubule stability. Loss of MDP25 function led to excessive trichome branching, and this phenotype in mdp25 could not be rescued by the MDP25 K7A or MDP25 K18A mutated variants. Pharmacological treatment and live-cell imaging revealed increased microtubule stability in the mdp25 mutant. Furthermore, the microtubule collar observed during trichome branching remained more intact in mdp25 compared to the WT under oryzalin treatment. Results of genetic assays further demonstrated that knocking out MDP25 rescued the reduced branching phenotype of gl3 trichomes. In gl3 trichomes, normal microtubule organization was disrupted, and microtubule stability was significantly compromised. Moreover, GL3 physically bound to the MDP25 promoter, thereby inhibiting its expression. Overexpression of GL3 negated the effects of PMDP25-driven MDP25 or its mutant proteins on trichome branching and microtubules in the mdp25 background. Overall, our study uncovers a mechanism by which GL3 inhibits MDP25 transcription, thereby influencing microtubule stability and regulating trichome branching. This mechanism provides a connection between early regulatory components and microtubules during trichome development.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reduced oxygen availability (hypoxia) represents a key plant abiotic stress in natural and agricultural systems, but conversely it is also an important component of normal growth and development. We review recent advances that demonstrate how genetic adaptations associated with hypoxia impact the known plant oxygen-sensing mechanism through the PLANT CYSTEINE OXIDASE N-degron pathway. Only 3 protein substrates of this pathway have been identified, and all adaptations identified to date are associated with the most important of these, the group VII ETHYLENE RESPONSE FACTOR transcription factors. We discuss how geography, altitude, and agriculture have all shaped molecular responses to hypoxia and how these responses have emerged at different taxonomic levels through the evolution of land plants. Understanding how ecological and agricultural genetic variation acts positively to enhance hypoxia tolerance will provide novel tools and concepts to improve the performance of crops in the face of increasing extreme flooding events.
{"title":"Geography, altitude, agriculture, and hypoxia.","authors":"Michael J Holdsworth, Huanhuan Liu, Simone Castellana, Mohamad Abbas, Jianquan Liu, Pierdomenico Perata","doi":"10.1093/plphys/kiae535","DOIUrl":"10.1093/plphys/kiae535","url":null,"abstract":"<p><p>Reduced oxygen availability (hypoxia) represents a key plant abiotic stress in natural and agricultural systems, but conversely it is also an important component of normal growth and development. We review recent advances that demonstrate how genetic adaptations associated with hypoxia impact the known plant oxygen-sensing mechanism through the PLANT CYSTEINE OXIDASE N-degron pathway. Only 3 protein substrates of this pathway have been identified, and all adaptations identified to date are associated with the most important of these, the group VII ETHYLENE RESPONSE FACTOR transcription factors. We discuss how geography, altitude, and agriculture have all shaped molecular responses to hypoxia and how these responses have emerged at different taxonomic levels through the evolution of land plants. Understanding how ecological and agricultural genetic variation acts positively to enhance hypoxia tolerance will provide novel tools and concepts to improve the performance of crops in the face of increasing extreme flooding events.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663495/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of OsDGD1 in phosphate starvation: How lipid remodeling regulates jasmonic acid and root development in rice.","authors":"Alaeddine Safi","doi":"10.1093/plphys/kiae524","DOIUrl":"10.1093/plphys/kiae524","url":null,"abstract":"","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663704/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A role for aquaporins in the modulation of cold stress tolerance in oriental melon.","authors":"Maria-Angelica Sanclemente","doi":"10.1093/plphys/kiae578","DOIUrl":"10.1093/plphys/kiae578","url":null,"abstract":"","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663574/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiawei Pan, Hamza Sohail, Rahat Sharif, Qiming Hu, Jia Song, Xiaohua Qi, Xuehao Chen, Xuewen Xu
Waterlogging is a serious abiotic stress that drastically decreases crop productivity by damaging the root system. Jasmonic acid (JA) inhibits waterlogging-induced adventitious root (AR) formation in cucumber (Cucumis sativus L.). However, we still lack a profound mechanistic understanding of how JA governs AR formation under waterlogging stress. JASMONATE ZIM-DOMAIN (JAZ) proteins are responsible for repressing JA signaling in a transcriptional manner. In this study, we showed that overexpressing CsJAZ8 inhibited the formation of ARs triggered by waterlogging. Molecular analyses revealed that CsJAZ8 inhibited the activation of the R2R3-MYB transcription factor CsMYB6 via direct interaction. Additionally, silencing of CsMYB6 negatively impacted AR formation under waterlogging stress, as CsMYB6 could directly bind to the promoters of 1-aminocyclopropane-1-carboxylate oxidase 2 gene CsACO2 and gibberellin 20-oxidase gene CsGA20ox2, facilitating the transcription of these genes. The overexpression of CsACO2 and CsGA20ox2 led to increased levels of ethylene and gibberellin, which facilitated AR formation under waterlogging conditions. On the contrary, silencing these genes resulted in contrasting phenotypes of AR formation. These results highlight that the transcriptional cascade of CsJAZ8 and CsMYB6 plays a critical role in regulating hormonal-mediated cucumber waterlogging-triggered AR formation by inhibiting ethylene and gibberellin accumulation. We anticipate that our findings will provide insights into the molecular mechanisms that drive the emergence of AR in cucumber plants under waterlogging stress.
涝害是一种严重的非生物胁迫,它通过破坏根系而大大降低作物的产量。茉莉酸(JA)可抑制黄瓜(Cucumis sativus L.)在涝害胁迫下诱导的不定根(AR)的形成。 然而,我们对 JA 如何在涝害胁迫下调控 AR 的形成仍缺乏深刻的机理认识。JAZ(JASMONATE ZIM-DOMAIN)蛋白负责以转录方式抑制 JA 信号转导。在本研究中,我们发现过表达 CsJAZ8 可抑制由水涝引发的 AR 的形成。分子分析表明,CsJAZ8 通过直接相互作用抑制了 R2R3-MYB 转录因子 CsMYB6 的激活。此外,沉默 CsMYB6 对水涝胁迫下 AR 的形成有负面影响,因为 CsMYB6 可直接与 1-氨基环丙烷-1-羧酸氧化酶 2 基因 CsACO2 和赤霉素 20-氧化酶基因 CsGA20ox2 的启动子结合,促进这些基因的转录。CsACO2 和 CsGA20ox2 的过表达导致乙烯和赤霉素水平的增加,从而促进了水涝条件下 AR 的形成。相反,沉默这些基因会导致 AR 形成相反的表型。这些结果突出表明,CsJAZ8 和 CsMYB6 的转录级联通过抑制乙烯和赤霉素的积累,在调控激素介导的黄瓜涝害触发的 AR 形成过程中发挥了关键作用。我们预计,我们的研究结果将有助于深入了解黄瓜植物在涝胁迫下出现 AR 的分子机制。
{"title":"Cucumber JASMONATE ZIM-DOMAIN 8 interaction with transcription factor MYB6 impairs waterlogging-triggered adventitious rooting.","authors":"Jiawei Pan, Hamza Sohail, Rahat Sharif, Qiming Hu, Jia Song, Xiaohua Qi, Xuehao Chen, Xuewen Xu","doi":"10.1093/plphys/kiae351","DOIUrl":"10.1093/plphys/kiae351","url":null,"abstract":"<p><p>Waterlogging is a serious abiotic stress that drastically decreases crop productivity by damaging the root system. Jasmonic acid (JA) inhibits waterlogging-induced adventitious root (AR) formation in cucumber (Cucumis sativus L.). However, we still lack a profound mechanistic understanding of how JA governs AR formation under waterlogging stress. JASMONATE ZIM-DOMAIN (JAZ) proteins are responsible for repressing JA signaling in a transcriptional manner. In this study, we showed that overexpressing CsJAZ8 inhibited the formation of ARs triggered by waterlogging. Molecular analyses revealed that CsJAZ8 inhibited the activation of the R2R3-MYB transcription factor CsMYB6 via direct interaction. Additionally, silencing of CsMYB6 negatively impacted AR formation under waterlogging stress, as CsMYB6 could directly bind to the promoters of 1-aminocyclopropane-1-carboxylate oxidase 2 gene CsACO2 and gibberellin 20-oxidase gene CsGA20ox2, facilitating the transcription of these genes. The overexpression of CsACO2 and CsGA20ox2 led to increased levels of ethylene and gibberellin, which facilitated AR formation under waterlogging conditions. On the contrary, silencing these genes resulted in contrasting phenotypes of AR formation. These results highlight that the transcriptional cascade of CsJAZ8 and CsMYB6 plays a critical role in regulating hormonal-mediated cucumber waterlogging-triggered AR formation by inhibiting ethylene and gibberellin accumulation. We anticipate that our findings will provide insights into the molecular mechanisms that drive the emergence of AR in cucumber plants under waterlogging stress.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}