Pub Date : 2024-11-07DOI: 10.1016/j.plantsci.2024.112313
Zhen Wang , Yuxin Liu , Haodong Huang , Zhifu Zheng , Shiyou Lü , Xianpeng Yang , Changle Ma
Glycerol-3-phosphate acyltransferase5 (GPAT5) is the key enzyme in suberin biosynthesis in Arabidopsis, tomato and Sarracenia purpurea. However, little is known about whether GPAT5 function is conserved in halophytes. In this study, we identified two GPAT5 homologs, CqGPAT5a and CqGPAT5b, in Chenopodium quinoa, the typical halophyte. Using RT-qPCR, we found that CqGPAT5a and CqGPAT5b were highly expressed in quinoa roots and rapidly induced by high salt stress. CqGPAT5a and CqGPAT5b were localized to the endoplasmic reticulum and found to have glycerol-3-phosphate acyltransferase activity using yeast complementation assays. Compared with CqGPAT5b, CqGPAT5a showed relatively weaker function and less protein abundance when expressed in yeast, Arabidopsis or Nicotiana benthamiana. Subsequently, we identified a serine (S) to leucine (L) variation in the CqGPAT5a protein sequence (S251L) compared with CqGPAT5b, located in the connecting region between the second and third transmembrane domains. Site-directed mutagenesis together with yeast mutant complementation and transient expression in tobacco demonstrated that this variation significantly affected CqGPAT5a activity and protein abundance. These findings expand our understanding of GPAT5 and provide new evidence that GPAT5 may be functionally conserved in halophytes.
{"title":"Functional identification of two Glycerol-3-phosphate Acyltransferase5 homologs from Chenopodium quinoa","authors":"Zhen Wang , Yuxin Liu , Haodong Huang , Zhifu Zheng , Shiyou Lü , Xianpeng Yang , Changle Ma","doi":"10.1016/j.plantsci.2024.112313","DOIUrl":"10.1016/j.plantsci.2024.112313","url":null,"abstract":"<div><div>Glycerol-3-phosphate acyltransferase5 (GPAT5) is the key enzyme in suberin biosynthesis in <em>Arabidopsis</em>, tomato and <em>Sarracenia purpurea</em>. However, little is known about whether GPAT5 function is conserved in halophytes. In this study, we identified two GPAT5 homologs, CqGPAT5a and CqGPAT5b, in <em>Chenopodium quinoa</em>, the typical halophyte. Using RT-qPCR, we found that <em>CqGPAT5a</em> and <em>CqGPAT5b</em> were highly expressed in quinoa roots and rapidly induced by high salt stress. CqGPAT5a and CqGPAT5b were localized to the endoplasmic reticulum and found to have glycerol-3-phosphate acyltransferase activity using yeast complementation assays. Compared with CqGPAT5b, CqGPAT5a showed relatively weaker function and less protein abundance when expressed in yeast, <em>Arabidopsis</em> or <em>Nicotiana benthamiana</em>. Subsequently, we identified a serine (S) to leucine (L) variation in the CqGPAT5a protein sequence (S251L) compared with CqGPAT5b, located in the connecting region between the second and third transmembrane domains. Site-directed mutagenesis together with yeast mutant complementation and transient expression in tobacco demonstrated that this variation significantly affected CqGPAT5a activity and protein abundance. These findings expand our understanding of GPAT5 and provide new evidence that GPAT5 may be functionally conserved in halophytes.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"350 ","pages":"Article 112313"},"PeriodicalIF":4.2,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.plantsci.2024.112316
Xinyu Jiao , Yamin Li , Qingyu Yang, Xiangjian Chen, Lan Luo, Yuzhen Liu, Zhixiong Liu
The classic ABC model postulates how three classes of floral homeotic genes (A, B and C) work in a combinational way to confer organ identity to each whorl that make up a perfect flower in core eudicot plants. Fagopyrum esculentum (Polygonaceae) produces dimorphic flowers with single whorl showy tepals, representing a considerable difference with most core eudicots flowers. Here, we explain in detail the function of a duplicated pair of floral homeotic genes involved in the formation of tepals and stamens in the LH F. esculentum. FaesAP1_1 and FaesAP1_2 work together to specify tepal identity. FaesAP3_1/2 or FaesPI_1/2 have redundant function in specifying filament identity, while FaesAP3_2 and FaesPI_2 also retain a conserved role in specifying anther development and gain novel function in style length determination. However, FaesPI_1 gain novel function in floral color formation. In addition, FaesAG can directly regulate stamen and pistil development or binds to the CArG-box of pFaesPI_1 to indirectly regulate stamen and pistil development by a gene regulatory pathway involving FaesAP1_1/2, FaesAP3_1/2 and FaesPI_1/2. Moreover, FaesAP1_1/2 can directly or indirectly regulate B-class gene (FaesAP3_1/2 and FaesPI_1/2) expression to be involved in floral development. Our work has led to detailed insights into the MADS-box gene regulatory networks that control floral developmental process in LH F. esculentum.
{"title":"Duplicate MADS-box genes with split roles and a genetic regulatory network of floral development in long-homostyle common buckwheat","authors":"Xinyu Jiao , Yamin Li , Qingyu Yang, Xiangjian Chen, Lan Luo, Yuzhen Liu, Zhixiong Liu","doi":"10.1016/j.plantsci.2024.112316","DOIUrl":"10.1016/j.plantsci.2024.112316","url":null,"abstract":"<div><div>The classic ABC model postulates how three classes of floral homeotic genes (A, B and C) work in a combinational way to confer organ identity to each whorl that make up a perfect flower in core eudicot plants. <em>Fagopyrum esculentum</em> (Polygonaceae) produces dimorphic flowers with single whorl showy tepals, representing a considerable difference with most core eudicots flowers. Here, we explain in detail the function of a duplicated pair of floral homeotic genes involved in the formation of tepals and stamens in the LH <em>F. esculentum</em>. <em>FaesAP1_1</em> and <em>FaesAP1_2</em> work together to specify tepal identity. <em>FaesAP3_1/2</em> or <em>FaesPI_1/2</em> have redundant function in specifying filament identity, while <em>FaesAP3_2</em> and <em>FaesPI_2</em> also retain a conserved role in specifying anther development and gain novel function in style length determination. However, <em>FaesPI_1</em> gain novel function in floral color formation. In addition, <em>FaesAG</em> can directly regulate stamen and pistil development or binds to the CArG-box of <em>pFaesPI_1</em> to indirectly regulate stamen and pistil development by a gene regulatory pathway involving <em>FaesAP1_1/2, FaesAP3_1/2</em> and <em>FaesPI_1/2</em>. Moreover, <em>FaesAP1_1/2</em> can directly or indirectly regulate B-class gene (<em>FaesAP3_1/2</em> and <em>FaesPI_1/2</em>) expression to be involved in floral development. Our work has led to detailed insights into the MADS-box gene regulatory networks that control floral developmental process in LH <em>F. esculentum</em>.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"350 ","pages":"Article 112316"},"PeriodicalIF":4.2,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-03DOI: 10.1016/j.plantsci.2024.112314
Yuling Tai , Haiyan Wu , Lu Yang , Yi Yuan, Youhui Chen, Honggang Wang, Yifan Jin, Luyao Yu, Shuangshuang Li, Feng Shi
German chamomile (Matricaria chamomilla L.) is a traditional medicinal aromatic plant, and the sesquiterpenoids in its flowers have important medicinal value. The (E)-β-farnesene (EβF) is one of the active sesquiterpenoid components and is also a major component of aphid alarm pheromones. In this study, two EβF synthase (βFS) genes (McβFS1 and McβFS2), were cloned from German chamomile. Subcellular localization analysis showed that both McβFS1 and McβFS2 were localized in the cytoplasm and nucleus. Tissue-specific expression analysis revealed that McβFS1 and McβFS2 were expressed in all flower stages, with the highest levels observed during the tubular flower extension stage. Prokaryotic expression and enzyme activity results showed that McβFS1 and McβFS2 possess catalytic activity. Overexpression of McβFS1 and McβFS2 in the hairy roots of German chamomile led to the accumulation of EβF, demonstrating enzyme activity in vivo. The promoters of McβFS1 and McβFS2 were cloned and analyzed. After treating German chamomile with methyl jasmonate (MeJA) and methyl salicylate (MeSA), the transcription levels of McβFS1 and McβFS2 were found to be regulated by both hormones. In addition, feeding experiments showed that aphid infestation upregulated the expression levels of McβFS1 and McβFS2. Our study provides valuable insights into the biosynthesis of EβF, laying a foundation for further research into its metabolic pathways.
{"title":"Functional analysis of (E)-β-farnesene synthases involved in accumulation of (E)-β-farnesene in German chamomile (Matricaria chamomilla L.)","authors":"Yuling Tai , Haiyan Wu , Lu Yang , Yi Yuan, Youhui Chen, Honggang Wang, Yifan Jin, Luyao Yu, Shuangshuang Li, Feng Shi","doi":"10.1016/j.plantsci.2024.112314","DOIUrl":"10.1016/j.plantsci.2024.112314","url":null,"abstract":"<div><div>German chamomile (<em>Matricaria chamomilla</em> L.) is a traditional medicinal aromatic plant, and the sesquiterpenoids in its flowers have important medicinal value. The (<em>E</em>)-<em>β</em>-farnesene (EβF) is one of the active sesquiterpenoid components and is also a major component of aphid alarm pheromones. In this study, two EβF synthase (βFS) genes (<em>McβFS1</em> and <em>McβFS2</em>), were cloned from German chamomile. Subcellular localization analysis showed that both McβFS1 and McβFS2 were localized in the cytoplasm and nucleus. Tissue-specific expression analysis revealed that <em>McβFS1</em> and <em>McβFS2</em> were expressed in all flower stages, with the highest levels observed during the tubular flower extension stage. Prokaryotic expression and enzyme activity results showed that McβFS1 and McβFS2 possess catalytic activity. Overexpression of McβFS1 and McβFS2 in the hairy roots of German chamomile led to the accumulation of EβF, demonstrating enzyme activity <em>in vivo</em>. The promoters of <em>McβFS1</em> and <em>McβFS2</em> were cloned and analyzed. After treating German chamomile with methyl jasmonate (MeJA) and methyl salicylate (MeSA), the transcription levels of <em>McβFS1</em> and <em>McβFS2</em> were found to be regulated by both hormones. In addition, feeding experiments showed that aphid infestation upregulated the expression levels of <em>McβFS1</em> and <em>McβFS2</em>. Our study provides valuable insights into the biosynthesis of EβF, laying a foundation for further research into its metabolic pathways.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"350 ","pages":"Article 112314"},"PeriodicalIF":4.2,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1016/j.plantsci.2024.112312
Hongrui Jiang , Weimin Cheng , Chunpeng Chen , Cheng Fang , Yue Zhan , Liangzhi Tao , Yang Yang , Xianzhong Huang , Kun Wu , Xiangdong Fu , Yuejin Wu , Binmei Liu , Yafeng Ye
The leaf midrib system is essential for plant growth and development, facilitating nutrient transport, providing structural support, enabling gas exchange, and enhancing resilience to environmental stresses. However, the molecular mechanism regulating leaf midrib development is still unclear.In this study, we reported a rice solid midrib 1 (sm1) mutant, exhibiting solid leaf aerenchyma and abaxial rolling leaves due to abnormal development of parenchyma and bulliform cells. Map-based cloning revealed that SM1 encodes a litter zipper protein (ZPR). SM1 was mainly expressed in the sheaths and basal midrib and was associated with the nucleus. Further experiments indicated that SM1 can interact with OSHB1, preventing the formation of OSHB:OSHB dimers and subsequently repressing the expression of OSH1 involved in the regulation and maintenance of apical stem meristem formation. The sm1 mutant reduced long-distance oxygen transport ability from shoot to root. The impaired oxygen transport in the sm1 mutant may have contributed to the increase in methanogens and elevated methane emissions. Collectively, our findings revealed that the SM1-OSHB1-OSH1 modules regulate leaf aerenchyma development in rice. These modules not only enhance our understanding of the molecular mechanism of rice leaf aerenchyma development but also offer insights for reducing methane emissions through genetic modification.
{"title":"Mutation of rice SM1 enhances solid leaf midrib formation and increases methane emissions","authors":"Hongrui Jiang , Weimin Cheng , Chunpeng Chen , Cheng Fang , Yue Zhan , Liangzhi Tao , Yang Yang , Xianzhong Huang , Kun Wu , Xiangdong Fu , Yuejin Wu , Binmei Liu , Yafeng Ye","doi":"10.1016/j.plantsci.2024.112312","DOIUrl":"10.1016/j.plantsci.2024.112312","url":null,"abstract":"<div><div>The leaf midrib system is essential for plant growth and development, facilitating nutrient transport, providing structural support, enabling gas exchange, and enhancing resilience to environmental stresses. However, the molecular mechanism regulating leaf midrib development is still unclear.In this study, we reported a rice <em>solid midrib 1</em> (<em>sm1</em>) mutant, exhibiting solid leaf aerenchyma and abaxial rolling leaves due to abnormal development of parenchyma and bulliform cells. Map-based cloning revealed that <em>SM1</em> encodes a litter zipper protein (ZPR). <em>SM1</em> was mainly expressed in the sheaths and basal midrib and was associated with the nucleus. Further experiments indicated that SM1 can interact with OSHB1, preventing the formation of OSHB:OSHB dimers and subsequently repressing the expression of <em>OSH1</em> involved in the regulation and maintenance of apical stem meristem formation. The <em>sm1</em> mutant reduced long-distance oxygen transport ability from shoot to root. The impaired oxygen transport in the <em>sm1</em> mutant may have contributed to the increase in methanogens and elevated methane emissions. Collectively, our findings revealed that the SM1-OSHB1-OSH1 modules regulate leaf aerenchyma development in rice. These modules not only enhance our understanding of the molecular mechanism of rice leaf aerenchyma development but also offer insights for reducing methane emissions through genetic modification.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"350 ","pages":"Article 112312"},"PeriodicalIF":4.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1016/j.plantsci.2024.112311
Zijuan Zhang , Xiaoman Li , Yiying Zhang , Jiajia Zhou , Yanmei Chen , Yuan Li , Dongtao Ren
Fructose 1,6-bisphosphate aldolase (FBA) is a class of aldolase that functions as enzyme participating in carbohydrate metabolism of the Calvin-Benson cycle, gluconeogenesis, and glycolysis, and also as non-enzymatic protein involving in protein binding, gene transcription, signal transduction. FBAs have been identified in a few plant species, however, limited information is known regarding FBA family genes, their biological functions and posttranslational regulations in maize (Zea mays). In this study, nine class I FBAs (ZmFBA1 to ZmFBA9) and one class II FBA (ZmFBA10) in maize were identified. Phosphoproteomic analysis further revealed that multiple ZmFBAs were phosphorylated. We showed that phosphorylation at Ser32 in ZmFBA8 inhibited its FBP binding and enzyme activity. Loss of ZmFBA8 function reduced the growth of maize seedlings. Our results suggest that the phosphorylation is an important regulatory mechanism of ZmFBA8 function.
{"title":"Identification of the fructose 1,6-bisphosphate aldolase (FBA) family genes in maize and analysis of the phosphorylation regulation of ZmFBA8","authors":"Zijuan Zhang , Xiaoman Li , Yiying Zhang , Jiajia Zhou , Yanmei Chen , Yuan Li , Dongtao Ren","doi":"10.1016/j.plantsci.2024.112311","DOIUrl":"10.1016/j.plantsci.2024.112311","url":null,"abstract":"<div><div>Fructose 1,6-bisphosphate aldolase (FBA) is a class of aldolase that functions as enzyme participating in carbohydrate metabolism of the Calvin-Benson cycle, gluconeogenesis, and glycolysis, and also as non-enzymatic protein involving in protein binding, gene transcription, signal transduction. FBAs have been identified in a few plant species, however, limited information is known regarding FBA family genes, their biological functions and posttranslational regulations in maize (<em>Zea mays</em>). In this study, nine class I FBAs (ZmFBA1 to ZmFBA9) and one class II FBA (ZmFBA10) in maize were identified. Phosphoproteomic analysis further revealed that multiple ZmFBAs were phosphorylated. We showed that phosphorylation at Ser32 in ZmFBA8 inhibited its FBP binding and enzyme activity. Loss of <em>ZmFBA8</em> function reduced the growth of maize seedlings. Our results suggest that the phosphorylation is an important regulatory mechanism of ZmFBA8 function.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"350 ","pages":"Article 112311"},"PeriodicalIF":4.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.plantsci.2024.112309
Zihan Cheng , Yuandong Zhu , Xinyu He , Gaofeng Fan , Jiahui Jiang , Tingbo Jiang , Xuemei Zhang
Ethylene-responsive factor (ERF) family genes are crucial for plant growth and development. This study analyzed the functional role of the PagERF110 gene in leaf development of Populus alba×P. glandulosa. PagERF110 contains the AP2 conserved domain and exhibits transcriptional activation activity at its C-terminus. Overexpression of PagERF110 in transgenic poplar trees resulted in reduced leaf size, leaf area, and vein xylem thickness. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiments confirmed that PagERF110 interacts with PagACD32.1. Transcriptome sequencing revealed that PagERF110 regulates the expression of key genes involved in leaf development. Furthermore, yeast one-hybrid (Y1H) assays, GUS staining, and ChIP experiments collectively confirmed that PagERF110 targets the expression of PagHB16. In summation, our findings demonstrate that PagERF110 functions as a negative regulator in poplar leaf development.
{"title":"Transcription factor PagERF110 inhibits leaf development by direct regulating PagHB16 in poplar","authors":"Zihan Cheng , Yuandong Zhu , Xinyu He , Gaofeng Fan , Jiahui Jiang , Tingbo Jiang , Xuemei Zhang","doi":"10.1016/j.plantsci.2024.112309","DOIUrl":"10.1016/j.plantsci.2024.112309","url":null,"abstract":"<div><div>Ethylene-responsive factor (ERF) family genes are crucial for plant growth and development. This study analyzed the functional role of the <em>PagERF110</em> gene in leaf development of <em>Populus alba×P. glandulosa</em>. PagERF110 contains the AP2 conserved domain and exhibits transcriptional activation activity at its C-terminus. Overexpression of <em>PagERF110</em> in transgenic poplar trees resulted in reduced leaf size, leaf area, and vein xylem thickness. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiments confirmed that PagERF110 interacts with PagACD32.1. Transcriptome sequencing revealed that <em>PagERF110</em> regulates the expression of key genes involved in leaf development. Furthermore, yeast one-hybrid (Y1H) assays, GUS staining, and ChIP experiments collectively confirmed that PagERF110 targets the expression of <em>PagHB16</em>. In summation, our findings demonstrate that <em>PagERF110</em> functions as a negative regulator in poplar leaf development.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"350 ","pages":"Article 112309"},"PeriodicalIF":4.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.plantsci.2024.112308
Ming Guo , Erjing Si , Jingjing Hou , Lirong Yao , Juncheng Wang , Yaxiong Meng , Xiaole Ma , Baochun Li , Huajun Wang
Barley leaf stripe is an important disease caused by Pyenophora graminea that affects barley yields in the world. Ascorbic acid (AsA) interacts with key elements of a complex network orchestrating plant defense mechanisms, thereby influencing the outcome of plant-pathogen interaction. Myo-inositol oxygenase (MIOX) is a pivotal enzyme involved in plants development and environmental stimuli. However, MIOX has described functions in plants but has not been characterized in fungi. In this study, we characterized the Pgmiox gene in P. graminea pathogenesis through annotated on the metabolic pathway of ascorbic acid aldehyde. Our analysis suggested that the Pgmiox protein had a typical conserved MIOX domain. Multiple alignment analysis indicated that the P. graminea MIOX orthologue clustered with MIOX proteins of Pyrenophora species. RNA interference successfully reduced transcript abundance of Pgmiox in six transformant lines compared to wild type, and the transformants were further less virulent on the host plant barley. Transformants of Pgmiox had significant reductions in vegetative growth and pathogenicity, which had increased resistance to tebuconazole and carbendazim. In addition, Pgmiox is associated with ionic, drought, osmotic, oxidative, and heavy metal stress tolerance in P. graminea. In conclusion, our findings reveal that Pgmiox may be widely utilized by fungi to enhance pathogenesis and holds significant potential for the development of durable P. graminea resistance through genetic modifications.
{"title":"Pgmiox mediates stress response and plays a critical role for pathogenicity in Pyrenophora graminea, the agent of barley leaf stripe","authors":"Ming Guo , Erjing Si , Jingjing Hou , Lirong Yao , Juncheng Wang , Yaxiong Meng , Xiaole Ma , Baochun Li , Huajun Wang","doi":"10.1016/j.plantsci.2024.112308","DOIUrl":"10.1016/j.plantsci.2024.112308","url":null,"abstract":"<div><div>Barley leaf stripe is an important disease caused by <em>Pyenophora graminea</em> that affects barley yields in the world. Ascorbic acid (AsA) interacts with key elements of a complex network orchestrating plant defense mechanisms, thereby influencing the outcome of plant-pathogen interaction. Myo-inositol oxygenase (MIOX) is a pivotal enzyme involved in plants development and environmental stimuli. However, MIOX has described functions in plants but has not been characterized in fungi. In this study, we characterized the <em>Pgmiox</em> gene in <em>P. graminea</em> pathogenesis through annotated on the metabolic pathway of ascorbic acid aldehyde. Our analysis suggested that the Pgmiox protein had a typical conserved MIOX domain. Multiple alignment analysis indicated that the <em>P. graminea</em> MIOX orthologue clustered with MIOX proteins of <em>Pyrenophora</em> species. RNA interference successfully reduced transcript abundance of <em>Pgmiox</em> in six transformant lines compared to wild type, and the transformants were further less virulent on the host plant barley. Transformants of <em>Pgmiox</em> had significant reductions in vegetative growth and pathogenicity, which had increased resistance to tebuconazole and carbendazim. In addition, <em>Pgmiox</em> is associated with ionic, drought, osmotic, oxidative, and heavy metal stress tolerance in <em>P. graminea</em>. In conclusion, our findings reveal that <em>Pgmiox</em> may be widely utilized by fungi to enhance pathogenesis and holds significant potential for the development of durable <em>P. graminea</em> resistance through genetic modifications.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"350 ","pages":"Article 112308"},"PeriodicalIF":4.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.plantsci.2024.112310
Carolina Pereira Nascimento , Paula da Fonseca-Pereira , Marcelle Ferreira-Silva , Laise Rosado-Souza , Nicole Linka , Alisdair R. Fernie , Wagner L. Araújo , Adriano Nunes-Nesi
A series of processes occur during seed formation, including remarkable metabolic changes that extend from early seed development to seedling establishment. The changes associated with processes initiated mainly after seed imbibition are usually characterized by extensive modification in the redox state of seed storage proteins and of pivotal enzymes for reserve mobilization and usage. Such changes in the redox state are often mediated by thioredoxins (TRXs), oxidoreductase capable of catalyzing the reduction of disulfide bonds in target proteins to regulate its structure and function. Here, we analyzed the previously characterized Arabidopsis mutants of NADPH-dependent TRX reductase types A and B (ntra ntrb), two independent mutant lines of mitochondrial thioredoxin o1 (trxo1) and two thioredoxin h2 (trxh2) mutant lines. Our results indicate that plants deficient in the NADPH dependent thioredoxin system are able to mobilize their reserves, but, at least partly, fail to use these reserves during germination. TRX mutants also show decreased activity of regulatory systems required to maintain redox homeostasis. Moreover, we observed reduced respiration in mutant seeds and seedlings, which in parallel with an impaired energy metabolism affects core biological processes responsible for germination and early development of TRX mutants. Together, these findings suggest that the lack of TRX system induces significant change in the respiration of seeds and seedlings, which undergo metabolic reprogramming to adapt to the new redox state.
种子形成过程中会发生一系列过程,包括从种子早期发育到成苗的显著代谢变化。与主要在种子浸种后开始的过程有关的变化通常表现为种子贮藏蛋白以及储备动员和使用的关键酶的氧化还原状态发生了广泛变化。这种氧化还原状态的变化通常是由硫氧还蛋白(TRXs)介导的,硫氧还蛋白是一种氧化还原酶,能够催化目标蛋白质中二硫键的还原,从而调节其结构和功能。在这里,我们分析了之前表征的拟南芥 NADPH 依赖性 TRX 还原酶 A 型和 B 型突变体(ntra ntrb)、线粒体硫氧还蛋白 o1(trxo1)的两个独立突变品系以及硫氧还蛋白 h2(trxh2)的两个突变品系。我们的研究结果表明,缺乏依赖于 NADPH 的硫氧还蛋白系统的植物能够调动其储备,但至少部分植物在萌芽期间无法利用这些储备。TRX 突变体还显示出维持氧化还原平衡所需的调节系统活性降低。此外,我们还观察到突变体种子和幼苗的呼吸作用降低,这与能量代谢受损同时影响了 TRX 突变体萌发和早期发育的核心生物过程。这些发现共同表明,缺乏 TRX 系统会导致种子和幼苗的呼吸发生显著变化,它们会进行代谢重编程以适应新的氧化还原状态。
{"title":"Functional analysis of the extraplastidial TRX system in germination and early stages of development of Arabidopsis thaliana","authors":"Carolina Pereira Nascimento , Paula da Fonseca-Pereira , Marcelle Ferreira-Silva , Laise Rosado-Souza , Nicole Linka , Alisdair R. Fernie , Wagner L. Araújo , Adriano Nunes-Nesi","doi":"10.1016/j.plantsci.2024.112310","DOIUrl":"10.1016/j.plantsci.2024.112310","url":null,"abstract":"<div><div>A series of processes occur during seed formation, including remarkable metabolic changes that extend from early seed development to seedling establishment. The changes associated with processes initiated mainly after seed imbibition are usually characterized by extensive modification in the redox state of seed storage proteins and of pivotal enzymes for reserve mobilization and usage. Such changes in the redox state are often mediated by thioredoxins (TRXs), oxidoreductase capable of catalyzing the reduction of disulfide bonds in target proteins to regulate its structure and function. Here, we analyzed the previously characterized Arabidopsis mutants of NADPH-dependent TRX reductase types A and B (<em>ntra ntrb</em>), two independent mutant lines of mitochondrial thioredoxin <em>o</em>1 (<em>trxo1</em>) and two thioredoxin <em>h</em>2 (<em>trxh2</em>) mutant lines. Our results indicate that plants deficient in the NADPH dependent thioredoxin system are able to mobilize their reserves, but, at least partly, fail to use these reserves during germination. TRX mutants also show decreased activity of regulatory systems required to maintain redox homeostasis. Moreover, we observed reduced respiration in mutant seeds and seedlings, which in parallel with an impaired energy metabolism affects core biological processes responsible for germination and early development of TRX mutants. Together, these findings suggest that the lack of TRX system induces significant change in the respiration of seeds and seedlings, which undergo metabolic reprogramming to adapt to the new redox state.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"350 ","pages":"Article 112310"},"PeriodicalIF":4.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.plantsci.2024.112307
Min Wang , Limei Hong , Weizhen Zhang , Yiteng Xu , Feng Yuan , Chuanen Zhou , Chunyan Hou , Lu Han
Chlorophyll degradation is a characteristic process of leaf senescence. Two mutant lines, which showed green leaves and seeds during senescence, were identified by screening a Tnt-1 retrotransposon-tagged population of Medicago truncatula. Genetic and molecular analyses indicated that the mutated gene is NON-YELLOW COLORING 1 (MtNYC1) in M. truncatula. MtNYC1 encoded a chlorophyll b reductase, characterized by three transmembrane domains and a catalytic site (Y***K). Our investigation further identified three splicing variants of MtNYC1, encoding a full-length protein (MtNYC1A) and two truncated proteins (MtNYC1B, MtNYC1C). Genetic evidence indicated that the catalytic site and the third transmembrane domain were critical domains for chlorophyll b reductase. The coordinated action of three splicing variants plays a pivotal role in the degradation of chlorophyll during the senescence of leaves. This discovery provides precise target sites for the development of stay-green legume cultivars.
叶绿素降解是叶片衰老的一个特征过程。通过筛选Tnt-1逆转录质子标记的Medicago truncatula群体,发现了两个在衰老期叶片和种子呈绿色的突变株系。遗传和分子分析表明,突变基因是Medicago truncatula中的NON-YELLOW COLORING 1(MtNYC1)。MtNYC1编码叶绿素b还原酶,具有三个跨膜结构域和一个催化位点(Y***K)。我们的研究进一步发现了 MtNYC1 的三种剪接变体,分别编码一个全长蛋白(MtNYC1A)和两个截短蛋白(MtNYC1B、MtNYC1C)。遗传学证据表明,催化位点和第三个跨膜结构域是叶绿素 b 还原酶的关键结构域。三种剪接变体的协调作用在叶片衰老过程中的叶绿素降解过程中发挥了关键作用。这一发现为开发留绿豆科植物品种提供了精确的目标位点。
{"title":"Functional characterization of chlorophyll b reductase NON-YELLOW COLORING 1 in Medicago truncatula","authors":"Min Wang , Limei Hong , Weizhen Zhang , Yiteng Xu , Feng Yuan , Chuanen Zhou , Chunyan Hou , Lu Han","doi":"10.1016/j.plantsci.2024.112307","DOIUrl":"10.1016/j.plantsci.2024.112307","url":null,"abstract":"<div><div>Chlorophyll degradation is a characteristic process of leaf senescence. Two mutant lines, which showed green leaves and seeds during senescence, were identified by screening a <em>Tnt-1</em> retrotransposon-tagged population of <em>Medicago truncatula</em>. Genetic and molecular analyses indicated that the mutated gene is <em>NON-YELLOW COLORING 1</em> (<em>MtNYC1</em>) in <em>M. truncatula</em>. <em>MtNYC1</em> encoded a chlorophyll <em>b</em> reductase, characterized by three transmembrane domains and a catalytic site (Y***K). Our investigation further identified three splicing variants of <em>MtNYC1</em>, encoding a full-length protein (MtNYC1A) and two truncated proteins (MtNYC1B, MtNYC1C). Genetic evidence indicated that the catalytic site and the third transmembrane domain were critical domains for chlorophyll <em>b</em> reductase. The coordinated action of three splicing variants plays a pivotal role in the degradation of chlorophyll during the senescence of leaves. This discovery provides precise target sites for the development of stay-green legume cultivars.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"350 ","pages":"Article 112307"},"PeriodicalIF":4.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.plantsci.2024.112299
Yamei Wang, Xueke Chen, Jingguang Chen
Copper (Cu) is a vital trace element necessary for plants growth and development. It acts as a co-factor for enzymes and plays a crucial role in various physiological processes, including photosynthesis, respiration, antioxidant systems, and hormone signaling transduction. However, excessive amounts of Cu can disrupt normal physiological metabolism, thus hindering plant growth, development, and reducing yield. In recent years, the widespread abuse of Cu-containing fungicides and industrial Cu pollution has resulted in significant soil contamination. Therefore, it is of utmost importance to uncover the adverse effects of excessive Cu on plant growth and delve into the molecular mechanisms employed by plants to counteract the stress caused by excessive Cu. Recent studies have confirmed the inhibitory effects of excess Cu on mineral nutrition, chlorophyll biosynthesis, and antioxidant enzyme activity. This review systematically outlines the ways in which plants tolerate excessive Cu stress and summarizes them into eight Cu-tolerance strategies. Furthermore, it highlights the necessity for further research to comprehend the molecular regulatory mechanisms underlying the responses to excessive Cu stress.
{"title":"Advances of the mechanism for copper tolerance in plants","authors":"Yamei Wang, Xueke Chen, Jingguang Chen","doi":"10.1016/j.plantsci.2024.112299","DOIUrl":"10.1016/j.plantsci.2024.112299","url":null,"abstract":"<div><div>Copper (Cu) is a vital trace element necessary for plants growth and development. It acts as a co-factor for enzymes and plays a crucial role in various physiological processes, including photosynthesis, respiration, antioxidant systems, and hormone signaling transduction. However, excessive amounts of Cu can disrupt normal physiological metabolism, thus hindering plant growth, development, and reducing yield. In recent years, the widespread abuse of Cu-containing fungicides and industrial Cu pollution has resulted in significant soil contamination. Therefore, it is of utmost importance to uncover the adverse effects of excessive Cu on plant growth and delve into the molecular mechanisms employed by plants to counteract the stress caused by excessive Cu. Recent studies have confirmed the inhibitory effects of excess Cu on mineral nutrition, chlorophyll biosynthesis, and antioxidant enzyme activity. This review systematically outlines the ways in which plants tolerate excessive Cu stress and summarizes them into eight Cu-tolerance strategies. Furthermore, it highlights the necessity for further research to comprehend the molecular regulatory mechanisms underlying the responses to excessive Cu stress.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"350 ","pages":"Article 112299"},"PeriodicalIF":4.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}