Pub Date : 2022-12-30DOI: 10.1177/14777606221147933
Esraa E. Fathy, Mona Y. Elnaggar, Heba A. Raslan, M. Hassan
In several works, scientific researchers targeted the development of polymeric materials with good mechanical and thermal properties and resist heat and fire propagation. In a new approach, this article goals to the usage of waste polyvinyl chloride (WPVC) based polymer composites derived from PVC pipes scrap filled with fixed percent of zinc borate particles (ZnB), which were prepared via two different techniques named melt mixing WPVC/ZnB (M) and casting WPVC/ZnB (C). The fabricated composites by the two methods were irradiated in an electron beam accelerator (EB) at 30 kGy. A comparative study of the thermal and mechanical properties based on stress-strain curves, tensile strength (TS), elongation at break (E %), and tear strength were evaluated. Furthermore, the rate of heat burning (%) for the two methods has been performed. Moreover, differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), Infrared spectroscopy analysis (FTIR), X-ray diffraction (XRD), and the activation energy (Ea) calculation of the prepared samples have been considered. The observed improvements in the mechanical, thermal, and flammability behavior of WPVC were succeeded by incorporating ZnB particles. The irradiated WPVC loaded with zinc borate presented a superior flame propagation fraction when matched with their corresponding unirradiated composites. Also, WPVC composite films prepared via the melt mixing method reveal more excellent properties than those equipped by the casting process for the most investigated factors. Graphical Abstract
{"title":"Zn[B3O4(OH)3] composites fabrication based on PVC pipes scrap via comparing melt mixing and casting procedures under the effect of electron beam irradiation","authors":"Esraa E. Fathy, Mona Y. Elnaggar, Heba A. Raslan, M. Hassan","doi":"10.1177/14777606221147933","DOIUrl":"https://doi.org/10.1177/14777606221147933","url":null,"abstract":"In several works, scientific researchers targeted the development of polymeric materials with good mechanical and thermal properties and resist heat and fire propagation. In a new approach, this article goals to the usage of waste polyvinyl chloride (WPVC) based polymer composites derived from PVC pipes scrap filled with fixed percent of zinc borate particles (ZnB), which were prepared via two different techniques named melt mixing WPVC/ZnB (M) and casting WPVC/ZnB (C). The fabricated composites by the two methods were irradiated in an electron beam accelerator (EB) at 30 kGy. A comparative study of the thermal and mechanical properties based on stress-strain curves, tensile strength (TS), elongation at break (E %), and tear strength were evaluated. Furthermore, the rate of heat burning (%) for the two methods has been performed. Moreover, differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), Infrared spectroscopy analysis (FTIR), X-ray diffraction (XRD), and the activation energy (Ea) calculation of the prepared samples have been considered. The observed improvements in the mechanical, thermal, and flammability behavior of WPVC were succeeded by incorporating ZnB particles. The irradiated WPVC loaded with zinc borate presented a superior flame propagation fraction when matched with their corresponding unirradiated composites. Also, WPVC composite films prepared via the melt mixing method reveal more excellent properties than those equipped by the casting process for the most investigated factors. Graphical Abstract","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"48 1","pages":"213 - 232"},"PeriodicalIF":2.6,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89806405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-24DOI: 10.1177/14777606221147929
H. S., A. Nair, Sreedha Sambhudevan
Nickel ferrites (NIFs) come under the class of soft ferrites or transformer ferrites, which are highly demanding in the electronics industry and possess usual low conductivity and ferromagnetic properties, which results in decreased eddy current losses, good electrochemical stability, catalytic action, and abundance in nature. We discuss the synthesis, characterization, and impact of synthesized NIF fillers on the mechanical and solvent transport characteristics of rubber composites. Doped ferrite composites made of natural rubber and nitrile rubber were cured at various temperatures, and the solvent swelling properties of composites containing differently doped NIFs were examined in aromatic solvents like toluene. Properties of both rubber composites were examined, including their morphology, solvent uptake, diffusion coefficient, transport mechanism, and thermal stability. Natural rubber composites found to have better swelling properties than that of nitrile rubber composites. The solvent uptake was reduced with increase in filler loading also, the increase in sorption temperature increases the swelling rate in both systems. Theoretical calculations and modelling clearly state that the diffusion mechanism is due to the polymer swelling as well as polymer relaxation.
{"title":"Evaluation of molecular transport mechanism and interfacial interactions in doped ferrite rubber composites","authors":"H. S., A. Nair, Sreedha Sambhudevan","doi":"10.1177/14777606221147929","DOIUrl":"https://doi.org/10.1177/14777606221147929","url":null,"abstract":"Nickel ferrites (NIFs) come under the class of soft ferrites or transformer ferrites, which are highly demanding in the electronics industry and possess usual low conductivity and ferromagnetic properties, which results in decreased eddy current losses, good electrochemical stability, catalytic action, and abundance in nature. We discuss the synthesis, characterization, and impact of synthesized NIF fillers on the mechanical and solvent transport characteristics of rubber composites. Doped ferrite composites made of natural rubber and nitrile rubber were cured at various temperatures, and the solvent swelling properties of composites containing differently doped NIFs were examined in aromatic solvents like toluene. Properties of both rubber composites were examined, including their morphology, solvent uptake, diffusion coefficient, transport mechanism, and thermal stability. Natural rubber composites found to have better swelling properties than that of nitrile rubber composites. The solvent uptake was reduced with increase in filler loading also, the increase in sorption temperature increases the swelling rate in both systems. Theoretical calculations and modelling clearly state that the diffusion mechanism is due to the polymer swelling as well as polymer relaxation.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"7 1","pages":"197 - 212"},"PeriodicalIF":2.6,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88322919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-20DOI: 10.1177/14777606221147928
Muhammad Sarfraz, Waqas Liaqat, Mohsin Ali, A. Qaiser
Gaining considerable attention as valuable plastic static-dissipative materials, conductive polymer blends are used as supercapacitors, light emitting diodes, artificial muscles and biosensors. Thermoplastic vulcanizates (PECVs) were prepared by blending ethylene propylene diene monomer (EPDM) and polypropylene (PP) thermoplastic via in-situ compatibilization technique by using a suitable compatibilizer and curing system. Electrically conducting graphene filler was incorporated into the blend to impart electroconducting properties. Maintaining a constant PP/EPDM ratio of 80:20 for all specimens, PECVs containing different loadings of graphene filler were prepared through in-situ compatibilization method. Fourier-transform infrared spectroscopy analysis was performed to investigate chemical changes ensued as a result of compatibilization reactions. Addition of graphene into the blended PECVs slightly improved their processability and thermally stable as confirmed by tests performed on Differential Scanning Calorimetery and Thermogravimetric Analyser. Mechanical aspects of the blends, inspected by operating Universal Testing Machine and Rockwell Hardness Tester, were substantially improved on account of blend compatibilization and addition of graphene. Their electrical properties measured through four-probe technique revealed significant improvement in electrical conductivity of compatibilized PECVs due to incorporation of graphene filler.
{"title":"Graphene-integrated thermoplastic vulcanizates: Effects of in-situ vulcanization on structural, thermal, mechanical and electrical properties","authors":"Muhammad Sarfraz, Waqas Liaqat, Mohsin Ali, A. Qaiser","doi":"10.1177/14777606221147928","DOIUrl":"https://doi.org/10.1177/14777606221147928","url":null,"abstract":"Gaining considerable attention as valuable plastic static-dissipative materials, conductive polymer blends are used as supercapacitors, light emitting diodes, artificial muscles and biosensors. Thermoplastic vulcanizates (PECVs) were prepared by blending ethylene propylene diene monomer (EPDM) and polypropylene (PP) thermoplastic via in-situ compatibilization technique by using a suitable compatibilizer and curing system. Electrically conducting graphene filler was incorporated into the blend to impart electroconducting properties. Maintaining a constant PP/EPDM ratio of 80:20 for all specimens, PECVs containing different loadings of graphene filler were prepared through in-situ compatibilization method. Fourier-transform infrared spectroscopy analysis was performed to investigate chemical changes ensued as a result of compatibilization reactions. Addition of graphene into the blended PECVs slightly improved their processability and thermally stable as confirmed by tests performed on Differential Scanning Calorimetery and Thermogravimetric Analyser. Mechanical aspects of the blends, inspected by operating Universal Testing Machine and Rockwell Hardness Tester, were substantially improved on account of blend compatibilization and addition of graphene. Their electrical properties measured through four-probe technique revealed significant improvement in electrical conductivity of compatibilized PECVs due to incorporation of graphene filler.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"24 1","pages":"181 - 194"},"PeriodicalIF":2.6,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78280485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-20DOI: 10.1177/14777606221147932
R. Sailaja, M. Arun Kumar, Tanumoy Das, J. Rath, Sarat Ghosh, L. Jayakumari
Silica is a reinforcing filler which is known for its ability to improve wet/snow grip and rolling resistance in tyres. However, incorporating Silica in high quantities impairs other significant features like physical properties and processing behaviour of the compounds. In this study, the focus was on balancing rolling resistance and grip properties while attempting to nullify the negative effects of Silica, by arriving at an optimum ratio of combination of Carbon Black and Silica. Three different compounds were prepared – COMP_1 had CB:Silica in 2:1 ratio, whereas COMP_2 and COMP_3 had CB:Silica in the ratios 1:1 and 1:2 respectively. The impact of their dosage on various properties were investigated. Taking into consideration abrasion loss and grip properties, 1:1 ratio was deemed to possess the optimized ratio.
{"title":"Optimising filler dosage to balance rolling resistance and grip properties tyre tread compound","authors":"R. Sailaja, M. Arun Kumar, Tanumoy Das, J. Rath, Sarat Ghosh, L. Jayakumari","doi":"10.1177/14777606221147932","DOIUrl":"https://doi.org/10.1177/14777606221147932","url":null,"abstract":"Silica is a reinforcing filler which is known for its ability to improve wet/snow grip and rolling resistance in tyres. However, incorporating Silica in high quantities impairs other significant features like physical properties and processing behaviour of the compounds. In this study, the focus was on balancing rolling resistance and grip properties while attempting to nullify the negative effects of Silica, by arriving at an optimum ratio of combination of Carbon Black and Silica. Three different compounds were prepared – COMP_1 had CB:Silica in 2:1 ratio, whereas COMP_2 and COMP_3 had CB:Silica in the ratios 1:1 and 1:2 respectively. The impact of their dosage on various properties were investigated. Taking into consideration abrasion loss and grip properties, 1:1 ratio was deemed to possess the optimized ratio.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"13 1","pages":"169 - 180"},"PeriodicalIF":2.6,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84950456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-16DOI: 10.1177/14777606221145699
Nitya Narayan Kunti, R. Sengupta
The carbon black, used in rubber compound as reinforcing filler, improves the strength, durability, and wear resistance of the rubber compound. However, it causes filler-filler interaction and results in extensive hysteresis energy losses on deformation. This research aims to reduce hysteresis energy loss of rubber compound by reducing filler-filler interaction and by improving the filler dispersion in rubber matrix. In this study, the effect of carbon black treated with benzyl tri-ethyl ammonium chloride (BTEAC) on solution styrene butadiene rubber and butadiene rubber (SSBR-BR) system was studied. Microscopic study of dispersion and distribution of carbon black in rubber matrix was performed and a significant improvement in dispersion of BTEAC treated carbon black in SSBR-BR rubber matrix was observed. As a result of increased interaction of BTEAC treated carbon black with rubber, the filler - filler interaction was significantly reduced, resulting lower hysteresis energy loss of the compound as expressed by loss tangent (tanδ) value and it has been observed that an extent of around 15% reduction in tanδ value was achieved in rubber compound consisting of BTEAC treated carbon black. In this research, the carbon black was treated with different concentration of BTEAC, such as 0.5%, 1% and 1.5% and the best balance of rubber properties was observed for 1% and 1.5% BTEAC treated carbon black.
{"title":"Reduction of filler-filler interaction and hysteresis loss of carbon black filled rubber compound by using modified carbon Black","authors":"Nitya Narayan Kunti, R. Sengupta","doi":"10.1177/14777606221145699","DOIUrl":"https://doi.org/10.1177/14777606221145699","url":null,"abstract":"The carbon black, used in rubber compound as reinforcing filler, improves the strength, durability, and wear resistance of the rubber compound. However, it causes filler-filler interaction and results in extensive hysteresis energy losses on deformation. This research aims to reduce hysteresis energy loss of rubber compound by reducing filler-filler interaction and by improving the filler dispersion in rubber matrix. In this study, the effect of carbon black treated with benzyl tri-ethyl ammonium chloride (BTEAC) on solution styrene butadiene rubber and butadiene rubber (SSBR-BR) system was studied. Microscopic study of dispersion and distribution of carbon black in rubber matrix was performed and a significant improvement in dispersion of BTEAC treated carbon black in SSBR-BR rubber matrix was observed. As a result of increased interaction of BTEAC treated carbon black with rubber, the filler - filler interaction was significantly reduced, resulting lower hysteresis energy loss of the compound as expressed by loss tangent (tanδ) value and it has been observed that an extent of around 15% reduction in tanδ value was achieved in rubber compound consisting of BTEAC treated carbon black. In this research, the carbon black was treated with different concentration of BTEAC, such as 0.5%, 1% and 1.5% and the best balance of rubber properties was observed for 1% and 1.5% BTEAC treated carbon black.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"22 1","pages":"156 - 168"},"PeriodicalIF":2.6,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75826462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-14DOI: 10.1177/14777606221145703
H. Neve, Swapnil Thorat, Subramaniam Radhakrishnan
Commercially available recycled polypropylene (R-PP) and recycled bottle grade polyethylene terephthalate (R-PET) were melt compounded in different proportions of R-PET in twin screw extruder at temperatures used typically for PP processing. The melt flow behaviour was investigated for these blends using capillary rheometer at different temperatures viz. 230, 250, 260°C. The crystallization and structure development was studied using DSC and XRD. The melt viscosity (η) of these blends followed the usual non-Newtonian behaviour with decrease of η with high shear rate (γ′) and saturation at low shear rate. Most noteworthy finding was that the low shear viscosity at melt temperatures of 230 and 250 showed a peak with increase of R-PET content while at 260°C there was uniform decrease in the viscosity with addition of R-PET. The high shear viscosity also showed similar trend but with less pronounced changes. This was attributed to the cross over of domain shape from spherical to ellipsoidal and finally fibrous shape according to Utracki model. At the melt compounding/processing temperature of 230°C, the R-PET phase was in semi solid state and hence it formed fibrous morphology in the PP melt which was confirmed by SEM analysis. The most interesting finding was that crystallization of both the component polymers was affected due to the presence of the other. R-PP showed nucleation effect in presence of R-PET with the shift in Tc from 118°C to higher temperature side (123°C). Even R-PET exhibited shift in the Tc from 178°C to 201°C in presence of R-PP. These results are discussed in terms of nucleation and slow heat dissipation for PET domain in PP melt together with shear induced crystallization. These structural modifications in the R-PP/R-PET blends led to improvement in properties at certain compositions processed under certain conditions.
{"title":"Melt processing behaviour and structure development in recycled PP blends with recycled PET","authors":"H. Neve, Swapnil Thorat, Subramaniam Radhakrishnan","doi":"10.1177/14777606221145703","DOIUrl":"https://doi.org/10.1177/14777606221145703","url":null,"abstract":"Commercially available recycled polypropylene (R-PP) and recycled bottle grade polyethylene terephthalate (R-PET) were melt compounded in different proportions of R-PET in twin screw extruder at temperatures used typically for PP processing. The melt flow behaviour was investigated for these blends using capillary rheometer at different temperatures viz. 230, 250, 260°C. The crystallization and structure development was studied using DSC and XRD. The melt viscosity (η) of these blends followed the usual non-Newtonian behaviour with decrease of η with high shear rate (γ′) and saturation at low shear rate. Most noteworthy finding was that the low shear viscosity at melt temperatures of 230 and 250 showed a peak with increase of R-PET content while at 260°C there was uniform decrease in the viscosity with addition of R-PET. The high shear viscosity also showed similar trend but with less pronounced changes. This was attributed to the cross over of domain shape from spherical to ellipsoidal and finally fibrous shape according to Utracki model. At the melt compounding/processing temperature of 230°C, the R-PET phase was in semi solid state and hence it formed fibrous morphology in the PP melt which was confirmed by SEM analysis. The most interesting finding was that crystallization of both the component polymers was affected due to the presence of the other. R-PP showed nucleation effect in presence of R-PET with the shift in Tc from 118°C to higher temperature side (123°C). Even R-PET exhibited shift in the Tc from 178°C to 201°C in presence of R-PP. These results are discussed in terms of nucleation and slow heat dissipation for PET domain in PP melt together with shear induced crystallization. These structural modifications in the R-PP/R-PET blends led to improvement in properties at certain compositions processed under certain conditions.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"92 1","pages":"141 - 155"},"PeriodicalIF":2.6,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90964514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-12DOI: 10.1177/14777606221145702
Tanay Kuclourya, Roberto Monroy, R. Ahmad
Distributed Recycling via Additive Manufacturing (DRAM) is a closed-loop material reprocessing solution that promotes circular economy. There are several literature gaps related to material properties and recycling cycles at different stages of the DRAM process. With an approach to filling these gaps, a small contribution has been made through this work by comparing the effect of reprocessing cycles (recycling) with the effect of FDM printing parameters such as Raster angle orientation, Infill density and Extrusion Temperature. These four parameters are ranked based on their impact on the tensile properties of Polylactic Acid (PLA) dog bone specimens. The Design of Experiments via Taguchi Analysis is carried out to avoid analysis of a large number of samples. The results show that recycling has the maximum impact on the tensile properties of PLA samples and can reduce the tensile strength by up to 75% in the course of four reprocessing cycles. The specimens had Ultimate Tensile Strength (UTS) values in the range of 20–26 MPa at the first reprocessing cycle which dropped significantly to a range of 7–9 MPa after the fourth reprocessing cycle. Additionally, a novel analysis on time and the number of specimens to be 3D printed at each reprocessing stage has also been conducted to help future researchers manage their printing schedule, especially in the recycling domain.
{"title":"Design of experiments to compare the reprocessing effect with Fused Deposition Modeling printing parameters on mechanical properties of Polylactic Acid specimens towards circular economy","authors":"Tanay Kuclourya, Roberto Monroy, R. Ahmad","doi":"10.1177/14777606221145702","DOIUrl":"https://doi.org/10.1177/14777606221145702","url":null,"abstract":"Distributed Recycling via Additive Manufacturing (DRAM) is a closed-loop material reprocessing solution that promotes circular economy. There are several literature gaps related to material properties and recycling cycles at different stages of the DRAM process. With an approach to filling these gaps, a small contribution has been made through this work by comparing the effect of reprocessing cycles (recycling) with the effect of FDM printing parameters such as Raster angle orientation, Infill density and Extrusion Temperature. These four parameters are ranked based on their impact on the tensile properties of Polylactic Acid (PLA) dog bone specimens. The Design of Experiments via Taguchi Analysis is carried out to avoid analysis of a large number of samples. The results show that recycling has the maximum impact on the tensile properties of PLA samples and can reduce the tensile strength by up to 75% in the course of four reprocessing cycles. The specimens had Ultimate Tensile Strength (UTS) values in the range of 20–26 MPa at the first reprocessing cycle which dropped significantly to a range of 7–9 MPa after the fourth reprocessing cycle. Additionally, a novel analysis on time and the number of specimens to be 3D printed at each reprocessing stage has also been conducted to help future researchers manage their printing schedule, especially in the recycling domain.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"58 1","pages":"111 - 140"},"PeriodicalIF":2.6,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86940533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-22DOI: 10.1177/14777606221118637
R. Zitzumbo, M. B. Becerra, Beatriz Padilla-Rizo, A. Estrada-Monje, S. Alonso-Romero
The effect of natural rubber (NR) on the mechanical and performance properties of ground tire rubber (GTR) has been investigated. The mechanical properties of vulcanized GTR/NR blends were determined in a universal testing machine. It was found a decreasing in the mechanical properties of the GTR/NR blends as the number of re-vulcanization processes increases. This behavior was attributed to the decrease in the concentration on GTR in the vulcanized GTR/NR blend with respect to the next one, and to a structural net degradation into the re-vulcanized GTR/NR blend due to the reversion process (over vulcanization). In the loss modulus charts was observed that the peaks of the curves got smaller and wide as the re-vulcanization process increased, due to the mechanical loses and elastic gains of the GTR/NR re-vulcanized blends. On the other hand, in the performance results was found that the cut growth values of Flexion Ross were more affected by the thickness of the plaque of vulcanized rubber than for the number of re-vulcanization processes of the GTR/NR blend. In addition, as the re-vulcanization processes increased, the structural degradation of the tridimensional cross-linked net, increased as well, more severely from the fourth re-vulcanization process. It could be concluded that the GTR/NR blends with high GTR content, could be used in the sole shoe fabrication, taking care that the thickness is ≤ 4.5 mm, and that the GTR/NR blends have not been subjected to more than two re-vulcanization processes.
{"title":"Mechanical and performance properties of re-vulcanized blends of GTR/NR","authors":"R. Zitzumbo, M. B. Becerra, Beatriz Padilla-Rizo, A. Estrada-Monje, S. Alonso-Romero","doi":"10.1177/14777606221118637","DOIUrl":"https://doi.org/10.1177/14777606221118637","url":null,"abstract":"The effect of natural rubber (NR) on the mechanical and performance properties of ground tire rubber (GTR) has been investigated. The mechanical properties of vulcanized GTR/NR blends were determined in a universal testing machine. It was found a decreasing in the mechanical properties of the GTR/NR blends as the number of re-vulcanization processes increases. This behavior was attributed to the decrease in the concentration on GTR in the vulcanized GTR/NR blend with respect to the next one, and to a structural net degradation into the re-vulcanized GTR/NR blend due to the reversion process (over vulcanization). In the loss modulus charts was observed that the peaks of the curves got smaller and wide as the re-vulcanization process increased, due to the mechanical loses and elastic gains of the GTR/NR re-vulcanized blends. On the other hand, in the performance results was found that the cut growth values of Flexion Ross were more affected by the thickness of the plaque of vulcanized rubber than for the number of re-vulcanization processes of the GTR/NR blend. In addition, as the re-vulcanization processes increased, the structural degradation of the tridimensional cross-linked net, increased as well, more severely from the fourth re-vulcanization process. It could be concluded that the GTR/NR blends with high GTR content, could be used in the sole shoe fabrication, taking care that the thickness is ≤ 4.5 mm, and that the GTR/NR blends have not been subjected to more than two re-vulcanization processes.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"72 1","pages":"99 - 110"},"PeriodicalIF":2.6,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90774215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-27DOI: 10.1177/14777606221136152
M. Ramesan, S. Suvarna
This work insight into the structural, morphological, thermal, conductivity, dielectric and mechanical properties of chlorinated polyethylene/copper alumina (CPE/Cu-Al2O3) nanocomposites. The Fourier transform infrared spectra (FTIR) of the nanocomposites ensured the presence of Cu-Al2O3 in the polymer chains of chlorinated polyethylene. The X-ray diffractograms (XRD) clearly showed the amorphous nature of the pure polymer and the crystallinity imparted by the addition of the nanosized Cu-Al2O3 into the polymer. The surface morphology of CPE and CPE with different filler loadings was examined using a field-emission scanning electron microscope (FESEM), and the images showed the presence of hemispherical particles of nanometric size. The glass transition temperature (Tg) of the nanocomposite system was determined by differential scanning calorimetric analysis, and the Tg values showed an increase with the loading of nanoparticles. Investigation of electrical conductivity and impedance properties at room temperature with varying applied frequencies demonstrated an enhancement in electrical properties with the addition of nanoparticles. Dielectric constant and dielectric loss exhibit an increasing nature with frequency. The mechanical properties of the polymer nanocomposites, such as tensile strength, modulus, hardness, and impact resistance, were improved while their elongation at break was decreased by the addition of Cu-Al2O3. Several theoretical models were correlated with the experimental tensile strength to study the reinforcing mechanism of Cu-Al2O3 reinforced CPE.
{"title":"Effect of Cu-Al2O3 nanoparticles on the performance of chlorinated polyethylene nanocomposites","authors":"M. Ramesan, S. Suvarna","doi":"10.1177/14777606221136152","DOIUrl":"https://doi.org/10.1177/14777606221136152","url":null,"abstract":"This work insight into the structural, morphological, thermal, conductivity, dielectric and mechanical properties of chlorinated polyethylene/copper alumina (CPE/Cu-Al2O3) nanocomposites. The Fourier transform infrared spectra (FTIR) of the nanocomposites ensured the presence of Cu-Al2O3 in the polymer chains of chlorinated polyethylene. The X-ray diffractograms (XRD) clearly showed the amorphous nature of the pure polymer and the crystallinity imparted by the addition of the nanosized Cu-Al2O3 into the polymer. The surface morphology of CPE and CPE with different filler loadings was examined using a field-emission scanning electron microscope (FESEM), and the images showed the presence of hemispherical particles of nanometric size. The glass transition temperature (Tg) of the nanocomposite system was determined by differential scanning calorimetric analysis, and the Tg values showed an increase with the loading of nanoparticles. Investigation of electrical conductivity and impedance properties at room temperature with varying applied frequencies demonstrated an enhancement in electrical properties with the addition of nanoparticles. Dielectric constant and dielectric loss exhibit an increasing nature with frequency. The mechanical properties of the polymer nanocomposites, such as tensile strength, modulus, hardness, and impact resistance, were improved while their elongation at break was decreased by the addition of Cu-Al2O3. Several theoretical models were correlated with the experimental tensile strength to study the reinforcing mechanism of Cu-Al2O3 reinforced CPE.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"66 1","pages":"81 - 95"},"PeriodicalIF":2.6,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90630047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-26DOI: 10.1177/14777606221136155
Laura C Fujii, M. Shiino
The use of polymers in the automotive industry has been growing significantly, the recycling of these materials is a major challenge nowadays, since most polymer parts comprises of different types of polymers, and they are joined by chemical adhesives due to their lack of good compatibility. This characteristic hampers the recycling of such polymers, and makes separation economically unfeasible, as a consequence, their final destination has ended up in landfills. In this sense, the present research developed a technique to verify the recyclability of the manufacturing waste polymer auto parts from industry processes, through the polymer layup process to obtain a composite (fiberglass, polyester fiber, polyurethane) in the form of flat panel. To achieve the objectives, the polymers were individually analyzed by differential scanning calorimetry to assist in the definition of the overlap of joined polymers, in which differentiates from the conventional method of polymer blend by extrusion. The preformed polymer was consolidated by a hot press. The polymer composites were evaluated by three-point bending test and their structure was analyzed using scanning electron microscopy (SEM). The results in flexural properties indicate a suitable consolidation strategy when compared with results in literature, which is explained by the presence of glass fiber and PET in the final composition. Through the SEM images, it enabled to observe a good interface between the glass fiber and the polyester-based polymer matrix of the wastes, directly influencing the mechanical results of the material.
{"title":"Development of polyurethane/polyethylene terephthalate/fiber glass polymeric composite from internal auto parts waste","authors":"Laura C Fujii, M. Shiino","doi":"10.1177/14777606221136155","DOIUrl":"https://doi.org/10.1177/14777606221136155","url":null,"abstract":"The use of polymers in the automotive industry has been growing significantly, the recycling of these materials is a major challenge nowadays, since most polymer parts comprises of different types of polymers, and they are joined by chemical adhesives due to their lack of good compatibility. This characteristic hampers the recycling of such polymers, and makes separation economically unfeasible, as a consequence, their final destination has ended up in landfills. In this sense, the present research developed a technique to verify the recyclability of the manufacturing waste polymer auto parts from industry processes, through the polymer layup process to obtain a composite (fiberglass, polyester fiber, polyurethane) in the form of flat panel. To achieve the objectives, the polymers were individually analyzed by differential scanning calorimetry to assist in the definition of the overlap of joined polymers, in which differentiates from the conventional method of polymer blend by extrusion. The preformed polymer was consolidated by a hot press. The polymer composites were evaluated by three-point bending test and their structure was analyzed using scanning electron microscopy (SEM). The results in flexural properties indicate a suitable consolidation strategy when compared with results in literature, which is explained by the presence of glass fiber and PET in the final composition. Through the SEM images, it enabled to observe a good interface between the glass fiber and the polyester-based polymer matrix of the wastes, directly influencing the mechanical results of the material.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"170 1","pages":"64 - 80"},"PeriodicalIF":2.6,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86066734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}