Although the performance of quantum dot light-emitting diodes (QLEDs) has been greatly improved in recent years, the multilayer device structure has become increasingly complex, limiting the practical application of QLEDs. Here, a novel trilayer PIN QLED with only three functional layers, which are Spiro-OMeTAD:TFB bulk-heterojunction (BHJ) hole transport layer (HTL), quantum-dot emitting layer and ZnMgO electron transport layer is demonstrated. Due to the enhanced hole injection capability and suppressed electron leakage of Spiro-OMeTAD:TFB BHJ HTL, the trilayer PIN QLED can show an excellent external quantum efficiency (EQE) of 25.1% and an impressive brightness of 299300 cd m−2 at only 8 V, which are significantly higher than those of conventional QLED. Moreover, the device stability is also remarkably improved due to the mitigation of hole accumulation and removal of unstable PEDOT:PSS. By using liquid alloy EGaIn as cathode, a fully solution-processed vacuum-free trilayer PIN QLED with a higher EQE of 27.3% can be further realized. The developed trilayer PIN QLEDs, with better performance and fewer functional layers, can promote the commercialization of QLED technology.
{"title":"Efficient and Stable Quantum-Dot Light-Emitting Diodes with Trilayer PIN Architecture","authors":"Zhe Wang, Dawei Yang, Bingsuo Zou, Shuming Chen, Heng Zhang","doi":"10.1002/lpor.202401343","DOIUrl":"https://doi.org/10.1002/lpor.202401343","url":null,"abstract":"Although the performance of quantum dot light-emitting diodes (QLEDs) has been greatly improved in recent years, the multilayer device structure has become increasingly complex, limiting the practical application of QLEDs. Here, a novel trilayer PIN QLED with only three functional layers, which are Spiro-OMeTAD:TFB bulk-heterojunction (BHJ) hole transport layer (HTL), quantum-dot emitting layer and ZnMgO electron transport layer is demonstrated. Due to the enhanced hole injection capability and suppressed electron leakage of Spiro-OMeTAD:TFB BHJ HTL, the trilayer PIN QLED can show an excellent external quantum efficiency (EQE) of 25.1% and an impressive brightness of 299300 cd m<sup>−2</sup> at only 8 V, which are significantly higher than those of conventional QLED. Moreover, the device stability is also remarkably improved due to the mitigation of hole accumulation and removal of unstable PEDOT:PSS. By using liquid alloy EGaIn as cathode, a fully solution-processed vacuum-free trilayer PIN QLED with a higher EQE of 27.3% can be further realized. The developed trilayer PIN QLEDs, with better performance and fewer functional layers, can promote the commercialization of QLED technology.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"5 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanhao Lang, Quan Xu, Guanghong Xu, Xueqian Zhang, Quan Li, Jiaguang Han
On-chip wavefront manipulation of terahertz surface plasmons is crucial for the miniaturization and practical application of terahertz technology. Recently, topological metasurfaces have emerged as a promising avenue for spin-decoupled wavefront manipulation, leveraging the unique topological properties of non-Hermitian matrices near their singular points. Despite their innovative phase control mechanisms, topological metasurfaces have not yet been explored for surface plasmon devices. Here, spin-decoupled wavefront manipulation of terahertz surface plasmons is experimentally achieved using freestanding topological metasurfaces. This approach promises to expand the control methods of surface plasmons and broaden the application scenarios of topological metasurfaces, providing a new paradigm for the design of integrated on-chip terahertz devices.
{"title":"Topological Metasurface for Spin-Decoupled Wavefront Manipulation of Terahertz Surface Plasmons","authors":"Yuanhao Lang, Quan Xu, Guanghong Xu, Xueqian Zhang, Quan Li, Jiaguang Han","doi":"10.1002/lpor.202401281","DOIUrl":"https://doi.org/10.1002/lpor.202401281","url":null,"abstract":"On-chip wavefront manipulation of terahertz surface plasmons is crucial for the miniaturization and practical application of terahertz technology. Recently, topological metasurfaces have emerged as a promising avenue for spin-decoupled wavefront manipulation, leveraging the unique topological properties of non-Hermitian matrices near their singular points. Despite their innovative phase control mechanisms, topological metasurfaces have not yet been explored for surface plasmon devices. Here, spin-decoupled wavefront manipulation of terahertz surface plasmons is experimentally achieved using freestanding topological metasurfaces. This approach promises to expand the control methods of surface plasmons and broaden the application scenarios of topological metasurfaces, providing a new paradigm for the design of integrated on-chip terahertz devices.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"13 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nan Wang, Lin Wang, Gong Feng, Maoguo Gong, Weiqi Wang, Shulang Lin, Zhiwei Huang, Xueli Chen
Volumetric imaging, which supports quantitative and comprehensive assessment of a 3D sample from an entire volume, has attracted tremendous attention in biomedical research. Fluorescence imaging techniques, such as optical sectioning and light sheet microscopy, enable to reconstruct the 3D distribution of chemicals within a sample. However, current methods rely on exogenous labels, from which considerable perturbation may be introduced in living systems. Raman imaging offers a feasible solution to visualize components in biological samples in a label-free manner. Besides, the integration of Raman microscopy with 3D approaches will benefit the research of biomedical samples on novel devices, which is dominated by the strongly enhanced spatial resolution, imaging speed, and overall field of view as well as complemented more details of samples. In this overview, recent achievements in 3D visualization of biological samples from the Raman perspective, are explored including scanning mechanism, light sheet, tomography strategy, compressive sensing, holography, and tissue clearing. Importantly, these platforms are compatible with biomedical research, thus allowing the imaging of chemical constituents and the distribution of samples in a whole volume. As a unique volumetric imaging tool for biological discovery, these methods may provide a strategy to accelerate new discoveries across diverse fields of research.
{"title":"Volumetric Imaging From Raman Perspective: Review and Prospect","authors":"Nan Wang, Lin Wang, Gong Feng, Maoguo Gong, Weiqi Wang, Shulang Lin, Zhiwei Huang, Xueli Chen","doi":"10.1002/lpor.202401444","DOIUrl":"https://doi.org/10.1002/lpor.202401444","url":null,"abstract":"Volumetric imaging, which supports quantitative and comprehensive assessment of a 3D sample from an entire volume, has attracted tremendous attention in biomedical research. Fluorescence imaging techniques, such as optical sectioning and light sheet microscopy, enable to reconstruct the 3D distribution of chemicals within a sample. However, current methods rely on exogenous labels, from which considerable perturbation may be introduced in living systems. Raman imaging offers a feasible solution to visualize components in biological samples in a label-free manner. Besides, the integration of Raman microscopy with 3D approaches will benefit the research of biomedical samples on novel devices, which is dominated by the strongly enhanced spatial resolution, imaging speed, and overall field of view as well as complemented more details of samples. In this overview, recent achievements in 3D visualization of biological samples from the Raman perspective, are explored including scanning mechanism, light sheet, tomography strategy, compressive sensing, holography, and tissue clearing. Importantly, these platforms are compatible with biomedical research, thus allowing the imaging of chemical constituents and the distribution of samples in a whole volume. As a unique volumetric imaging tool for biological discovery, these methods may provide a strategy to accelerate new discoveries across diverse fields of research.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"21 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coherent wave control is of key importance across a broad range of fields such as electromagnetics, photonics, and acoustics. It enables us to amplify or suppress the outgoing waves via engineering amplitudes and phases of multiple incidences. However, within a purely spatially (temporally) engineered medium, coherent wave control requires the frequency of the associated incidences to be identical (opposite). In this work, this conventional constraint is broken by generalizing coherent wave control into a spatiotemporally engineered medium is broken, i.e., the system featuring a dynamic interface. Owing to the broken translational symmetry in space and time, both the subluminal and superluminal interfaces allow interference between scattered waves regardless of their different frequencies and wavevectors. Hence, one can flexibly eliminate the backward- or forward-propagating waves scattered from the dynamic interfaces by controlling the incident amplitudes and phases. The work not only presents a generalized way for reshaping arbitrary waveforms but also provides a promising paradigm to generate ultrafast pulses using low-frequency signals. It has also implemented suppression of forward-propagating waves in microstrip transmission lines with fast photodiode switches.
{"title":"Generalized Coherent Wave Control at Dynamic Interfaces","authors":"Youxiu Yu, Dongliang Gao, Yukun Yang, Liangliang Liu, Zhuo Li, Qianru Yang, Haotian Wu, Linyang Zou, Xiao Lin, Jiang Xiong, Songyan Hou, Lei Gao, Hao Hu","doi":"10.1002/lpor.202400399","DOIUrl":"https://doi.org/10.1002/lpor.202400399","url":null,"abstract":"Coherent wave control is of key importance across a broad range of fields such as electromagnetics, photonics, and acoustics. It enables us to amplify or suppress the outgoing waves via engineering amplitudes and phases of multiple incidences. However, within a purely spatially (temporally) engineered medium, coherent wave control requires the frequency of the associated incidences to be identical (opposite). In this work, this conventional constraint is broken by generalizing coherent wave control into a spatiotemporally engineered medium is broken, i.e., the system featuring a dynamic interface. Owing to the broken translational symmetry in space and time, both the subluminal and superluminal interfaces allow interference between scattered waves regardless of their different frequencies and wavevectors. Hence, one can flexibly eliminate the backward- or forward-propagating waves scattered from the dynamic interfaces by controlling the incident amplitudes and phases. The work not only presents a generalized way for reshaping arbitrary waveforms but also provides a promising paradigm to generate ultrafast pulses using low-frequency signals. It has also implemented suppression of forward-propagating waves in microstrip transmission lines with fast photodiode switches.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"18 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jidong Lin, Zhehong Zhou, Jinming Lai, Weichao Ye, Tao Pang, Xinyue Li, Lingwei Zeng, Lei Lei, Dechao Yu, Daqin Chen
In situ growth of CsPbX3 (X = Cl, Br, I) perovskite quantum dots (PeQDs) in inorganic glass can address their stability issue for wide-color-gamut full-color backlit displays. However, most of the reported CsPbX3 precipitated in glass are limited by low absorption and low external quantum efficiency (EQE). This work demonstrates that CaO additive can adjust the polymerization of borosilicate glass network, and promote the precipitation of whole-family CsPbX3 PeQDs in glass with a record absorption efficiency above 75%. As a result, the as-prepared green and red CsPbX3@glass (X3 = Br3, Br1I2) exhibit high EQEs of 75% and 67%, and can pass harsh stability tests after immersing water, irradiating by intensive blue light and experiencing 85 °C/85%RH aging over 1000 h owing to effective protection of PeQDs from external environment with the help of robust glass matrix. As a proof of concept, a white backlit module is fabricated by coupling a single-layer yellow PeQDs enhanced film (PQDF) with blue light guide panel, and the designed prototype display device with wide color gamut of 115% of the NTSC 1953 exhibits a more realistic and vivid color images. This work will pave the way for the realization of commercial application of ultra-stable CsPbX3@glass in QD-backlight displays.
{"title":"CsPbX3@Glass (X = Cl, Br, I) Nanocomposites with Whole-Family High Absorption Efficiency above 75% for Backlit Display","authors":"Jidong Lin, Zhehong Zhou, Jinming Lai, Weichao Ye, Tao Pang, Xinyue Li, Lingwei Zeng, Lei Lei, Dechao Yu, Daqin Chen","doi":"10.1002/lpor.202401649","DOIUrl":"https://doi.org/10.1002/lpor.202401649","url":null,"abstract":"In situ growth of CsPbX<sub>3</sub> (X = Cl, Br, I) perovskite quantum dots (PeQDs) in inorganic glass can address their stability issue for wide-color-gamut full-color backlit displays. However, most of the reported CsPbX<sub>3</sub> precipitated in glass are limited by low absorption and low external quantum efficiency (EQE). This work demonstrates that CaO additive can adjust the polymerization of borosilicate glass network, and promote the precipitation of whole-family CsPbX<sub>3</sub> PeQDs in glass with a record absorption efficiency above 75%. As a result, the as-prepared green and red CsPbX<sub>3</sub>@glass (X<sub>3</sub> = Br<sub>3</sub>, Br<sub>1</sub>I<sub>2</sub>) exhibit high EQEs of 75% and 67%, and can pass harsh stability tests after immersing water, irradiating by intensive blue light and experiencing 85 °C/85%RH aging over 1000 h owing to effective protection of PeQDs from external environment with the help of robust glass matrix. As a proof of concept, a white backlit module is fabricated by coupling a single-layer yellow PeQDs enhanced film (PQDF) with blue light guide panel, and the designed prototype display device with wide color gamut of 115% of the NTSC 1953 exhibits a more realistic and vivid color images. This work will pave the way for the realization of commercial application of ultra-stable CsPbX<sub>3</sub>@glass in QD-backlight displays.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"98 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Fan, Jingbo Chen, Xiaomeng Zheng, Luyun Xu, Jianqin Ye, Xueliang Lin, Kien Voon Kong, Duo Lin, Yudong Lu, Shangyuan Feng
The emergence of “precision medicine” marks a notable shift in cancer treatment, moving from a tumor type–oriented approach to a more targeted, gene-oriented approach. Detecting low-abundance mutant genes in blood is challenging but crucial for personalized treatment plans. Herein, a novel platform combining catalytic hairpin self-assembly (CHA)-mediated self-calibrating surface-enhanced Raman spectroscopy (SERS) with a high-throughput Raman system (CCSPS) was designed. This platform enables ultrasensitive and rapid genotype analysis of gene mutations. The development of CCSPS specifically targets EGFR mutations, which serve as crucial therapeutic targets for precision therapy in lung cancer. This system shows excellent sensitivity and selectivity, capable of detecting multiple EGFR mutations (Del-19, L858R, and T790M) with a detection limit as low as attomolar levels. Additionally, precise genotyping analysis was successfully conducted on 42 clinical samples using the CCSPS, yielding results consistent with those obtained through next-generation sequencing. These results underscore the efficacy of the CCSPS in noninvasively identifying circulating tumor DNA (ctDNA) mutations, facilitating immediate therapeutic decision making at the bedside. In summary, the CCSPS is a fast, accurate, versatile, and compact testing system capable of precisely screening individuals who stand to benefit from targeted therapy, thus promoting personalized and precise healthcare.
{"title":"Precise Genotyping Via Surface-Enhanced Raman Spectroscopy-Based Optical Sensing Chip for Guiding Targeted Therapy in Lung Cancer","authors":"Min Fan, Jingbo Chen, Xiaomeng Zheng, Luyun Xu, Jianqin Ye, Xueliang Lin, Kien Voon Kong, Duo Lin, Yudong Lu, Shangyuan Feng","doi":"10.1002/lpor.202401400","DOIUrl":"https://doi.org/10.1002/lpor.202401400","url":null,"abstract":"The emergence of “precision medicine” marks a notable shift in cancer treatment, moving from a tumor type–oriented approach to a more targeted, gene-oriented approach. Detecting low-abundance mutant genes in blood is challenging but crucial for personalized treatment plans. Herein, a novel platform combining catalytic hairpin self-assembly (CHA)-mediated self-calibrating surface-enhanced Raman spectroscopy (SERS) with a high-throughput Raman system (CCSPS) was designed. This platform enables ultrasensitive and rapid genotype analysis of gene mutations. The development of CCSPS specifically targets <i>EGFR</i> mutations, which serve as crucial therapeutic targets for precision therapy in lung cancer. This system shows excellent sensitivity and selectivity, capable of detecting multiple <i>EGFR</i> mutations (<i>Del-19</i>, <i>L858R</i>, and <i>T790M</i>) with a detection limit as low as attomolar levels. Additionally, precise genotyping analysis was successfully conducted on 42 clinical samples using the CCSPS, yielding results consistent with those obtained through next-generation sequencing. These results underscore the efficacy of the CCSPS in noninvasively identifying circulating tumor DNA (ctDNA) mutations, facilitating immediate therapeutic decision making at the bedside. In summary, the CCSPS is a fast, accurate, versatile, and compact testing system capable of precisely screening individuals who stand to benefit from targeted therapy, thus promoting personalized and precise healthcare.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"1 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chutian Wang, Shuo Zhu, Pei Zhang, Kaiqiang Wang, Jianqing Huang, Edmund Y. Lam
Angle-based wavefront sensing has a rich historical background in measuring optical aberrations. The Shack–Hartmann wavefront sensor is widely employed in adaptive optics systems due to its high optical efficiency and high robustness. However, simultaneously achieving high sensitivity and large dynamic range is still challenging, limiting the performance of diagnosing fast-changing turbulence. To overcome this limitation, angle-based neuromorphic wave normal sensing, which serves as a differentiable framework developed on the asynchronous event modality is proposed. Herein, it is illustrated that the emerging computational neuromorphic imaging paradigm enables a direct perception of a high-dimensional wave normal from the highly efficient temporal diversity measurement. To the best of available knowledge, the proposed scheme is the first to successfully surpass the spot-overlapping issue caused by the curvature constraint in classical angle-based wavefront sensing setups under challenging dynamic scenarios.
{"title":"Angle-Based Neuromorphic Wave Normal Sensing","authors":"Chutian Wang, Shuo Zhu, Pei Zhang, Kaiqiang Wang, Jianqing Huang, Edmund Y. Lam","doi":"10.1002/lpor.202400647","DOIUrl":"https://doi.org/10.1002/lpor.202400647","url":null,"abstract":"Angle-based wavefront sensing has a rich historical background in measuring optical aberrations. The Shack–Hartmann wavefront sensor is widely employed in adaptive optics systems due to its high optical efficiency and high robustness. However, simultaneously achieving high sensitivity and large dynamic range is still challenging, limiting the performance of diagnosing fast-changing turbulence. To overcome this limitation, angle-based neuromorphic wave normal sensing, which serves as a differentiable framework developed on the asynchronous event modality is proposed. Herein, it is illustrated that the emerging computational neuromorphic imaging paradigm enables a direct perception of a high-dimensional wave normal from the highly efficient temporal diversity measurement. To the best of available knowledge, the proposed scheme is the first to successfully surpass the spot-overlapping issue caused by the curvature constraint in classical angle-based wavefront sensing setups under challenging dynamic scenarios.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"38 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianglong Chang, Yichao Wang, You Li, Yuefeng Gao, Hongquan Yu, Yongze Cao, Xizhen Zhang, Baojiu Chen, Sai Xu
Fluorescence thermometry has garnered significant attention for its noninvasive, remote, highly sensitive, and rapid temperature measurement capabilities. However, achieving superior sensitivity at high temperatures remains a persistent challenge. Herein, a series of Rb2−xCsxHfCl6: y%Te4+ perovskites are synthesized to investigate the impact exerted by A-site regulating regarding the luminescence efficiency and temperature-responsive capabilities. Te4+ doping significantly enhances luminescence intensity, with the broadband yellow light resulting from electron–phonon coupling within the soft lattice, driven by self-trapped exciton emission. Furthermore, A-site regulation demonstrates that increasing Cs⁺ content induces enhanced Jahn–Teller distortion, thereby boosting luminescence efficiency. However, the pure Rb sample exhibits the lowest thermal activation energy, as the temperature rises, increased phonon-exciton coupling and the defect activity accelerate the nonradiative recombination, drastically decreasing fluorescence lifetime by two orders of magnitude from 300 to 390 K. Utilizing this exceptional thermal sensitivity, a lifetime-based fluorescence thermometer is developed, attaining a breakthrough relative sensitivity reaching 20.69% K−1 at 390 K, with high repeatability across multiple heating and cooling cycles. Additionally, a high-temperature warning system for lubricating oil pipelines is designed, demonstrating robust monitoring capabilities. This work offers a new perspective on developing highly sensitive thermometers that utilize halide perovskites for high-temperature applications.
荧光测温仪以其无创、远程、高灵敏度和快速测温功能而备受关注。然而,如何在高温下实现卓越的灵敏度仍然是一个长期的挑战。本文合成了一系列 Rb2-xCsxHfCl6: y%Te4+ 包晶,以研究 A 位调节对发光效率和温度响应能力的影响。掺杂 Te4+ 能显著提高发光强度,宽带黄光来自软晶格内的电子-声子耦合,由自俘获激子发射驱动。此外,A-site 调节表明,铯⁺含量的增加会诱导贾恩-泰勒畸变的增强,从而提高发光效率。然而,纯铷样品的热活化能最低,随着温度的升高,声子-激子耦合的增加和缺陷活性加速了非辐射重组,使荧光寿命在 300 至 390 K 之间急剧下降了两个数量级。利用这种特殊的热灵敏度,我们开发了一种基于寿命的荧光温度计,在 390 K 时达到了突破性的相对灵敏度,达到 20.69% K-1,并且在多次加热和冷却循环中具有很高的重复性。此外,还设计了用于润滑油管道的高温预警系统,展示了强大的监测能力。这项研究为利用卤化物过氧化物开发用于高温应用的高灵敏度温度计提供了新的视角。
{"title":"Regulating A-Site Alloying of Te4+-Doped Hafnium-Halide Perovskite for Fluorescence Thermometry Achieving Breakthrough Sensitivity at High Temperatures","authors":"Jianglong Chang, Yichao Wang, You Li, Yuefeng Gao, Hongquan Yu, Yongze Cao, Xizhen Zhang, Baojiu Chen, Sai Xu","doi":"10.1002/lpor.202401620","DOIUrl":"https://doi.org/10.1002/lpor.202401620","url":null,"abstract":"Fluorescence thermometry has garnered significant attention for its noninvasive, remote, highly sensitive, and rapid temperature measurement capabilities. However, achieving superior sensitivity at high temperatures remains a persistent challenge. Herein, a series of Rb<sub>2−</sub><sub><i>x</i></sub>Cs<sub><i>x</i></sub>HfCl<sub>6</sub>: y%Te<sup>4+</sup> perovskites are synthesized to investigate the impact exerted by A-site regulating regarding the luminescence efficiency and temperature-responsive capabilities. Te<sup>4+</sup> doping significantly enhances luminescence intensity, with the broadband yellow light resulting from electron–phonon coupling within the soft lattice, driven by self-trapped exciton emission. Furthermore, A-site regulation demonstrates that increasing Cs⁺ content induces enhanced Jahn–Teller distortion, thereby boosting luminescence efficiency. However, the pure Rb sample exhibits the lowest thermal activation energy, as the temperature rises, increased phonon-exciton coupling and the defect activity accelerate the nonradiative recombination, drastically decreasing fluorescence lifetime by two orders of magnitude from 300 to 390 K. Utilizing this exceptional thermal sensitivity, a lifetime-based fluorescence thermometer is developed, attaining a breakthrough relative sensitivity reaching 20.69% K<sup>−1</sup> at 390 K, with high repeatability across multiple heating and cooling cycles. Additionally, a high-temperature warning system for lubricating oil pipelines is designed, demonstrating robust monitoring capabilities. This work offers a new perspective on developing highly sensitive thermometers that utilize halide perovskites for high-temperature applications.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"11 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Traditional persistent luminescence (PersL) materials depend on the distribution of inherent traps within their structure, which are usually narrow and discontinuous, thereby restricting their functionality to a limited temperature range. The development of materials capable of PersL over a wide temperature range, represents a significant hurdle in the advancement of PersL technology. Here, this study deviates from the conventional method of relying on inherent traps and instead harness recoverable Frenkel defects within fluoride materials to broaden the operational temperature range for PersL. Under X-ray irradiation, Frenkel defects involving the migration of fluorine ions can be generated and recovered in real time, accompanied by the formation and dissipation of localized excitons, ultimately transferring energy to the luminescent centers. Notably, this recovery process is operative at all temperatures and is sufficiently slow-paced, ensuring that PersL can be observed across every temperature range (77–500K). Building on this mechanism, the production of multicolor wide-temperature PersL is readily attainable through the straightforward substitution of various luminescent centers. Significantly, X-ray-induced recoverable Frenkel defects have the potential to confer the characteristics of wide-temperature PersL to materials that inherently lack these attributes. This, in turn, provides a new design strategy for developing wide-temperature PersL materials.
{"title":"Wide-Temperature Persistent Luminescence","authors":"Mingxing Li, Wenwu You, Xiaomin Zhang, Jiacai Li, Chennan Zhang, Zhili Xu, Pingping Fan, Gencai Pan, Yanli Mao","doi":"10.1002/lpor.202401464","DOIUrl":"https://doi.org/10.1002/lpor.202401464","url":null,"abstract":"Traditional persistent luminescence (PersL) materials depend on the distribution of inherent traps within their structure, which are usually narrow and discontinuous, thereby restricting their functionality to a limited temperature range. The development of materials capable of PersL over a wide temperature range, represents a significant hurdle in the advancement of PersL technology. Here, this study deviates from the conventional method of relying on inherent traps and instead harness recoverable Frenkel defects within fluoride materials to broaden the operational temperature range for PersL. Under X-ray irradiation, Frenkel defects involving the migration of fluorine ions can be generated and recovered in real time, accompanied by the formation and dissipation of localized excitons, ultimately transferring energy to the luminescent centers. Notably, this recovery process is operative at all temperatures and is sufficiently slow-paced, ensuring that PersL can be observed across every temperature range (77–500K). Building on this mechanism, the production of multicolor wide-temperature PersL is readily attainable through the straightforward substitution of various luminescent centers. Significantly, X-ray-induced recoverable Frenkel defects have the potential to confer the characteristics of wide-temperature PersL to materials that inherently lack these attributes. This, in turn, provides a new design strategy for developing wide-temperature PersL materials.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"75 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Following the rapid development of information technology, modern polarized light, which is a critical component for display and data transmission, has been in demand for miniaturization and high efficiency, rendering two-dimensional (2D) semiconductors potential candidates. The traditional polarized light is usually generated by external optical structures or polarizers that influence the scaling and bring up losses. Previous works have reported polarized light emission from inversion-asymmetric 2D semiconductors such as black phosphorus (BP), black arsenide phosphorus (AsP), and rhenium disulfide (ReS2), however, their emission wavelengths are not in the visible range. Here, a direct emission of linearly polarized light is demonstrated from van der Waals light–emitting diodes (vdWLEDs) via the flexoelectric effects by inducing the non-uniform strain in monolayer (ML) transition metal dichalcogenides (TMDCs). In this work, the effects of strain including excitonic binding energy and exciton dipole moment distribution is analyzed by the density functional theory (DFT) then we show that linearly polarized photoluminescence (PL) with a degree of linear polarization (DOLP) of ≈17% can be realized at room temperature (RT), and the polarization angle is perpendicular to the direction of the strain-gradient. By incorporating the strained ML TMDCs into vdWLEDs, electroluminescence (EL) with DOLP of ≈19% can be observed at RT. This work puts forward a direct and universal strategy for fabricating polarized LEDs based on inversion-symmetric semiconductors.
随着信息技术的飞速发展,现代偏振光作为显示和数据传输的重要组成部分,其微型化和高效率的需求使二维(2D)半导体成为潜在的候选材料。传统的偏振光通常由外部光学结构或偏振器产生,这些结构或偏振器会影响光的缩放并带来损耗。之前的研究已经报道了黑磷(BP)、黑砷磷(AsP)和二硫化铼(ReS2)等反转不对称二维半导体的偏振光发射,但它们的发射波长不在可见光范围内。在此,范德华发光二极管(vdWLED)通过在单层(ML)过渡金属二卤化物(TMDCs)中诱导非均匀应变,利用柔电效应直接发射线性偏振光。在这项工作中,我们通过密度泛函理论(DFT)分析了包括激子结合能和激子偶极矩分布在内的应变效应,然后证明在室温(RT)下可以实现线性极化度(DOLP)≈17%的线性极化光致发光(PL),且极化角垂直于应变梯度方向。通过将应变 ML TMDC 纳入 vdWLED,可在室温(RT)下观察到 DOLP ≈19% 的电致发光(EL)。这项工作为基于反转对称半导体制造极化 LED 提出了一种直接而通用的策略。
{"title":"Direct Linearly Polarized Emission in van der Waals LEDs via Flexoelectric Effect","authors":"Xiaoya Liu, Qiang Fu, Haijun Liao, Zhicong Wu, Xudong Sun, Weiqiao Xia, Xiao Tang, Shixuan Wang, Yuwei Zhang, Zhexing Duan, Takashi Taniguchi, Kenji Watanabe, Liang Ma, Zhenliang Hu, Zhenhua Ni, Junpeng Lu","doi":"10.1002/lpor.202401319","DOIUrl":"https://doi.org/10.1002/lpor.202401319","url":null,"abstract":"Following the rapid development of information technology, modern polarized light, which is a critical component for display and data transmission, has been in demand for miniaturization and high efficiency, rendering two-dimensional (2D) semiconductors potential candidates. The traditional polarized light is usually generated by external optical structures or polarizers that influence the scaling and bring up losses. Previous works have reported polarized light emission from inversion-asymmetric 2D semiconductors such as black phosphorus (BP), black arsenide phosphorus (AsP), and rhenium disulfide (ReS<sub>2</sub>), however, their emission wavelengths are not in the visible range. Here, a direct emission of linearly polarized light is demonstrated from van der Waals light–emitting diodes (vdWLEDs) via the flexoelectric effects by inducing the non-uniform strain in monolayer (ML) transition metal dichalcogenides (TMDCs). In this work, the effects of strain including excitonic binding energy and exciton dipole moment distribution is analyzed by the density functional theory (DFT) then we show that linearly polarized photoluminescence (PL) with a degree of linear polarization (DOLP) of ≈17% can be realized at room temperature (RT), and the polarization angle is perpendicular to the direction of the strain-gradient. By incorporating the strained ML TMDCs into vdWLEDs, electroluminescence (EL) with DOLP of ≈19% can be observed at RT. This work puts forward a direct and universal strategy for fabricating polarized LEDs based on inversion-symmetric semiconductors.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"19 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}