首页 > 最新文献

Polymer Composites最新文献

英文 中文
Thin porous Ni‐foam enhanced CFRP/Al adhesive joint inserted by ultrasonic vibration 利用超声波振动插入多孔镍泡沫增强 CFRP/Al 粘合剂接头
IF 5.2 2区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-09-11 DOI: 10.1002/pc.29040
Zhengwu Zhou, Yongfei Wang, Chao Chen
To enhance the mechanical properties of the adhesive layer in joints, a thin–structural open–cell porous Ni–foam was embedded into the adhesive interface through ultrasonics (US) assisted. The porous metal foam is effective in interlocking itself with adhesive. After the ultrasonic vibration was applied for 0.17 s, the adhesive penetrated Ni–foam, generating enough residue. This technique effectively improves the energy absorption and shear strength of the CFRP/Al single lap joint by more than 250.33% and 118.4% with a 0.5 mm thick Ni–foam insert, respectively. The fatigue resistance increased by 154% with a 0.3 mm thick Ni–foam insert based on the fatigue testing results and the Weibull distribution method. The S–N curves were established at different reliabilities for engineering applications. With the Ni–Foam insert, the failure modes were changed through crack deflexion, Ni–Foam degumming, and crack blocking.Highlights Ultrasonic vibration assisting Ni‐foam inserts CFRP/Al adhesive joints. The shear strength of joints with Ni‐foam was maximally increased by 118.4%. The fracture forms of joints with Ni‐foam were changed. The fatigue life of the joints with Ni‐foam was maximally increased by 154%. S–N curve of joint with Ni–foam of different reliability levels was got.
为了提高接缝处粘合剂层的机械性能,在超声波(US)的辅助下,一种薄结构开孔多孔镍泡沫被嵌入到粘合剂界面中。多孔金属泡沫能有效地与粘合剂互锁。超声波振动 0.17 秒后,粘合剂渗入镍泡沫,产生足够的残留物。这种技术有效地提高了 CFRP/Al 单搭接接头的能量吸收和剪切强度,使用 0.5 毫米厚的镍泡沫插入件时,能量吸收和剪切强度分别提高了 250.33% 和 118.4% 以上。根据疲劳测试结果和威布尔分布法,使用 0.3 毫米厚的镍泡沫插入件后,抗疲劳性能提高了 154%。根据不同的工程应用可靠性建立了 S-N 曲线。使用镍泡沫插入件后,通过裂纹挠曲、镍泡沫脱胶和裂纹堵塞改变了失效模式。使用镍泡沫的接头的剪切强度最大提高了 118.4%。使用镍泡沫的接头的断裂形式发生了变化。含镍泡沫接头的疲劳寿命最大提高了 154%。得到了不同可靠性等级的含镍泡沫接头的 S-N 曲线。
{"title":"Thin porous Ni‐foam enhanced CFRP/Al adhesive joint inserted by ultrasonic vibration","authors":"Zhengwu Zhou, Yongfei Wang, Chao Chen","doi":"10.1002/pc.29040","DOIUrl":"https://doi.org/10.1002/pc.29040","url":null,"abstract":"<jats:label/>To enhance the mechanical properties of the adhesive layer in joints, a thin–structural open–cell porous Ni–foam was embedded into the adhesive interface through ultrasonics (US) assisted. The porous metal foam is effective in interlocking itself with adhesive. After the ultrasonic vibration was applied for 0.17 s, the adhesive penetrated Ni–foam, generating enough residue. This technique effectively improves the energy absorption and shear strength of the CFRP/Al single lap joint by more than 250.33% and 118.4% with a 0.5 mm thick Ni–foam insert, respectively. The fatigue resistance increased by 154% with a 0.3 mm thick Ni–foam insert based on the fatigue testing results and the Weibull distribution method. The S–N curves were established at different reliabilities for engineering applications. With the Ni–Foam insert, the failure modes were changed through crack deflexion, Ni–Foam degumming, and crack blocking.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Ultrasonic vibration assisting Ni‐foam inserts CFRP/Al adhesive joints.</jats:list-item> <jats:list-item>The shear strength of joints with Ni‐foam was maximally increased by 118.4%.</jats:list-item> <jats:list-item>The fracture forms of joints with Ni‐foam were changed.</jats:list-item> <jats:list-item>The fatigue life of the joints with Ni‐foam was maximally increased by 154%.</jats:list-item> <jats:list-item>S–N curve of joint with Ni–foam of different reliability levels was got.</jats:list-item> </jats:list>","PeriodicalId":20375,"journal":{"name":"Polymer Composites","volume":"7 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing structural performance of 3D‐printed adhesively bonded flat‐joggle‐flat polymer joints with graphene‐reinforced adhesive 用石墨烯增强型粘合剂提高三维打印粘合粘接扁平-锯齿-扁平聚合物接头的结构性能
IF 5.2 2区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-09-11 DOI: 10.1002/pc.29037
Thulasidhas Dhilipkumar, Raja Venkatesan, Vinayak S. Hiremath, S. Kesavan, Karuppusamy P, Karthik V. Shankar, Osamah Alduhaish
Adhesively bonded joints play a vital role in improving the structural performance of 3D‐printed components. This research aims to examine the effect of graphene inclusion on the failure load and vibrational behavior of polylactic acid flat‐joggle‐flat (FJF) joints prepared using fused deposition modeling. The present research focused on the effect of print directions (0°, 45°, 90°) and the inclusion of graphene nanofiller (0.25, 0.50, 0.75, and 1.00 wt%) on the performance of FJF joints. The effect of raster direction on mechanical properties was examined by tensile testing of dog‐bone samples. Results showed that 0° print orientation had higher tensile strength compared to other printing directions. Shear testing of FJF joints indicated that the inclusion of graphene has enhanced the strength of 3D‐printed FJF joints by 61.18%. Fractography results showed that the formation of the shear band with the inclusion of 0.50 wt% graphene helps to distribute the stress more evenly and prevent catastrophic failure of the FJF joint. The free vibrational test revealed that the inclusion of 0.50 wt% graphene had improved the natural frequencies, as the presence of graphene‐enhanced the interfacial bonding between FJF adherend and adhesive.Highlights 0° print orientation had higher tensile strength than other printing directions. Inclusion of graphene‐enhanced the shear strength of flat‐joggle‐flat (FJF) joints by 61.18%. Shear band formation delayed the failure of graphene‐reinforced FJF joints. FJF reinforced with 0.50 wt% graphene had adherend failure. FJF joint added with 1.0 wt% graphene had lower natural frequencies.
粘合接头在改善 3D 打印部件的结构性能方面发挥着至关重要的作用。本研究旨在考察石墨烯的加入对使用熔融沉积建模法制备的聚乳酸平面-手柄-平面(FJF)接头的失效载荷和振动行为的影响。本研究的重点是印刷方向(0°、45°、90°)和石墨烯纳米填料的加入量(0.25、0.50、0.75 和 1.00 wt%)对 FJF 接头性能的影响。通过对狗骨样品进行拉伸测试,考察了光栅方向对机械性能的影响。结果表明,与其他印刷方向相比,0° 印刷方向的拉伸强度更高。FJF 接头的剪切测试表明,石墨烯的加入使 3D 打印 FJF 接头的强度提高了 61.18%。碎裂成像结果表明,加入 0.50 wt% 的石墨烯后形成的剪切带有助于更均匀地分布应力,防止 FJF 接头发生灾难性破坏。自由振动测试表明,0.50 wt% 石墨烯的加入提高了自然频率,因为石墨烯的存在增强了 FJF 粘合剂和粘合剂之间的界面粘合。石墨烯的加入使平面-手柄-平面(FJF)接头的剪切强度提高了 61.18%。剪切带的形成延迟了石墨烯增强型 FJF 接头的失效。用 0.50 wt% 的石墨烯增强的 FJF 出现了粘连破坏。添加了 1.0 wt% 石墨烯的 FJF 接头自然频率较低。
{"title":"Enhancing structural performance of 3D‐printed adhesively bonded flat‐joggle‐flat polymer joints with graphene‐reinforced adhesive","authors":"Thulasidhas Dhilipkumar, Raja Venkatesan, Vinayak S. Hiremath, S. Kesavan, Karuppusamy P, Karthik V. Shankar, Osamah Alduhaish","doi":"10.1002/pc.29037","DOIUrl":"https://doi.org/10.1002/pc.29037","url":null,"abstract":"<jats:label/>Adhesively bonded joints play a vital role in improving the structural performance of 3D‐printed components. This research aims to examine the effect of graphene inclusion on the failure load and vibrational behavior of polylactic acid flat‐joggle‐flat (FJF) joints prepared using fused deposition modeling. The present research focused on the effect of print directions (0°, 45°, 90°) and the inclusion of graphene nanofiller (0.25, 0.50, 0.75, and 1.00 wt%) on the performance of FJF joints. The effect of raster direction on mechanical properties was examined by tensile testing of dog‐bone samples. Results showed that 0° print orientation had higher tensile strength compared to other printing directions. Shear testing of FJF joints indicated that the inclusion of graphene has enhanced the strength of 3D‐printed FJF joints by 61.18%. Fractography results showed that the formation of the shear band with the inclusion of 0.50 wt% graphene helps to distribute the stress more evenly and prevent catastrophic failure of the FJF joint. The free vibrational test revealed that the inclusion of 0.50 wt% graphene had improved the natural frequencies, as the presence of graphene‐enhanced the interfacial bonding between FJF adherend and adhesive.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>0° print orientation had higher tensile strength than other printing directions.</jats:list-item> <jats:list-item>Inclusion of graphene‐enhanced the shear strength of flat‐joggle‐flat (FJF) joints by 61.18%.</jats:list-item> <jats:list-item>Shear band formation delayed the failure of graphene‐reinforced FJF joints.</jats:list-item> <jats:list-item>FJF reinforced with 0.50 wt% graphene had adherend failure.</jats:list-item> <jats:list-item>FJF joint added with 1.0 wt% graphene had lower natural frequencies.</jats:list-item> </jats:list>","PeriodicalId":20375,"journal":{"name":"Polymer Composites","volume":"10 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of denser networks via functionalized aluminum oxide‐boron nitride hybrid fillers: Towards improved thermal conductivity of polycarbonate composites 通过功能化氧化铝-氮化硼混合填料构建更致密的网络:提高聚碳酸酯复合材料的导热性能
IF 5.2 2区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-09-11 DOI: 10.1002/pc.29009
Fang Feng, Yongbiao Luo, Ruyi Yang, Zhiheng Zhao
With the gradual acceleration of development in the modern electronics, there is a higher demand for insulating polymer composites with high thermal conductivity. Herein, the functionalized fillers were fabricated through first deposition of polydopamine (PDA) on boron nitride (BN) plates and then covalent modification of BN‐PDA and aluminum oxide (Al2O3) by γ‐aminopropyltriethoxysilane (APTES), respectively. Hybridized filler‐filled polycarbonate (PC) composites were prepared by partially substituting Al2O3 for BN plates with constant filler content. The PC composite filled with 9 wt% Al2O3 and 21 wt% BN (PCA3B7) achieved a thermal conductivity of 0.734 W mk−1, which is 217% and 21% higher than that of pure PC (0.231 W mk−1) and PCB (0.605 W mk−1), respectively. Besides, the PC composites exhibit excellent electrical insulation properties (1013 Ω cm), relatively good mechanical properties, and enhanced thermal stability. This PC composite, characterized by its superior comprehensive performance, holds significant promise as a thermal management material in electrical and electronic device applications.Highlights Functionalized fillers were fabricated via covalent and non‐covalent methods. The appropriate proportion of hybridized fillers showed synergistic effects. The composite's thermal conductivity was 217% higher than pure PC. The composite exhibited desirable electrical insulating characteristics and thermal stability. The composite could act as a thermal management material.
随着现代电子技术的发展,人们对具有高导热性的绝缘聚合物复合材料提出了更高的要求。本文首先在氮化硼(BN)板上沉积聚多巴胺(PDA),然后用γ-氨基丙基三乙氧基硅烷(APTES)分别对 BN-PDA 和氧化铝(Al2O3)进行共价改性,从而制备出功能化填料。在填充物含量不变的情况下,用 Al2O3 部分替代 BN 板,制备了杂化填充聚碳酸酯(PC)复合材料。填充了 9 wt% Al2O3 和 21 wt% BN 的 PC 复合材料(PCA3B7)的导热系数达到 0.734 W mk-1,分别比纯 PC(0.231 W mk-1)和 PCB(0.605 W mk-1)高出 217% 和 21%。此外,PC 复合材料还具有优异的电绝缘性能(1013 Ω cm)、相对较好的机械性能和更强的热稳定性。这种 PC 复合材料具有优异的综合性能,有望成为电气和电子设备应用中的热管理材料。通过共价和非共价方法制备了功能化填料,适当比例的杂化填料显示出协同效应。复合材料的热导率比纯 PC 高 217%。该复合材料具有理想的电绝缘特性和热稳定性。该复合材料可用作热管理材料。
{"title":"Construction of denser networks via functionalized aluminum oxide‐boron nitride hybrid fillers: Towards improved thermal conductivity of polycarbonate composites","authors":"Fang Feng, Yongbiao Luo, Ruyi Yang, Zhiheng Zhao","doi":"10.1002/pc.29009","DOIUrl":"https://doi.org/10.1002/pc.29009","url":null,"abstract":"<jats:label/>With the gradual acceleration of development in the modern electronics, there is a higher demand for insulating polymer composites with high thermal conductivity. Herein, the functionalized fillers were fabricated through first deposition of polydopamine (PDA) on boron nitride (BN) plates and then covalent modification of BN‐PDA and aluminum oxide (Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>) by γ‐aminopropyltriethoxysilane (APTES), respectively. Hybridized filler‐filled polycarbonate (PC) composites were prepared by partially substituting Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> for BN plates with constant filler content. The PC composite filled with 9 wt% Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> and 21 wt% BN (PCA<jats:sub>3</jats:sub>B<jats:sub>7</jats:sub>) achieved a thermal conductivity of 0.734 W mk<jats:sup>−1</jats:sup>, which is 217% and 21% higher than that of pure PC (0.231 W mk<jats:sup>−1</jats:sup>) and PCB (0.605 W mk<jats:sup>−1</jats:sup>), respectively. Besides, the PC composites exhibit excellent electrical insulation properties (10<jats:sup>13</jats:sup> Ω cm), relatively good mechanical properties, and enhanced thermal stability. This PC composite, characterized by its superior comprehensive performance, holds significant promise as a thermal management material in electrical and electronic device applications.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Functionalized fillers were fabricated via covalent and non‐covalent methods.</jats:list-item> <jats:list-item>The appropriate proportion of hybridized fillers showed synergistic effects.</jats:list-item> <jats:list-item>The composite's thermal conductivity was 217% higher than pure PC.</jats:list-item> <jats:list-item>The composite exhibited desirable electrical insulating characteristics and thermal stability.</jats:list-item> <jats:list-item>The composite could act as a thermal management material.</jats:list-item> </jats:list>","PeriodicalId":20375,"journal":{"name":"Polymer Composites","volume":"42 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of shear rate on orientation of cellulosic nanofibers and nanocrystals in poly(butylene adipate‐co‐terephthalate) based composites 剪切率对聚对苯二甲酸丁二醇酯基复合材料中纤维素纳米纤维和纳米晶体取向的影响
IF 5.2 2区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-09-11 DOI: 10.1002/pc.29023
Mariam Keskes, Melinda Desse, Christian Carrot, Mohamed Jaziri
Poly(butylene adipate‐co‐terephthalate) with or without thermoplastic starch is often used as a biodegradable matrix in composites reinforced with 5 and 10 wt% of either microfibrillated cellulose or cellulose nanocrystals. If dispersion of the fillers is well studied, their orientation in melt blended composites requires further understanding. In this study, the effect of a controlled shear rate on the orientation of the filler was investigated to understand how shear rate affects orientation and how orientation affects mechanical properties of the composites. To this end, composites prepared by melt mixing and then compressed were taken as a reference state of low orientation. On the contrary, to orient the fillers, extrusion through a slit die with a determined shear rate was carried out. Results of tensile tests, microscopic observations, atomic force microscopy and dynamic mechanical analysis in the melt showed that orientation of fillers in the flow axis was possible for shear rates higher than 13 s−1. The orientated samples presented enhanced mechanical properties in the elastic domain as opposed to unoriented samples. In general, orientation of fillers leads to uniaxial stiffness at lower filler content with much better ductility. However, this was observed only on samples for which the percolation of the filler was not obtained in the unoriented state, otherwise, orientation proved to be detrimental to the elastic mechanical properties because of the rupture in the formed network.Highlights Orientation can be controlled during processing. Sufficient shear rate is required. Orientation improves mechanical properties. Orientation might have a negative effect on rigidity in case of existing network.
含有或不含热塑性淀粉的聚(己二酸丁二醇酯-对苯二甲酸丁二酯)通常用作复合材料中的可生物降解基体,并以 5 和 10 wt% 的微纤维素或纤维素纳米晶体作为增强材料。如果说填料的分散性已经得到了很好的研究,那么它们在熔融混合复合材料中的取向还需要进一步了解。在本研究中,研究了受控剪切速率对填料取向的影响,以了解剪切速率如何影响取向以及取向如何影响复合材料的机械性能。为此,将通过熔融混合然后压缩制备的复合材料作为低取向参考状态。相反,为了使填料取向,通过狭缝模具以确定的剪切速率进行挤压。熔体中的拉伸试验、显微观察、原子力显微镜和动态机械分析结果表明,当剪切速率高于 13 s-1 时,填料在流动轴上的取向是可能的。与未取向的样品相比,取向样品在弹性域的机械性能有所提高。一般来说,填料取向会在较低的填料含量下产生单轴刚度,同时具有更好的延展性。然而,只有在无取向状态下填料没有渗入的样品上才能观察到这一点,否则,取向会因形成的网络断裂而不利于弹性机械性能。需要足够的剪切速率。定向可改善机械性能。在现有网络中,定向可能会对刚性产生负面影响。
{"title":"Effect of shear rate on orientation of cellulosic nanofibers and nanocrystals in poly(butylene adipate‐co‐terephthalate) based composites","authors":"Mariam Keskes, Melinda Desse, Christian Carrot, Mohamed Jaziri","doi":"10.1002/pc.29023","DOIUrl":"https://doi.org/10.1002/pc.29023","url":null,"abstract":"<jats:label/>Poly(butylene adipate‐<jats:italic>co</jats:italic>‐terephthalate) with or without thermoplastic starch is often used as a biodegradable matrix in composites reinforced with 5 and 10 wt% of either microfibrillated cellulose or cellulose nanocrystals. If dispersion of the fillers is well studied, their orientation in melt blended composites requires further understanding. In this study, the effect of a controlled shear rate on the orientation of the filler was investigated to understand how shear rate affects orientation and how orientation affects mechanical properties of the composites. To this end, composites prepared by melt mixing and then compressed were taken as a reference state of low orientation. On the contrary, to orient the fillers, extrusion through a slit die with a determined shear rate was carried out. Results of tensile tests, microscopic observations, atomic force microscopy and dynamic mechanical analysis in the melt showed that orientation of fillers in the flow axis was possible for shear rates higher than 13 s<jats:sup>−1</jats:sup>. The orientated samples presented enhanced mechanical properties in the elastic domain as opposed to unoriented samples. In general, orientation of fillers leads to uniaxial stiffness at lower filler content with much better ductility. However, this was observed only on samples for which the percolation of the filler was not obtained in the unoriented state, otherwise, orientation proved to be detrimental to the elastic mechanical properties because of the rupture in the formed network.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Orientation can be controlled during processing.</jats:list-item> <jats:list-item>Sufficient shear rate is required.</jats:list-item> <jats:list-item>Orientation improves mechanical properties.</jats:list-item> <jats:list-item>Orientation might have a negative effect on rigidity in case of existing network.</jats:list-item> </jats:list>","PeriodicalId":20375,"journal":{"name":"Polymer Composites","volume":"96 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two‐stage annealing method for short carbon fiber‐reinforced nylon 6 in fused filament fabrication 熔融长丝制造中短碳纤维增强尼龙 6 的两阶段退火法
IF 5.2 2区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-09-10 DOI: 10.1002/pc.29012
Bin Liu, Bo Xin, Wenfu Zhu, Bo Zhang, Yijian Pang
The mechanical properties of short carbon fiber‐reinforced nylon 6 (CF‐PA6) components formed by fused filament fabrication (FFF) are significantly affected by the process parameters of additive manufacturing and heat treatment. In this study, the effects of printing speed, carbon fiber aspect ratio, and annealing temperature on fiber orientation were investigated by observation of single‐layer‐single‐fiber samples. Furthermore, a two‐stage annealing process was proposed to increase the tensile modulus of CF‐PA6 based on the correlation analysis results between the degree of fiber alignment and the variation of tensile modulus. According to the calculation of the Pearson correlation coefficient, the tensile modulus was highly correlated with the degree of fiber alignment under different printing speeds and fiber aspect ratios. The variation in tensile modulus and fiber orientation was also consistent when the annealing temperature was lower than the crystallization temperature. Conversely, the variation of tensile modulus and fiber orientation were opposite, as the annealing temperature was higher than the crystallization temperature because of the influence of crystallinity. Through increasing the degree of fiber alignment and crystallinity of the parts, the proposed two‐stage annealing method could increase the tensile modulus of the parts to 9.0 GPa, which was 16.81% higher than that of single‐temperature annealing.Highlights The effects of annealing temperature, carbon fiber aspect ratio and printing speed on fiber orientation were illustrated. The relationship between the degree of fiber alignment and the variation of tensile modulus was established. The proposed two‐stage annealing method, considering fiber orientation and crystallinity, significantly increased the tensile modulus of CF270‐PA6 parts from 7.7 to 9.0 GPa. The quantitative analysis of the fiber orientation is realized by the statistical analysis of the plane fiber orientation angle of the single‐layer‐single‐fiber sample.
通过熔融长丝制造(FFF)形成的碳纤维增强尼龙 6(CF-PA6)短部件的力学性能受到增材制造和热处理工艺参数的显著影响。本研究通过观察单层单纤维样品,研究了打印速度、碳纤维长径比和退火温度对纤维取向的影响。此外,根据纤维排列程度与拉伸模量变化之间的相关性分析结果,提出了一种两阶段退火工艺来提高 CF-PA6 的拉伸模量。根据皮尔逊相关系数的计算,在不同的印刷速度和纤维长径比条件下,拉伸模量与纤维排列程度高度相关。当退火温度低于结晶温度时,拉伸模量和纤维排列的变化也是一致的。相反,由于结晶度的影响,当退火温度高于结晶温度时,拉伸模量和纤维取向的变化则相反。通过提高部件的纤维排列度和结晶度,所提出的两阶段退火方法可将部件的拉伸模量提高到 9.0 GPa,比单温退火法提高了 16.81%。建立了纤维排列程度与拉伸模量变化之间的关系。考虑到纤维取向和结晶度,所提出的两阶段退火方法显著提高了 CF270-PA6 零件的拉伸模量,从 7.7 GPa 提高到 9.0 GPa。通过对单层单纤维样品平面纤维取向角的统计分析,实现了对纤维取向的定量分析。
{"title":"Two‐stage annealing method for short carbon fiber‐reinforced nylon 6 in fused filament fabrication","authors":"Bin Liu, Bo Xin, Wenfu Zhu, Bo Zhang, Yijian Pang","doi":"10.1002/pc.29012","DOIUrl":"https://doi.org/10.1002/pc.29012","url":null,"abstract":"<jats:label/>The mechanical properties of short carbon fiber‐reinforced nylon 6 (CF‐PA6) components formed by fused filament fabrication (FFF) are significantly affected by the process parameters of additive manufacturing and heat treatment. In this study, the effects of printing speed, carbon fiber aspect ratio, and annealing temperature on fiber orientation were investigated by observation of single‐layer‐single‐fiber samples. Furthermore, a two‐stage annealing process was proposed to increase the tensile modulus of CF‐PA6 based on the correlation analysis results between the degree of fiber alignment and the variation of tensile modulus. According to the calculation of the Pearson correlation coefficient, the tensile modulus was highly correlated with the degree of fiber alignment under different printing speeds and fiber aspect ratios. The variation in tensile modulus and fiber orientation was also consistent when the annealing temperature was lower than the crystallization temperature. Conversely, the variation of tensile modulus and fiber orientation were opposite, as the annealing temperature was higher than the crystallization temperature because of the influence of crystallinity. Through increasing the degree of fiber alignment and crystallinity of the parts, the proposed two‐stage annealing method could increase the tensile modulus of the parts to 9.0 GPa, which was 16.81% higher than that of single‐temperature annealing.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>The effects of annealing temperature, carbon fiber aspect ratio and printing speed on fiber orientation were illustrated.</jats:list-item> <jats:list-item>The relationship between the degree of fiber alignment and the variation of tensile modulus was established.</jats:list-item> <jats:list-item>The proposed two‐stage annealing method, considering fiber orientation and crystallinity, significantly increased the tensile modulus of CF270‐PA6 parts from 7.7 to 9.0 GPa.</jats:list-item> <jats:list-item>The quantitative analysis of the fiber orientation is realized by the statistical analysis of the plane fiber orientation angle of the single‐layer‐single‐fiber sample.</jats:list-item> </jats:list>","PeriodicalId":20375,"journal":{"name":"Polymer Composites","volume":"59 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on defect identification of carbon fiber composite materials based on ultrasonic phased array 基于超声相控阵的碳纤维复合材料缺陷识别研究
IF 5.2 2区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-09-10 DOI: 10.1002/pc.29033
Ziang Jing, Gaoshen Cai, Xiang Yu, Bingxu Wang
It is more and more difficult to identify defects in carbon fiber composite materials due to the difficulty in making defect samples and the single signal analysis method. In order to better solve the problem of defect identification in carbon fiber composite materials, this study uses ultrasonic phased array equipment to quantitatively locate and detect carbon fiber composite laminates with embedded delamination defects, so as to more intuitively and effectively display the appearance of different delamination defects. The time domain analysis of the collected ultrasonic original signal and the time‐frequency domain analysis using wavelet packet are carried out. A total of 6 eigenvalues were extracted to reflect the ultrasonic signals of different delamination defects. By using genetic algorithm to optimize BP neural network, the recognition accuracy of delamination defects of different sizes is more than 95%, and the recognition accuracy of delamination defects of different depths is 100%, so as to realize the effective intelligent recognition of delamination defects of different sizes and depths of carbon fiber composites. This study is of great significance to improve the accuracy and reliability of defect identification of carbon fiber composite materials.Highlights The ultrasonic phased array equipment is used to quantitatively locate the carbon fiber composite laminates with embedded delamination defects, so that the appearance of different defects can be displayed more intuitively and effectively. Using time domain analysis and time‐frequency domain analysis based on wavelet packet, the combination of the two can more comprehensively extract the effective features of the defect signal. The BP neural network is optimized by genetic algorithm, and the results can effectively and automatically identify different layered defects, which lays a good foundation for the rapid and accurate identification of more defects in the future.
由于碳纤维复合材料缺陷取样困难、信号分析方法单一等原因,碳纤维复合材料的缺陷识别越来越困难。为了更好地解决碳纤维复合材料的缺陷识别问题,本研究利用超声相控阵设备对嵌入分层缺陷的碳纤维复合材料层压板进行定量定位和检测,从而更直观有效地显示不同分层缺陷的外观。对采集到的超声波原始信号进行时域分析,并利用小波包进行时频域分析。共提取了 6 个特征值来反映不同分层缺陷的超声波信号。通过遗传算法优化 BP 神经网络,不同尺寸分层缺陷的识别准确率达到 95% 以上,不同深度分层缺陷的识别准确率达到 100%,从而实现了对碳纤维复合材料不同尺寸和深度分层缺陷的有效智能识别。该研究对提高碳纤维复合材料缺陷识别的准确性和可靠性具有重要意义。 亮点 利用超声相控阵设备对嵌入分层缺陷的碳纤维复合材料层压板进行定量定位,从而更直观有效地显示不同缺陷的外观。利用时域分析和基于小波包的时频域分析,二者结合能更全面地提取缺陷信号的有效特征。通过遗传算法对 BP 神经网络进行优化,结果可以有效自动识别不同层次的缺陷,为今后快速准确地识别更多缺陷奠定了良好的基础。
{"title":"Research on defect identification of carbon fiber composite materials based on ultrasonic phased array","authors":"Ziang Jing, Gaoshen Cai, Xiang Yu, Bingxu Wang","doi":"10.1002/pc.29033","DOIUrl":"https://doi.org/10.1002/pc.29033","url":null,"abstract":"<jats:label/>It is more and more difficult to identify defects in carbon fiber composite materials due to the difficulty in making defect samples and the single signal analysis method. In order to better solve the problem of defect identification in carbon fiber composite materials, this study uses ultrasonic phased array equipment to quantitatively locate and detect carbon fiber composite laminates with embedded delamination defects, so as to more intuitively and effectively display the appearance of different delamination defects. The time domain analysis of the collected ultrasonic original signal and the time‐frequency domain analysis using wavelet packet are carried out. A total of 6 eigenvalues were extracted to reflect the ultrasonic signals of different delamination defects. By using genetic algorithm to optimize BP neural network, the recognition accuracy of delamination defects of different sizes is more than 95%, and the recognition accuracy of delamination defects of different depths is 100%, so as to realize the effective intelligent recognition of delamination defects of different sizes and depths of carbon fiber composites. This study is of great significance to improve the accuracy and reliability of defect identification of carbon fiber composite materials.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>The ultrasonic phased array equipment is used to quantitatively locate the carbon fiber composite laminates with embedded delamination defects, so that the appearance of different defects can be displayed more intuitively and effectively.</jats:list-item> <jats:list-item>Using time domain analysis and time‐frequency domain analysis based on wavelet packet, the combination of the two can more comprehensively extract the effective features of the defect signal.</jats:list-item> <jats:list-item>The BP neural network is optimized by genetic algorithm, and the results can effectively and automatically identify different layered defects, which lays a good foundation for the rapid and accurate identification of more defects in the future.</jats:list-item> </jats:list>","PeriodicalId":20375,"journal":{"name":"Polymer Composites","volume":"5 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epoxy‐POSS toughened phenol‐formaldehyde resin adhesive and its enhancement on the interfacial bonding strength of bamboo based composite 环氧-POSS 增韧酚醛树脂粘合剂及其对竹基复合材料界面粘合强度的增强作用
IF 5.2 2区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-09-10 DOI: 10.1002/pc.29031
Xiaoxiao Ji, Jinhui Wang, Zhiming Wang, Bowei Mao, Yizhong Cao, Yanjun Xie, Yutao Yan
Bamboo‐based composite, being an eco‐friendly green material, has garnered widespread utilization across diverse sectors including construction and domestic appliances owing to its impressive strength, innate aesthetic appeal, and wear resistance. However, it tends to crack at bonding interface between bamboo and the brittle resin adhesive due to stress concentration, reducing its mechanical properties and lifespan. To address this issue, the epoxy‐based polyhedral oligomeric silsesquioxane (POSS) was incorporated to modify the phenol‐formaldehyde (PF) resin and improve the interfacial bonding strength. And the results showed that the incorporation of 5% epoxy‐POSS could markedly increase the impact and flexural strength of the modified PF resin by 75.7% and 27.6%, respectively, in contrast to the original PF resin. Moreover, the dry and wet shear strength of bamboo‐PF composites bonded by the POSS modified PF resin adhesive was also apparently improved by 17.03% and 28.55%, respectively. The increased toughness and bonding strength were mainly attributed to the nano‐effect of POSS and good compatibility and cross‐linking reaction with the PF resin, which helped dissipate energy and avoid stress concentration within the PF resin and at the bonding interface. This study aims to address the cracking problem of bamboo‐based composites and extend their longevity in architectural and domestic applications.Highlights Epoxy‐POSS disperse well in PF resin due to its unique multi‐epoxy structure. Epoxy‐POSS can react with PF resin and effectively improve its toughness. Nano‐effect and cross‐linking effect enable dissipate energy and disperses stress. Modification increased bonding strength and decreased interfacial cracking.
竹基复合材料是一种生态友好型绿色材料,因其令人印象深刻的强度、与生俱来的美感和耐磨性,已在建筑和家用电器等多个领域得到广泛应用。然而,由于应力集中,竹材与脆性树脂粘合剂之间的粘合界面容易开裂,从而降低了其机械性能和使用寿命。针对这一问题,研究人员加入了环氧基多面体低聚硅倍半氧烷(POSS)来改性苯酚-甲醛(PF)树脂,以提高界面粘接强度。结果表明,与原始 PF 树脂相比,掺入 5% 的环氧-POSS 可使改性 PF 树脂的冲击强度和抗折强度分别显著提高 75.7% 和 27.6%。此外,用 POSS 改性 PF 树脂粘合剂粘合的竹-PF 复合材料的干湿剪切强度也分别明显提高了 17.03% 和 28.55%。韧性和粘接强度的提高主要归功于POSS的纳米效应以及与PF树脂良好的相容性和交联反应,这有助于消散能量,避免PF树脂内部和粘接界面的应力集中。本研究旨在解决竹基复合材料的开裂问题,并延长其在建筑和家居应用中的使用寿命。环氧-POSS 可与 PF 树脂发生反应,有效提高其韧性。纳米效应和交联效应可分散能量和应力。改性可提高粘接强度,减少界面开裂。
{"title":"Epoxy‐POSS toughened phenol‐formaldehyde resin adhesive and its enhancement on the interfacial bonding strength of bamboo based composite","authors":"Xiaoxiao Ji, Jinhui Wang, Zhiming Wang, Bowei Mao, Yizhong Cao, Yanjun Xie, Yutao Yan","doi":"10.1002/pc.29031","DOIUrl":"https://doi.org/10.1002/pc.29031","url":null,"abstract":"<jats:label/>Bamboo‐based composite, being an eco‐friendly green material, has garnered widespread utilization across diverse sectors including construction and domestic appliances owing to its impressive strength, innate aesthetic appeal, and wear resistance. However, it tends to crack at bonding interface between bamboo and the brittle resin adhesive due to stress concentration, reducing its mechanical properties and lifespan. To address this issue, the epoxy‐based polyhedral oligomeric silsesquioxane (POSS) was incorporated to modify the phenol‐formaldehyde (PF) resin and improve the interfacial bonding strength. And the results showed that the incorporation of 5% epoxy‐POSS could markedly increase the impact and flexural strength of the modified PF resin by 75.7% and 27.6%, respectively, in contrast to the original PF resin. Moreover, the dry and wet shear strength of bamboo‐PF composites bonded by the POSS modified PF resin adhesive was also apparently improved by 17.03% and 28.55%, respectively. The increased toughness and bonding strength were mainly attributed to the nano‐effect of POSS and good compatibility and cross‐linking reaction with the PF resin, which helped dissipate energy and avoid stress concentration within the PF resin and at the bonding interface. This study aims to address the cracking problem of bamboo‐based composites and extend their longevity in architectural and domestic applications.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Epoxy‐POSS disperse well in PF resin due to its unique multi‐epoxy structure.</jats:list-item> <jats:list-item>Epoxy‐POSS can react with PF resin and effectively improve its toughness.</jats:list-item> <jats:list-item>Nano‐effect and cross‐linking effect enable dissipate energy and disperses stress.</jats:list-item> <jats:list-item>Modification increased bonding strength and decreased interfacial cracking.</jats:list-item> </jats:list>","PeriodicalId":20375,"journal":{"name":"Polymer Composites","volume":"118 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tribological properties of perfluoropolymer fiber filled carbon fiber/polyphenylene sulfide composites: Effect of in‐situ fibrillated fiber or split fiber 全氟聚合物纤维填充碳纤维/聚苯硫醚复合材料的摩擦学特性:原位纤化纤维或分裂纤维的影响
IF 5.2 2区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-09-10 DOI: 10.1002/pc.29016
Xiaotao Qiu, Bin Luo, Aiqun Gu, Wenjian Tang, Meiju Xie, Siqi Tang, Zili Yu
In this study, carbon fiber (CF) filled polyphenylene sulfide (PPS) composites are lubricated with perfluoropolymer (PFP) fiber by melt‐blending. The effect of double fibers (CF‐PFP fibers) on the tribological properties of PPS composites has been carefully investigated and correlated under various sliding conditions. The results indicated that the tribological performance of PPS composites with double fibers is better than that of the composites with a single fiber, especially under severe conditions. Mechanism exploration suggests that a double‐fiber hybrid structure between a hard CF and a soft PFP fiber could tightly entrap the CF by fibril entanglement, thus preventing the CF from being stripped out of the matrix under the steel ring shearing force. Under optimized conditions, the average friction coefficient of composites with PFP fiber is only about 0.1 at 300 N load under 200 rpm, even lower than half of the average friction coefficient of the composites with PTFE powder under the same condition. Notably, compared to commercial split PFP fibers, the in‐situ formed PFP fibers with more uniform distribution significantly improve the tribological properties. This work open up a novel perspective for improving the tribological performance of composites by systematically regulating the microstructure of self‐lubricating fibrous additives.Highlights PFA is subject to in‐situ fibrillation during melt blending. Fibrous PFP effectively improves the tribological properties of PPS/CF composites. The in‐situ formed PFP fiber contributes to better tribological properties. The double‐fiber hybrid structure prevents the CF from being sheared out. The number of processing cycles affects the tribological properties.
在这项研究中,碳纤维(CF)填充聚苯硫醚(PPS)复合材料与全氟聚合物(PFP)纤维通过熔融共混润滑。在各种滑动条件下,仔细研究了双纤维(CF-PFP 纤维)对 PPS 复合材料摩擦学性能的影响并进行了相关分析。结果表明,双纤维 PPS 复合材料的摩擦学性能优于单纤维复合材料,尤其是在苛刻条件下。机理探索表明,硬质 CF 和软质 PFP 纤维之间的双纤维混合结构可以通过纤维缠结紧紧夹住 CF,从而防止 CF 在钢环剪切力作用下从基体中剥离。在优化条件下,含有 PFP 纤维的复合材料在 200 转/分、300 N 载荷下的平均摩擦系数仅为 0.1 左右,甚至低于相同条件下含有 PTFE 粉末的复合材料平均摩擦系数的一半。值得注意的是,与商用分体式聚四氟乙烯纤维相比,原位成型的聚四氟乙烯纤维分布更均匀,能显著改善摩擦学性能。这项工作为通过系统调节自润滑纤维添加剂的微观结构来改善复合材料的摩擦学性能开辟了一个新的视角。纤维状 PFP 可有效改善 PPS/CF 复合材料的摩擦学性能。原位形成的 PFP 纤维有助于提高摩擦学性能。双纤维混合结构可防止 CF 被剪切掉。加工循环次数会影响摩擦学性能。
{"title":"Tribological properties of perfluoropolymer fiber filled carbon fiber/polyphenylene sulfide composites: Effect of in‐situ fibrillated fiber or split fiber","authors":"Xiaotao Qiu, Bin Luo, Aiqun Gu, Wenjian Tang, Meiju Xie, Siqi Tang, Zili Yu","doi":"10.1002/pc.29016","DOIUrl":"https://doi.org/10.1002/pc.29016","url":null,"abstract":"<jats:label/>In this study, carbon fiber (CF) filled polyphenylene sulfide (PPS) composites are lubricated with perfluoropolymer (PFP) fiber by melt‐blending. The effect of double fibers (CF‐PFP fibers) on the tribological properties of PPS composites has been carefully investigated and correlated under various sliding conditions. The results indicated that the tribological performance of PPS composites with double fibers is better than that of the composites with a single fiber, especially under severe conditions. Mechanism exploration suggests that a double‐fiber hybrid structure between a hard CF and a soft PFP fiber could tightly entrap the CF by fibril entanglement, thus preventing the CF from being stripped out of the matrix under the steel ring shearing force. Under optimized conditions, the average friction coefficient of composites with PFP fiber is only about 0.1 at 300 N load under 200 rpm, even lower than half of the average friction coefficient of the composites with PTFE powder under the same condition. Notably, compared to commercial split PFP fibers, the in‐situ formed PFP fibers with more uniform distribution significantly improve the tribological properties. This work open up a novel perspective for improving the tribological performance of composites by systematically regulating the microstructure of self‐lubricating fibrous additives.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>PFA is subject to in‐situ fibrillation during melt blending.</jats:list-item> <jats:list-item>Fibrous PFP effectively improves the tribological properties of PPS/CF composites.</jats:list-item> <jats:list-item>The in‐situ formed PFP fiber contributes to better tribological properties.</jats:list-item> <jats:list-item>The double‐fiber hybrid structure prevents the CF from being sheared out.</jats:list-item> <jats:list-item>The number of processing cycles affects the tribological properties.</jats:list-item> </jats:list>","PeriodicalId":20375,"journal":{"name":"Polymer Composites","volume":"274 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of the distribution angle of graphene oxide on the mechanical properties and non‐reciprocity of composites 氧化石墨烯分布角对复合材料机械性能和非折回性的影响
IF 5.2 2区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-09-10 DOI: 10.1002/pc.29011
Zhangwei Xia, Zhangxin Guo, Qi Chen, Weijing Niu, Jianguo Liang, Gin Boay Chai, Wenyun Wu
This study used molecular dynamics simulations to investigate the effects of the distribution angle of graphene oxide (GO) on the mechanical properties and non‐reciprocity of composite materials. The results of uniaxial tensile tests indicated that the mechanical properties of the composites are optimal when the distribution angles of GO are at 30° and 45°. The 30° model has an elastic modulus of 5.79 MPa, which is higher compared to the other models. The 80° model, however, has much lower mechanical properties, with a modulus of 1.42 MPa lower than the 30° model. Similarly, the 50° model also exhibits poorer mechanical properties with an elastic modulus of 4.42 MPa. Additionally, the 50° model is 24% lower than the 45° model. Through simulations of shearing in different directions and with different strain rates, it was found that the sensitivity of different GO distribution angles to strain rates varies. When the distribution angle is at 45°, the mechanical non‐reciprocity of the composite material is more pronounced.Highlights Explored the mechanical properties of GO/PA66 composites at the molecular level. Revealed the microscopic mechanism of interaction between GO and PA66. The effect of GO distribution angle on uniaxial tensile properties was studied. Studied the mechanism of the effect of GO distribution angle on non‐reciprocity.
本研究利用分子动力学模拟研究了氧化石墨烯(GO)的分布角度对复合材料机械性能和非折回性的影响。单轴拉伸试验结果表明,当 GO 的分布角度为 30° 和 45° 时,复合材料的力学性能最佳。30° 模型的弹性模量为 5.79 兆帕,高于其他模型。然而,80° 模型的机械性能要低得多,模量比 30° 模型低 1.42 兆帕。同样,50° 模型的机械性能也较差,弹性模量为 4.42 兆帕。此外,50° 模型比 45° 模型低 24%。通过模拟不同方向和不同应变速率的剪切,发现不同的 GO 分布角对应变速率的敏感性各不相同。亮点 从分子水平探讨了 GO/PA66 复合材料的力学性能。揭示了 GO 与 PA66 之间相互作用的微观机理。研究了 GO 分布角对单轴拉伸性能的影响。研究了 GO 分布角对非折回性的影响机制。
{"title":"The influence of the distribution angle of graphene oxide on the mechanical properties and non‐reciprocity of composites","authors":"Zhangwei Xia, Zhangxin Guo, Qi Chen, Weijing Niu, Jianguo Liang, Gin Boay Chai, Wenyun Wu","doi":"10.1002/pc.29011","DOIUrl":"https://doi.org/10.1002/pc.29011","url":null,"abstract":"<jats:label/>This study used molecular dynamics simulations to investigate the effects of the distribution angle of graphene oxide (GO) on the mechanical properties and non‐reciprocity of composite materials. The results of uniaxial tensile tests indicated that the mechanical properties of the composites are optimal when the distribution angles of GO are at 30° and 45°. The 30° model has an elastic modulus of 5.79 MPa, which is higher compared to the other models. The 80° model, however, has much lower mechanical properties, with a modulus of 1.42 MPa lower than the 30° model. Similarly, the 50° model also exhibits poorer mechanical properties with an elastic modulus of 4.42 MPa. Additionally, the 50° model is 24% lower than the 45° model. Through simulations of shearing in different directions and with different strain rates, it was found that the sensitivity of different GO distribution angles to strain rates varies. When the distribution angle is at 45°, the mechanical non‐reciprocity of the composite material is more pronounced.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Explored the mechanical properties of GO/PA66 composites at the molecular level.</jats:list-item> <jats:list-item>Revealed the microscopic mechanism of interaction between GO and PA66.</jats:list-item> <jats:list-item>The effect of GO distribution angle on uniaxial tensile properties was studied.</jats:list-item> <jats:list-item>Studied the mechanism of the effect of GO distribution angle on non‐reciprocity.</jats:list-item> </jats:list>","PeriodicalId":20375,"journal":{"name":"Polymer Composites","volume":"118 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effects of 1D multi‐wall carbon nanotubes and 2D graphene nanoplatelets on curing behavior of epoxy/vinyl ester interpenetrating polymer network nanocomposites 一维多壁碳纳米管和二维石墨烯纳米片对环氧树脂/乙烯基酯互穿聚合物网络纳米复合材料固化行为的影响
IF 5.2 2区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Pub Date : 2024-09-10 DOI: 10.1002/pc.28970
Afrooz Molaei, Ali Jannesari
This study meticulously investigated the effect of two carbon allotrope nanofillers, two‐dimensional graphene nanoplatelets (GnPs) and one‐dimensional multi‐wall carbon nanotubes (MWCNTs) individually, at various loadings on the kinetics of curing of the epoxy (EP)/vinyl ester (VE) based interpenetrating polymer network (IPN) system, with a mass ratio of 1:1. The IPN system is including a liquid epoxy resin based on bisphenol A which has been cured by methyltetrahydrophthalic anhydride (MTHPA) in the presence of 1‐methyl imidazole (Mi) as an accelerator and a vinyl ester resin based on bisphenol A which has been cured by methyl ethyl ketone peroxide (MEKP). The curing behavior of all prepared nanocomposites under non‐isothermal conditions was studied using DSC at four heating rates. Two different isoconversional approaches were applied to evaluate the reaction kinetics, that is, the Friedman and the advanced Vyazovkin methods. The obtained activation energy curves for all samples revealed a complex curing behavior involving three stages: early IPN stage, IPN growth stage, and late IPN stage. Then, the activation energy values for each reaction step were determined based on the Friedman method. The presence of GnPs showed no catalytic effect on the reaction of VE with MEKP. In contrast, incorporating MWCNT nanoparticles considerably decreases the activation energy values of the reaction of ring opening of epoxides with MTHPA‐Mi and the reaction of esterification of the hydroxyl groups of VE with MTHPA.Highlights MWCNTs reduce activation energy in curing reactions for EP/MTHPA‐Mi and VE/MTHPA. GnPs do not catalyze VE/MEKP reaction unlike MWCNTs. Combining MWCNTs and GnPs enhances properties of IPN nanocomposites. Curing process includes early, growth, and late IPN stages impacting activation energy. SEM analysis reveals better dispersion of GnPs in IPN nanocomposites with MWCNTs.
本研究细致地研究了二维石墨烯纳米片(GnPs)和一维多壁碳纳米管(MWCNTs)这两种碳同位素纳米填料在不同负载量下对质量比为 1:1 的环氧树脂(EP)/乙烯基酯(VE)互穿聚合物网络(IPN)体系固化动力学的影响。IPN 体系包括以双酚 A 为基础的液态环氧树脂和以双酚 A 为基础的乙烯基酯树脂,前者已在 1-甲基咪唑(Mi)作为促进剂的存在下通过甲基四氢邻苯二甲酸酐(MTHPA)固化,后者已通过过氧化甲乙酮(MEKP)固化。使用 DSC 在四种加热速率下研究了所有制备的纳米复合材料在非等温条件下的固化行为。在评估反应动力学时采用了两种不同的等转化方法,即弗里德曼法和先进的维亚佐夫金法。所有样品的活化能曲线都显示出复杂的固化行为,包括三个阶段:早期 IPN 阶段、IPN 生长阶段和晚期 IPN 阶段。然后,根据弗里德曼方法确定了每个反应步骤的活化能值。GnPs 的存在对 VE 与 MEKP 的反应没有催化作用。相反,加入 MWCNT 纳米颗粒后,环氧化物与 MTHPA-Mi 的开环反应以及 VE 的羟基与 MTHPA 的酯化反应的活化能值大大降低。与 MWCNT 不同,GnPs 不会催化 VE/MEKP 反应。结合使用 MWCNTs 和 GnPs 可增强 IPN 纳米复合材料的性能。固化过程包括影响活化能的 IPN 早期、生长期和后期阶段。SEM 分析表明,GnPs 在含有 MWCNTs 的 IPN 纳米复合材料中的分散性更好。
{"title":"The effects of 1D multi‐wall carbon nanotubes and 2D graphene nanoplatelets on curing behavior of epoxy/vinyl ester interpenetrating polymer network nanocomposites","authors":"Afrooz Molaei, Ali Jannesari","doi":"10.1002/pc.28970","DOIUrl":"https://doi.org/10.1002/pc.28970","url":null,"abstract":"<jats:label/>This study meticulously investigated the effect of two carbon allotrope nanofillers, two‐dimensional graphene nanoplatelets (GnPs) and one‐dimensional multi‐wall carbon nanotubes (MWCNTs) individually, at various loadings on the kinetics of curing of the epoxy (EP)/vinyl ester (VE) based interpenetrating polymer network (IPN) system, with a mass ratio of 1:1. The IPN system is including a liquid epoxy resin based on bisphenol A which has been cured by methyltetrahydrophthalic anhydride (MTHPA) in the presence of 1‐methyl imidazole (Mi) as an accelerator and a vinyl ester resin based on bisphenol A which has been cured by methyl ethyl ketone peroxide (MEKP). The curing behavior of all prepared nanocomposites under non‐isothermal conditions was studied using DSC at four heating rates. Two different isoconversional approaches were applied to evaluate the reaction kinetics, that is, the Friedman and the advanced Vyazovkin methods. The obtained activation energy curves for all samples revealed a complex curing behavior involving three stages: early IPN stage, IPN growth stage, and late IPN stage. Then, the activation energy values for each reaction step were determined based on the Friedman method. The presence of GnPs showed no catalytic effect on the reaction of VE with MEKP. In contrast, incorporating MWCNT nanoparticles considerably decreases the activation energy values of the reaction of ring opening of epoxides with MTHPA‐Mi and the reaction of esterification of the hydroxyl groups of VE with MTHPA.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>MWCNTs reduce activation energy in curing reactions for EP/MTHPA‐Mi and VE/MTHPA.</jats:list-item> <jats:list-item>GnPs do not catalyze VE/MEKP reaction unlike MWCNTs.</jats:list-item> <jats:list-item>Combining MWCNTs and GnPs enhances properties of IPN nanocomposites.</jats:list-item> <jats:list-item>Curing process includes early, growth, and late IPN stages impacting activation energy.</jats:list-item> <jats:list-item>SEM analysis reveals better dispersion of GnPs in IPN nanocomposites with MWCNTs.</jats:list-item> </jats:list>","PeriodicalId":20375,"journal":{"name":"Polymer Composites","volume":"124 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Polymer Composites
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1