Pub Date : 2020-12-04DOI: 10.1177/1477760620977500
Moein Khoshroo, A. Javid, Nima Rajabi Bakhshandeh, Mohamad Shalchiyan
In this study, the effect of using crumb rubber and recycled aggregates on the mechanical properties of concrete has been evaluated as areplacement of fine and coarse aggregates In order to add the admixtures and evaluate their combined effect, 20 different types of concrete mixture ratio were prepared. The results indicated that in those samples containing crumb rubber and recycled aggregates the compressive strength is reduced and adding fiber up to 0.1%. to these concrete samples can improve the compressive strength Also, the tensile strength of the samples mixed with crumb rubber and recycled aggregates were decreased, and with the addition of propylene fiber up to 0.4%. the tensile strength slightly increased Moreover by adding the crumb rubber to the samples the elasticity modulus was reduced but by adding fiber to samples about 0.1% and 0.2.% the modulus of elasticity of concrete in all samples were increased. According to the results, it can be said that using the combination of 5% of crumb rubber as a replacement of fine aggregate, and the combination of 35% of recycled aggregates as a replacement of coarse aggregate, and also by adding 0.1% polypropylene fiber in volumetric percentage of concrete along with adding 7% of micro silica as a replacement of cement led to the best effect on the mechanical properties of concrete.
{"title":"Investigation of the mechanical properties of concrete containing recycled aggregate and scrap crumb rubber and polypropylene fibers","authors":"Moein Khoshroo, A. Javid, Nima Rajabi Bakhshandeh, Mohamad Shalchiyan","doi":"10.1177/1477760620977500","DOIUrl":"https://doi.org/10.1177/1477760620977500","url":null,"abstract":"In this study, the effect of using crumb rubber and recycled aggregates on the mechanical properties of concrete has been evaluated as areplacement of fine and coarse aggregates In order to add the admixtures and evaluate their combined effect, 20 different types of concrete mixture ratio were prepared. The results indicated that in those samples containing crumb rubber and recycled aggregates the compressive strength is reduced and adding fiber up to 0.1%. to these concrete samples can improve the compressive strength Also, the tensile strength of the samples mixed with crumb rubber and recycled aggregates were decreased, and with the addition of propylene fiber up to 0.4%. the tensile strength slightly increased Moreover by adding the crumb rubber to the samples the elasticity modulus was reduced but by adding fiber to samples about 0.1% and 0.2.% the modulus of elasticity of concrete in all samples were increased. According to the results, it can be said that using the combination of 5% of crumb rubber as a replacement of fine aggregate, and the combination of 35% of recycled aggregates as a replacement of coarse aggregate, and also by adding 0.1% polypropylene fiber in volumetric percentage of concrete along with adding 7% of micro silica as a replacement of cement led to the best effect on the mechanical properties of concrete.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"7 1","pages":"167 - 189"},"PeriodicalIF":2.6,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74228153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-10DOI: 10.1177/1477760620972407
S. Patnaik, A. K. Barick, A. K. Panda
This research work includes the effect of Zeolite-A catalyst on the thermal degradation behavior of six different consumer plastic wastes like high density polyethylene (HDPE), polypropylene (PP), polyethylene terephthalate (PET), polymethylene methacralate (PMMA), polystyrene (PS) and polytetrafluoro ethylene (PTFE) through kinetic approach by using thermogravimetric analysis (TGA) data. Kinetic parameters such as reaction order, activation energy, and Arrhenius constant for the degradation of different waste plastics is determined using model fitting Coats–Redfern method. All the plastics show one-step degradation in the temperature range of 300–600°C. There is a significant decrease in activation energy (Ea) for the thermo-catalytic decomposition of the plastics in presence of Zeolite A catalyst. The extent of catalytic effect is found different for different plastics in the order of HDPE < PP < PS < PET < PMMA < PTFE. The order of the thermal degradation reaction is also found different for different types of plastics. The order of the reaction is altered in case of PET, PS and PTFE in presence of the catalyst but it is unaffected in case of remaining plastics. This treatment would reduce the energy consumption of pyrolysis process and also make the process economical viable.
{"title":"Thermo-catalytic degradation of different consumer plastic wastes by zeolite a catalyst: A kinetic approach","authors":"S. Patnaik, A. K. Barick, A. K. Panda","doi":"10.1177/1477760620972407","DOIUrl":"https://doi.org/10.1177/1477760620972407","url":null,"abstract":"This research work includes the effect of Zeolite-A catalyst on the thermal degradation behavior of six different consumer plastic wastes like high density polyethylene (HDPE), polypropylene (PP), polyethylene terephthalate (PET), polymethylene methacralate (PMMA), polystyrene (PS) and polytetrafluoro ethylene (PTFE) through kinetic approach by using thermogravimetric analysis (TGA) data. Kinetic parameters such as reaction order, activation energy, and Arrhenius constant for the degradation of different waste plastics is determined using model fitting Coats–Redfern method. All the plastics show one-step degradation in the temperature range of 300–600°C. There is a significant decrease in activation energy (Ea) for the thermo-catalytic decomposition of the plastics in presence of Zeolite A catalyst. The extent of catalytic effect is found different for different plastics in the order of HDPE < PP < PS < PET < PMMA < PTFE. The order of the thermal degradation reaction is also found different for different types of plastics. The order of the reaction is altered in case of PET, PS and PTFE in presence of the catalyst but it is unaffected in case of remaining plastics. This treatment would reduce the energy consumption of pyrolysis process and also make the process economical viable.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"9 1","pages":"148 - 164"},"PeriodicalIF":2.6,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81806983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-01DOI: 10.1177/1477760619895015
S. Chowdhury, K. Pal, H. Satpathi, A. Bandyopadhyay, R. Mukhopadhyay, Sanjay Bhattacharyya
Potential of Sumilink-200 was investigated in a typical natural rubber-based tread compound in connection with its ability to act as a coupling agent for carbon black to reduce hysteresis loss of the compound. Optimum physical properties were obtained at 2 phr loading of Sumilink-200. At this loading, tensile modulus at 300% elongation improved by 9.6% with a reduction in visco-elastic energy dissipation (loss tangent) at 60°C by 8.3% over the control compound. The abrasion resistance properties of the compounds found to remain unaffected with the introduction of Sumilink-200.
{"title":"Improving hysteresis of a typical carbon black-filled natural rubber tread compound by using a novel coupling agent","authors":"S. Chowdhury, K. Pal, H. Satpathi, A. Bandyopadhyay, R. Mukhopadhyay, Sanjay Bhattacharyya","doi":"10.1177/1477760619895015","DOIUrl":"https://doi.org/10.1177/1477760619895015","url":null,"abstract":"Potential of Sumilink-200 was investigated in a typical natural rubber-based tread compound in connection with its ability to act as a coupling agent for carbon black to reduce hysteresis loss of the compound. Optimum physical properties were obtained at 2 phr loading of Sumilink-200. At this loading, tensile modulus at 300% elongation improved by 9.6% with a reduction in visco-elastic energy dissipation (loss tangent) at 60°C by 8.3% over the control compound. The abrasion resistance properties of the compounds found to remain unaffected with the introduction of Sumilink-200.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"33 1","pages":"245 - 261"},"PeriodicalIF":2.6,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76183156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-09-02DOI: 10.1177/1477760620953438
Ikhwan Yusuff, N. Sarifuddin, A. Ali
The developments of agricultural-based composites for structural applications such as in construction, aerospace, and automotive have gained tremendous interest from researchers due to the uniqueness of its behaviors. Among available agricultural fibers, kenaf fiber widely adopted as a reinforcement in polymer composites to form kenaf reinforced polymer matrix composites. The hybridization technique was introduced to enhance the mechanical performances of composite materials wherein two different types of reinforcements were employed to form a hybrid composite. Therefore, in this review paper, the investigations focus on the mechanical properties of kenaf hybrid composites as well as potentials and barriers of agricultural-based composites were discussed to provide a literature source for future research regarding this topic.
{"title":"A review on kenaf fiber hybrid composites: Mechanical properties, potentials, and challenges in engineering applications","authors":"Ikhwan Yusuff, N. Sarifuddin, A. Ali","doi":"10.1177/1477760620953438","DOIUrl":"https://doi.org/10.1177/1477760620953438","url":null,"abstract":"The developments of agricultural-based composites for structural applications such as in construction, aerospace, and automotive have gained tremendous interest from researchers due to the uniqueness of its behaviors. Among available agricultural fibers, kenaf fiber widely adopted as a reinforcement in polymer composites to form kenaf reinforced polymer matrix composites. The hybridization technique was introduced to enhance the mechanical performances of composite materials wherein two different types of reinforcements were employed to form a hybrid composite. Therefore, in this review paper, the investigations focus on the mechanical properties of kenaf hybrid composites as well as potentials and barriers of agricultural-based composites were discussed to provide a literature source for future research regarding this topic.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"20 1","pages":"66 - 83"},"PeriodicalIF":2.6,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87237218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-09-02DOI: 10.1177/1477760620953437
Alif Walong, B. Thongnuanchan, T. Sakai, N. Lopattananon
Rubber nanocomposite foams based on 60/40 ethylene vinyl acetate (EVA)/natural rubber (NR) were melt-mixed with flame retardant silicon dioxide (SiO2) (20 parts per hundred rubber, phr), and foamed by compression molding process. In this study, the effect of mixing phenomena of SiO2 through two different compounding techniques such as direct mixing (DM) and phase selective mixing (PSM) methods on structure, thermal stability, combustility and flame retardancy of EVA/NR blend nanocomposite foams were investigated. DM method is a melt mixing of EVA, NR, layered silicate and SiO2, followed by foaming. PSM is a new method based on pre-mixing EVA with SiO2, then melt mixing of EVA/SiO2 masterbatch with NR and layered silicate, and finally foaming. Based on TEM technique, it was found that the SiO2 was exclusively located in dispersed NR phase for the sample prepared by DM method, and the SiO2 was preferably dispersed in continuous EVA matrix when PSM method was employed. However, the different mixing methods did not significantly alter their cellular structures. The thermal stability and char residue content of foamed samples with SiO2 increased obviously when compared with those of corresponding foams without SiO2. The results based on limiting oxygen index (LOI) test and oxygen bomb calorimetry indicated that the foams combined with SiO2 had better combustion resistance and flame retardancy due to barrier effect of thermally stable silicon-based char layer. Further, the SiO2 filled foamed system obtained from the PSM method showed a higher degree of improvement in thermal stability, combustion resistance and flame retardancy than that of DM method because the homogeneous dispersion of SiO2 in EVA matrix rather than the selective dispersion in NR phase. This resulted in the continuity of flame retardant EVA/SiO2 phase in the 60/40 EVA/NR nanocomposite foams, which exerted more efficient fire barrier of the silicon-based char layer.
{"title":"Influence of silicon dioxide addition and processing methods on structure, thermal stability and flame retardancy of EVA/NR blend nanocomposite foams","authors":"Alif Walong, B. Thongnuanchan, T. Sakai, N. Lopattananon","doi":"10.1177/1477760620953437","DOIUrl":"https://doi.org/10.1177/1477760620953437","url":null,"abstract":"Rubber nanocomposite foams based on 60/40 ethylene vinyl acetate (EVA)/natural rubber (NR) were melt-mixed with flame retardant silicon dioxide (SiO2) (20 parts per hundred rubber, phr), and foamed by compression molding process. In this study, the effect of mixing phenomena of SiO2 through two different compounding techniques such as direct mixing (DM) and phase selective mixing (PSM) methods on structure, thermal stability, combustility and flame retardancy of EVA/NR blend nanocomposite foams were investigated. DM method is a melt mixing of EVA, NR, layered silicate and SiO2, followed by foaming. PSM is a new method based on pre-mixing EVA with SiO2, then melt mixing of EVA/SiO2 masterbatch with NR and layered silicate, and finally foaming. Based on TEM technique, it was found that the SiO2 was exclusively located in dispersed NR phase for the sample prepared by DM method, and the SiO2 was preferably dispersed in continuous EVA matrix when PSM method was employed. However, the different mixing methods did not significantly alter their cellular structures. The thermal stability and char residue content of foamed samples with SiO2 increased obviously when compared with those of corresponding foams without SiO2. The results based on limiting oxygen index (LOI) test and oxygen bomb calorimetry indicated that the foams combined with SiO2 had better combustion resistance and flame retardancy due to barrier effect of thermally stable silicon-based char layer. Further, the SiO2 filled foamed system obtained from the PSM method showed a higher degree of improvement in thermal stability, combustion resistance and flame retardancy than that of DM method because the homogeneous dispersion of SiO2 in EVA matrix rather than the selective dispersion in NR phase. This resulted in the continuity of flame retardant EVA/SiO2 phase in the 60/40 EVA/NR nanocomposite foams, which exerted more efficient fire barrier of the silicon-based char layer.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"2 1","pages":"49 - 65"},"PeriodicalIF":2.6,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76059558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-01DOI: 10.1177/1477760619895002
Abitha Vayyaprontavida Kaliyathan, KM Varghese, A. S. Nair, Sabu Thomas
The blending of different rubbers is one of the effective methods to achieve required performance properties in their final products. This article reviews the thermodynamic considerations of rubber–rubber blends and their filled systems. Factors affecting the rubber blend morphology (i.e. distribution mechanism of fillers, curatives and other compounding ingredients) and preparation techniques for rubber–rubber blends emphasizing their advantages and disadvantages are well discussed in this review. Microscopy is the field of interest to all material scientists. In the case of rubber blends, microscopy is an essential tool in order to understand the morphology, that is, size, shape and distribution of phases and filler particles in the rubber–rubber blend. In this review, selected scientific reports based on optical microscopy, electron microscopy and atomic force microscopy in rubber–rubber blends are discussed. Rubber material is a complex macromolecule; it has significant proportion of fillers, processing aids and curing agents; therefore, only a very few studies have been reported on the microscopic aspects of filled rubber–rubber blends. In particular, influence of rubber blend composition, fillers (micro and nano length scales) and processing additives on the morphology of rubber blends systems has not been systematically reviewed and discussed in the scientific literature. Therefore, in the present scenario, this review was thought of, which deals with the essential background to rubber–rubber blends, miscibility and morphological characterization of various rubber blend systems by microscopy. It is very important to add that although there is scattered information on these aspects in the scientific literature, to date a comprehensive review has not been published. The pros, cons, artefacts and the new challenges on the use of microscopy for the characterization of rubber–rubber blends are also discussed here.
{"title":"Rubber–rubber blends: A critical review","authors":"Abitha Vayyaprontavida Kaliyathan, KM Varghese, A. S. Nair, Sabu Thomas","doi":"10.1177/1477760619895002","DOIUrl":"https://doi.org/10.1177/1477760619895002","url":null,"abstract":"The blending of different rubbers is one of the effective methods to achieve required performance properties in their final products. This article reviews the thermodynamic considerations of rubber–rubber blends and their filled systems. Factors affecting the rubber blend morphology (i.e. distribution mechanism of fillers, curatives and other compounding ingredients) and preparation techniques for rubber–rubber blends emphasizing their advantages and disadvantages are well discussed in this review. Microscopy is the field of interest to all material scientists. In the case of rubber blends, microscopy is an essential tool in order to understand the morphology, that is, size, shape and distribution of phases and filler particles in the rubber–rubber blend. In this review, selected scientific reports based on optical microscopy, electron microscopy and atomic force microscopy in rubber–rubber blends are discussed. Rubber material is a complex macromolecule; it has significant proportion of fillers, processing aids and curing agents; therefore, only a very few studies have been reported on the microscopic aspects of filled rubber–rubber blends. In particular, influence of rubber blend composition, fillers (micro and nano length scales) and processing additives on the morphology of rubber blends systems has not been systematically reviewed and discussed in the scientific literature. Therefore, in the present scenario, this review was thought of, which deals with the essential background to rubber–rubber blends, miscibility and morphological characterization of various rubber blend systems by microscopy. It is very important to add that although there is scattered information on these aspects in the scientific literature, to date a comprehensive review has not been published. The pros, cons, artefacts and the new challenges on the use of microscopy for the characterization of rubber–rubber blends are also discussed here.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"1970 1","pages":"196 - 242"},"PeriodicalIF":2.6,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91360532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-01DOI: 10.1177/1477760619895005
Chen Haoyang, Zhu Xiaoyi, Li Kangyu, Wu Han, Zhang Ming, Yan Chang-hao
Effect of electron beam (EB) irradiation on the properties of ethylene vinyl acetate (EVA)/ethylene–propylene–diene monomer (EPDM) (50/50) blends was studied. The blends were firstly melt-compounde...
{"title":"Effect of electron beam irradiation on the properties of EVA/EPDM blends:","authors":"Chen Haoyang, Zhu Xiaoyi, Li Kangyu, Wu Han, Zhang Ming, Yan Chang-hao","doi":"10.1177/1477760619895005","DOIUrl":"https://doi.org/10.1177/1477760619895005","url":null,"abstract":"Effect of electron beam (EB) irradiation on the properties of ethylene vinyl acetate (EVA)/ethylene–propylene–diene monomer (EPDM) (50/50) blends was studied. The blends were firstly melt-compounde...","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"1 1","pages":"161-172"},"PeriodicalIF":2.6,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79836782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-05-20DOI: 10.1177/1477760620925490
A. Nihmath, M. Ramesan
Nitrile rubber (NBR) has been extensively used in high oil resistance application such as in automotive seals and gaskets. Due to the poor mechanical strength of NBR, the performance of these products undergoes deterioration when it is in contact with hot oils and solvents. The aim of the present work is to investigate the molecular transport of petroleum fuels and oil through chlorinated NBR (Cl-NBR) with respect to different contents of chlorine. It also focuses on the effect of chlorine content on the alternating current (AC) conductivity and dielectric properties of Cl-NBR for flexible electronic applications. The transport characteristics of petroleum fuels through the NBR and Cl-NBR membranes have been studied by a simple sorption gravimetric analysis in the temperature range 27–50°C. The diffusion results have been explained in terms of the size of liquid molecules and the diffusion mechanism was found to follow the anomalous trend. The diffusion, sorption, solvent uptake, and permeation constants were investigated and were found to decrease with increase in the level of chlorine content in NBR matrix. The activation energy for diffusion and permeation processes were increased and reached maximum value for Cl-NBR (22% Cl content). The oil resistance property of Cl-NBR was significantly higher than pure NBR. The swelling of Cl-NBR in ASTM oil was three times lower than NBR. The electrical conductivity and dielectric properties of NBR was found to be increased with the increase in chlorine content of NBR. NBR showed the AC conductivity value of 7.24 S cm−1 at 106 Hz, while the Cl-NBR with 24% chlorine showed the conductivity value of 4.69 S cm−1. The higher AC conductivity and dielectric properties, solvent, and oil resistance of Cl-NBR than that of NBR suggests that the Cl-NBR can be used as multifunctional materials for flexible nano-electronic devices and high-performance oil-resistant applications.
丁腈橡胶(NBR)广泛应用于高耐油应用,如汽车密封件和垫片。由于丁腈橡胶的机械强度较差,当与热油和溶剂接触时,这些产品的性能会恶化。本研究的目的是研究不同氯含量的氯化丁腈橡胶(Cl-NBR)对石油燃料和石油的分子传输。研究了氯含量对柔性电子用Cl-NBR的交流电电导率和介电性能的影响。用简单的吸附重量法研究了石油燃料在27 ~ 50℃范围内通过丁腈橡胶和cl -丁腈橡胶膜的输运特性。从液体分子的大小对扩散结果进行了解释,发现扩散机制遵循异常趋势。研究了NBR基质中氯含量的增加对扩散常数、吸附常数、溶剂吸收率和渗透常数的影响。Cl- nbr的扩散和渗透活化能均有所增加,当Cl含量为22%时达到最大值。cl -丁腈橡胶的耐油性能明显高于纯丁腈橡胶。氯化丁腈橡胶在ASTM油中的溶胀率比丁腈橡胶低3倍。随着丁腈橡胶中氯含量的增加,丁腈橡胶的电导率和介电性能均有所提高。NBR在106 Hz下的交流电导率为7.24 S cm−1,而含24%氯的Cl-NBR的电导率为4.69 S cm−1。与丁腈橡胶相比,Cl-NBR具有更高的交流电导率、介电性能、耐溶剂性和耐油性,这表明Cl-NBR可以作为柔性纳米电子器件和高性能耐油应用的多功能材料。
{"title":"Comparative evaluation of oil resistance, dielectric properties, AC conductivity, and transport properties of nitrile rubber and chlorinated nitrile rubber","authors":"A. Nihmath, M. Ramesan","doi":"10.1177/1477760620925490","DOIUrl":"https://doi.org/10.1177/1477760620925490","url":null,"abstract":"Nitrile rubber (NBR) has been extensively used in high oil resistance application such as in automotive seals and gaskets. Due to the poor mechanical strength of NBR, the performance of these products undergoes deterioration when it is in contact with hot oils and solvents. The aim of the present work is to investigate the molecular transport of petroleum fuels and oil through chlorinated NBR (Cl-NBR) with respect to different contents of chlorine. It also focuses on the effect of chlorine content on the alternating current (AC) conductivity and dielectric properties of Cl-NBR for flexible electronic applications. The transport characteristics of petroleum fuels through the NBR and Cl-NBR membranes have been studied by a simple sorption gravimetric analysis in the temperature range 27–50°C. The diffusion results have been explained in terms of the size of liquid molecules and the diffusion mechanism was found to follow the anomalous trend. The diffusion, sorption, solvent uptake, and permeation constants were investigated and were found to decrease with increase in the level of chlorine content in NBR matrix. The activation energy for diffusion and permeation processes were increased and reached maximum value for Cl-NBR (22% Cl content). The oil resistance property of Cl-NBR was significantly higher than pure NBR. The swelling of Cl-NBR in ASTM oil was three times lower than NBR. The electrical conductivity and dielectric properties of NBR was found to be increased with the increase in chlorine content of NBR. NBR showed the AC conductivity value of 7.24 S cm−1 at 106 Hz, while the Cl-NBR with 24% chlorine showed the conductivity value of 4.69 S cm−1. The higher AC conductivity and dielectric properties, solvent, and oil resistance of Cl-NBR than that of NBR suggests that the Cl-NBR can be used as multifunctional materials for flexible nano-electronic devices and high-performance oil-resistant applications.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"15 1","pages":"131 - 147"},"PeriodicalIF":2.6,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81847492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-05-01DOI: 10.1177/1477760619895018
Maf Rafie, K. Marsilla, Z. Hamid, A. Rusli, M. Abdullah
The objective of this study is to characterize the effect of in situ heat treatment on polylactic acid (PLA) and plasticized PLA during fused deposition modelling (FDM) with the motivation to improve their mechanical, thermal and physical properties. The in situ heat treatment was formed during the FDM by adjusting the bed temperature to 70°C, 90°C and 120°C. The performance of 3D, the printed samples, was compared with the compression moulded samples treated at the same temperature using a vacuum oven. PLA was plasticized with poly (ethylene glycol) (PEG) at different compositions of 0, 5 and 10 wt% of PEG. The properties of PLA, plasticized PLA and FDM-printed sample were analysed using Instron, differential scanning calorimeter (DSC) and X-ray diffraction (XRD). It was found that the addition of PEG into PLA decreased the tensile strength, elongation at break and tensile modulus of the materials. However, after heat treatment in the vacuum oven and FDM, the properties were generally higher at 90°C and this was believed to be primarily due to the effect of crystallization. This can be proved by formation of double melting peak, correspond to melt-crystallization mechanism, observed in DSC. The formation of different crystal was supported by XRD analysis where the amorphous peak had transformed into sharp peak at 16.9° and 19.3°, which indicates an improved crystallinity. Comparison between the compression moulded sample and FDM demonstrated that the in situ heat treatment in FDM had the most significant impact on tensile modulus.
{"title":"Enhanced mechanical properties of plasticized polylactic acid filament for fused deposition modelling: Effect of in situ heat treatment","authors":"Maf Rafie, K. Marsilla, Z. Hamid, A. Rusli, M. Abdullah","doi":"10.1177/1477760619895018","DOIUrl":"https://doi.org/10.1177/1477760619895018","url":null,"abstract":"The objective of this study is to characterize the effect of in situ heat treatment on polylactic acid (PLA) and plasticized PLA during fused deposition modelling (FDM) with the motivation to improve their mechanical, thermal and physical properties. The in situ heat treatment was formed during the FDM by adjusting the bed temperature to 70°C, 90°C and 120°C. The performance of 3D, the printed samples, was compared with the compression moulded samples treated at the same temperature using a vacuum oven. PLA was plasticized with poly (ethylene glycol) (PEG) at different compositions of 0, 5 and 10 wt% of PEG. The properties of PLA, plasticized PLA and FDM-printed sample were analysed using Instron, differential scanning calorimeter (DSC) and X-ray diffraction (XRD). It was found that the addition of PEG into PLA decreased the tensile strength, elongation at break and tensile modulus of the materials. However, after heat treatment in the vacuum oven and FDM, the properties were generally higher at 90°C and this was believed to be primarily due to the effect of crystallization. This can be proved by formation of double melting peak, correspond to melt-crystallization mechanism, observed in DSC. The formation of different crystal was supported by XRD analysis where the amorphous peak had transformed into sharp peak at 16.9° and 19.3°, which indicates an improved crystallinity. Comparison between the compression moulded sample and FDM demonstrated that the in situ heat treatment in FDM had the most significant impact on tensile modulus.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"25 1","pages":"131 - 142"},"PeriodicalIF":2.6,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76696007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-05-01DOI: 10.1177/1477760619895026
V. Toteva, K. Stanulov
A huge amount of waste tires is generated every day in the world. This determines the search for ways to use them. The extended process of production and application of scrap tires leads to their significant mass accumulation, thus representing environmental risk. Tires are inert materials, extremely difficult to treat, and nonbiodegradable. In recent years, many plants have been built for processing, treatment, and utilization of this kind of waste. A problem has emerged to find a suitable, environmentally friendly application of the products (gaseous, liquid, and solid) from pyrolysis of the tires. Pyrolysis oil, which is a liquid product, is not suitable for direct use as fuel because of its high sulfur content. Therefore, the desulfurization of pyrolytic tire oil is an important part of the oil production process prior to its use. The objective of this article is to review the methods used for desulfurization of waste tire pyrolysis oils and the possibility of using scrap tires as a source of energy.
{"title":"Waste tires pyrolysis oil as a source of energy: Methods for refining","authors":"V. Toteva, K. Stanulov","doi":"10.1177/1477760619895026","DOIUrl":"https://doi.org/10.1177/1477760619895026","url":null,"abstract":"A huge amount of waste tires is generated every day in the world. This determines the search for ways to use them. The extended process of production and application of scrap tires leads to their significant mass accumulation, thus representing environmental risk. Tires are inert materials, extremely difficult to treat, and nonbiodegradable. In recent years, many plants have been built for processing, treatment, and utilization of this kind of waste. A problem has emerged to find a suitable, environmentally friendly application of the products (gaseous, liquid, and solid) from pyrolysis of the tires. Pyrolysis oil, which is a liquid product, is not suitable for direct use as fuel because of its high sulfur content. Therefore, the desulfurization of pyrolytic tire oil is an important part of the oil production process prior to its use. The objective of this article is to review the methods used for desulfurization of waste tire pyrolysis oils and the possibility of using scrap tires as a source of energy.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"69 1","pages":"143 - 158"},"PeriodicalIF":2.6,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90356419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}