Pub Date : 2022-05-30DOI: 10.1177/14777606221105298
R. Salih, R. H. Mohammed
Polymer composite materials were prepared using kaolinite nanoclay as reinforcement in different weight fractions (3, 5 and 7) %, and blends of epoxy and polymethyl methacrylate (PMMA) as matrices. The current work aims to prepare a composite material with good thermal and acoustic insulation, besides improved mechanical properties, and the investigation of the effect of this nano additive on the compatibility between the two constituents of the blend, and how this compatibility might be beneficial to the performance of the prepared composite. The blend with an optimum mixing ratio (OMR) was chosen via impact test results; thus, the (80:20) percentage of epoxy and PMMA was chosen. The reinforced specimens showed an improvement in mechanical (impact and flexural) properties besides sound insulation and thermal conductivity, with the specimen reinforced with 7% nanoclay having the highest impact strength (97*10−3) KJ/m2 and the highest thermal conductivity value of (0.34) W/m.°C, with a sound intensity value 95.6 decibels at frequency 10,000 Hz. The scanning electron microscope images showed two separate phases in the unreinforced blend. In comparison, the 7% reinforced specimen showed a rough interface between the two polymer phases, suggesting a positive effect of nanoclay addition on compatibility. The differential scanning calorimeter showed two distinct glass transition temperatures for both reinforced and neat specimens, which belong to the glass transitions of both constituents (epoxy and PMMA). The main difference is the lower temperature gradient accompanied with the (nanoclay/blend) composite than the neat one. Although the blend remained immiscible, nanoclay had contributed to the compatibility and improved mechanical properties.
{"title":"Influence of nanoclay as a compatibilizer and a reinforcement for polymer blends used as insulators","authors":"R. Salih, R. H. Mohammed","doi":"10.1177/14777606221105298","DOIUrl":"https://doi.org/10.1177/14777606221105298","url":null,"abstract":"Polymer composite materials were prepared using kaolinite nanoclay as reinforcement in different weight fractions (3, 5 and 7) %, and blends of epoxy and polymethyl methacrylate (PMMA) as matrices. The current work aims to prepare a composite material with good thermal and acoustic insulation, besides improved mechanical properties, and the investigation of the effect of this nano additive on the compatibility between the two constituents of the blend, and how this compatibility might be beneficial to the performance of the prepared composite. The blend with an optimum mixing ratio (OMR) was chosen via impact test results; thus, the (80:20) percentage of epoxy and PMMA was chosen. The reinforced specimens showed an improvement in mechanical (impact and flexural) properties besides sound insulation and thermal conductivity, with the specimen reinforced with 7% nanoclay having the highest impact strength (97*10−3) KJ/m2 and the highest thermal conductivity value of (0.34) W/m.°C, with a sound intensity value 95.6 decibels at frequency 10,000 Hz. The scanning electron microscope images showed two separate phases in the unreinforced blend. In comparison, the 7% reinforced specimen showed a rough interface between the two polymer phases, suggesting a positive effect of nanoclay addition on compatibility. The differential scanning calorimeter showed two distinct glass transition temperatures for both reinforced and neat specimens, which belong to the glass transitions of both constituents (epoxy and PMMA). The main difference is the lower temperature gradient accompanied with the (nanoclay/blend) composite than the neat one. Although the blend remained immiscible, nanoclay had contributed to the compatibility and improved mechanical properties.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"54 1","pages":"227 - 246"},"PeriodicalIF":2.6,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73532770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-25DOI: 10.1177/14777606221105293
D. Wijewardane, M. Senevirathna, S. Siriwardena, D. Edirisinghe, Ycy Sudusingha
Processability of thermoplastic natural rubber (TPNR) blends is a vital aspect in the preparation of blends for industrial applications and is assessed using different techniques. In this study, skim natural rubber/Polypropylene (SNR/PP) blends were prepared using melt mixing and their processability was examined in terms of mixing torque development, long-term processability, moving die rheometer (MDR) torque, thermo-gravimetric analysis (TGA), melt flow index (MFI) and morphological studies. A series of unvulcanized (UV) and dynamically vulcanized (DV) blends having 70/30, 60/40, 50/50, 40/60, and 30/70 SNR/PP compositions were prepared. Standard Lanka Rubber (SLR) and PP blends having corresponding ratios were also studied for the purpose of comparison. The study reveals that a high percentage of non-rubbers present in the SNR has positively influenced the processability of both UV and DV SNR/PP blends compared to SLR/PP blends as assessed by the mixing torque values. As suggested by the mixing torque development and long-term processability, natural rubber dominant both DV blends cannot be processed. However, they can be processed under low shear rates as shown in the MDR studies irrespective of the rubber type. Therefore, it can be inferred that these rubber dominant blends can be processed into molded products via compression molding technique. TGA studies revealed that a similar degree of protection has been offered to the blends against thermal degradation by SNR and SLR. MFI studies showed that there is no significant difference in flowability between UV SNR/PP blends and SLR/PP blends. However, for DV blends, SNR/PP blends showed a higher flowability than SLR/PP blends. In addition, increase in PP percentage in the blend enhances the flowability while dynamic vulcanization reduces the flowability irrespective of the type of rubber used in the blends. Morphological studies suggest continuous or co-continuous phase structures for UV blends and two-phase structures for DV blends where the plastic phase acts as the continuous phase.
{"title":"Preparation of skim natural rubber and polypropylene blends via melt blending: A study on processability","authors":"D. Wijewardane, M. Senevirathna, S. Siriwardena, D. Edirisinghe, Ycy Sudusingha","doi":"10.1177/14777606221105293","DOIUrl":"https://doi.org/10.1177/14777606221105293","url":null,"abstract":"Processability of thermoplastic natural rubber (TPNR) blends is a vital aspect in the preparation of blends for industrial applications and is assessed using different techniques. In this study, skim natural rubber/Polypropylene (SNR/PP) blends were prepared using melt mixing and their processability was examined in terms of mixing torque development, long-term processability, moving die rheometer (MDR) torque, thermo-gravimetric analysis (TGA), melt flow index (MFI) and morphological studies. A series of unvulcanized (UV) and dynamically vulcanized (DV) blends having 70/30, 60/40, 50/50, 40/60, and 30/70 SNR/PP compositions were prepared. Standard Lanka Rubber (SLR) and PP blends having corresponding ratios were also studied for the purpose of comparison. The study reveals that a high percentage of non-rubbers present in the SNR has positively influenced the processability of both UV and DV SNR/PP blends compared to SLR/PP blends as assessed by the mixing torque values. As suggested by the mixing torque development and long-term processability, natural rubber dominant both DV blends cannot be processed. However, they can be processed under low shear rates as shown in the MDR studies irrespective of the rubber type. Therefore, it can be inferred that these rubber dominant blends can be processed into molded products via compression molding technique. TGA studies revealed that a similar degree of protection has been offered to the blends against thermal degradation by SNR and SLR. MFI studies showed that there is no significant difference in flowability between UV SNR/PP blends and SLR/PP blends. However, for DV blends, SNR/PP blends showed a higher flowability than SLR/PP blends. In addition, increase in PP percentage in the blend enhances the flowability while dynamic vulcanization reduces the flowability irrespective of the type of rubber used in the blends. Morphological studies suggest continuous or co-continuous phase structures for UV blends and two-phase structures for DV blends where the plastic phase acts as the continuous phase.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"39 1","pages":"207 - 226"},"PeriodicalIF":2.6,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76634658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-12DOI: 10.1177/14777606221087287
M. Rahmani, A. Adamian, A. Hosseini-Sianaki
In this study, the effect of the simultaneous incorporation of different contents of CaCO3 nanoparticles (NPs) and waste ground rubber tire powder (WGRT) on the forced vibration behavior of polypropylene (PP) was experimentally investigated. Hammer test with modal analysis was performed to investigate the vibrational behavior of the composite plates with one edge clamped (CFFF) support condition. Microstructural assessment of composites using Field Emission Scanning Electron Microscope (FESEM) images showed that a rise in CaCO3 nanoparticles in small weight percentages led to better dispersion and a decline in the tire phase size in the small weight percentage of WGRT. Moreover, a comparison of the modal analysis results revealed that all ternary composites, except in the first mode, had a higher damped natural frequency than pure PP. The damping ratio of all ternary composites, especially in the first and second modes, was higher than pure PP, which is due to the combined effect of WGRT and CaCO3 nanoparticles in increasing energy dissipation and damping of composites.
{"title":"Simultaneous effect of CaCO3 nanoparticles and waste ground rubber tire powder on forced vibration of polypropylene nanocomposite plates: An experimental investigation","authors":"M. Rahmani, A. Adamian, A. Hosseini-Sianaki","doi":"10.1177/14777606221087287","DOIUrl":"https://doi.org/10.1177/14777606221087287","url":null,"abstract":"In this study, the effect of the simultaneous incorporation of different contents of CaCO3 nanoparticles (NPs) and waste ground rubber tire powder (WGRT) on the forced vibration behavior of polypropylene (PP) was experimentally investigated. Hammer test with modal analysis was performed to investigate the vibrational behavior of the composite plates with one edge clamped (CFFF) support condition. Microstructural assessment of composites using Field Emission Scanning Electron Microscope (FESEM) images showed that a rise in CaCO3 nanoparticles in small weight percentages led to better dispersion and a decline in the tire phase size in the small weight percentage of WGRT. Moreover, a comparison of the modal analysis results revealed that all ternary composites, except in the first mode, had a higher damped natural frequency than pure PP. The damping ratio of all ternary composites, especially in the first and second modes, was higher than pure PP, which is due to the combined effect of WGRT and CaCO3 nanoparticles in increasing energy dissipation and damping of composites.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"1 1","pages":"188 - 204"},"PeriodicalIF":2.6,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83097787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-09DOI: 10.1177/14777606221085988
M. Johar, K. Z. Zarkasi, F. Hashim, A. Rusli
This paper examines the effects of poly (ethylene-co-vinyl acetate) (EVA) with 40% vinyl acetate content on thermal, mechanical, rheological, and morphological properties of polylactic acid (PLA) blends. Thermal analysis indicated improvement of crystallinity in the presence of more EVA. With 15% EVA, the impact strength of the binary blend increased significantly (37.80 KJ/m2) at an optimum elongation at break due to the compatibility of the blend and the formation of fibrils. In the presence of % EVA, complete phase separation with the formation of EVA droplets in the PLA continuous phase resulted in a reduction of impact strength and elongation at break. Changes in compatibility and morphology lead to variation in rheological properties. The complex viscosity (η*) decreased with increasing EVA content up to 10% EVA but slightly increased at 15% EVA due to optimum interphase interaction between components in the compatible blend. In the presence of more than 20% EVA, η* reduced again due to the occurrence of phase separation. The variations in the mechanical and rheological properties of PLA/EVA blends are directly related to the state of compatibility and morphology of the blends.
{"title":"Thermal, mechanical, rheological and morphological properties of compatible poly(lactic acid)/ethylene vinyl acetate blends","authors":"M. Johar, K. Z. Zarkasi, F. Hashim, A. Rusli","doi":"10.1177/14777606221085988","DOIUrl":"https://doi.org/10.1177/14777606221085988","url":null,"abstract":"This paper examines the effects of poly (ethylene-co-vinyl acetate) (EVA) with 40% vinyl acetate content on thermal, mechanical, rheological, and morphological properties of polylactic acid (PLA) blends. Thermal analysis indicated improvement of crystallinity in the presence of more EVA. With 15% EVA, the impact strength of the binary blend increased significantly (37.80 KJ/m2) at an optimum elongation at break due to the compatibility of the blend and the formation of fibrils. In the presence of % EVA, complete phase separation with the formation of EVA droplets in the PLA continuous phase resulted in a reduction of impact strength and elongation at break. Changes in compatibility and morphology lead to variation in rheological properties. The complex viscosity (η*) decreased with increasing EVA content up to 10% EVA but slightly increased at 15% EVA due to optimum interphase interaction between components in the compatible blend. In the presence of more than 20% EVA, η* reduced again due to the occurrence of phase separation. The variations in the mechanical and rheological properties of PLA/EVA blends are directly related to the state of compatibility and morphology of the blends.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"15 1","pages":"172 - 187"},"PeriodicalIF":2.6,"publicationDate":"2022-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90315330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lanthanum cerium methionine was synthesized using the metathesis method and its molecular formula was confirmed as La0.35Ce0.65Cl3(C5H10NO2S)3·2H2O via Inductively Coupled Plasma Optical Emission Spectrometer, FTIR, and thermogravimetry-differential scanning calorimetry characterization methods. Lanthanum cerium methionine can significantly reduce the activation energy of the vulcanization reaction. The vulcanization kinetics model is used to fit the vulcanization curve of the rubber, and the obtained vulcanization activation energy of lanthanum cerium methionine for rubber is E1 = 76.89 KJ/mol, E2 = 102.36 KJ/mol and E3 = 126.00 KJ/mol. The above value is lower than pristine rubber. The Kissinger method and Flynn–Wall–Ozawa method were used to analyze the activation energy of thermal-oxidative degradation of vulcanized rubber. It was found that the rubber added with lanthanum cerium methionine exhibited higher thermal-oxidative degradation activation energy compared to that of pristine rubber; in addition, it was more difficult to age under the same environment. These results indicated that lanthanum cerium methionine can be not only used as a vulcanization accelerator, but also plays a role in resisting thermal and oxygen aging.
{"title":"Effect of lanthanum cerium methionine on the properties of natural rubber","authors":"Shuai Li, Zhaogang Liu, Wei Hao, Wentao Zhang, Yanhong Hu, Jinxiu Wu","doi":"10.1177/14777606211066320","DOIUrl":"https://doi.org/10.1177/14777606211066320","url":null,"abstract":"Lanthanum cerium methionine was synthesized using the metathesis method and its molecular formula was confirmed as La0.35Ce0.65Cl3(C5H10NO2S)3·2H2O via Inductively Coupled Plasma Optical Emission Spectrometer, FTIR, and thermogravimetry-differential scanning calorimetry characterization methods. Lanthanum cerium methionine can significantly reduce the activation energy of the vulcanization reaction. The vulcanization kinetics model is used to fit the vulcanization curve of the rubber, and the obtained vulcanization activation energy of lanthanum cerium methionine for rubber is E1 = 76.89 KJ/mol, E2 = 102.36 KJ/mol and E3 = 126.00 KJ/mol. The above value is lower than pristine rubber. The Kissinger method and Flynn–Wall–Ozawa method were used to analyze the activation energy of thermal-oxidative degradation of vulcanized rubber. It was found that the rubber added with lanthanum cerium methionine exhibited higher thermal-oxidative degradation activation energy compared to that of pristine rubber; in addition, it was more difficult to age under the same environment. These results indicated that lanthanum cerium methionine can be not only used as a vulcanization accelerator, but also plays a role in resisting thermal and oxygen aging.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"2 1","pages":"155 - 171"},"PeriodicalIF":2.6,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74350648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Consumption of coated abrasive discs in various automobile and pipe fitting application is increasing, due to its good surface finish. Coated abrasive disc consists of single layer of abrasive grain bonded to a fibre backing. The major portion of the disc is comprised of fibre backing. But the sustainability of the fibre backing is low and is dumped as waste after usage. The present work deals with the removal of resin coating and recovery of fibre backing from the spent coated abrasive discs using physical separation process such as sand blasting technique. Initially, the recovery experiment was carried out based on L16 orthogonal array. The factors and levels chosen for the experiments were erodent pressure (0.2, 0.4, 0.6 and 0.8 MPa), erodent size (36, 60, 80 and 120 grit), disc orientation (30, 45, 60 and 75°) and number of times flexing (5, 10, 15 and 20). The experimental result shows that erodent size and erodent pressure have a major impact on recovery of the fibre backing. The surface structure of the recovered backing was analysed using scanning electron microscopy and optical microscopy. The recovered backing was very much useful for the coated abrasive industry as the flexible backing and support material for abrasive grain coating.
{"title":"Process optimization and removal of phenol formaldehyde resin coating using mechanical erosion process","authors":"Sabarinathan Palaniyappan, Annamalai Veiravan, Vishal Kumar, Nitin Mathusoothanaperumal Sukanya, Dhinakaran Veeman","doi":"10.1177/14777606211066316","DOIUrl":"https://doi.org/10.1177/14777606211066316","url":null,"abstract":"Consumption of coated abrasive discs in various automobile and pipe fitting application is increasing, due to its good surface finish. Coated abrasive disc consists of single layer of abrasive grain bonded to a fibre backing. The major portion of the disc is comprised of fibre backing. But the sustainability of the fibre backing is low and is dumped as waste after usage. The present work deals with the removal of resin coating and recovery of fibre backing from the spent coated abrasive discs using physical separation process such as sand blasting technique. Initially, the recovery experiment was carried out based on L16 orthogonal array. The factors and levels chosen for the experiments were erodent pressure (0.2, 0.4, 0.6 and 0.8 MPa), erodent size (36, 60, 80 and 120 grit), disc orientation (30, 45, 60 and 75°) and number of times flexing (5, 10, 15 and 20). The experimental result shows that erodent size and erodent pressure have a major impact on recovery of the fibre backing. The surface structure of the recovered backing was analysed using scanning electron microscopy and optical microscopy. The recovered backing was very much useful for the coated abrasive industry as the flexible backing and support material for abrasive grain coating.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"9 1","pages":"141 - 154"},"PeriodicalIF":2.6,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85101118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-27DOI: 10.1177/14777606211062909
P. Rojruthai, Narueporn Payungwong, J. Sakdapipanich
A model study on the influence of some heavy metal ions on the stability and vulcanization efficiency of uncompounded and compounded high-ammonia natural rubber (HANR) latex was carried out by an exogenous addition and then determined by Brookfield viscometer, mechanical stability time (MST) tester, and tensile testing machine. The case of pre-vulcanized HANR latex with different aging times was determined by the change in the volatile fatty acid (VFA) number, MST, and viscosity. The compounded HANR latex was coagulated by adding Mn2+and Mg2+ while it was unaltered by adding Zn2+, Fe2+, and Cu2+ ions, leading to their colloidal stability. Therefore, these metal ions were chosen further to study the pre-vulcanization of compounded HANR latex. The presence of Zn2+, Fe2+, and Cu2+ in the latex is responsible for the delay in the vulcanization process and changes the appearance of compounded latex. Before compounding, the addition of such metal ions led to the reduction in tensile strength of the obtained gloves. At the same time, there was no effect on the tensile properties of the gloves made from the compounded HANR latex containing the metal ions.
{"title":"A model study on the impact of metal ions on pre-vulcanization of concentrated natural rubber latex and dipped-products","authors":"P. Rojruthai, Narueporn Payungwong, J. Sakdapipanich","doi":"10.1177/14777606211062909","DOIUrl":"https://doi.org/10.1177/14777606211062909","url":null,"abstract":"A model study on the influence of some heavy metal ions on the stability and vulcanization efficiency of uncompounded and compounded high-ammonia natural rubber (HANR) latex was carried out by an exogenous addition and then determined by Brookfield viscometer, mechanical stability time (MST) tester, and tensile testing machine. The case of pre-vulcanized HANR latex with different aging times was determined by the change in the volatile fatty acid (VFA) number, MST, and viscosity. The compounded HANR latex was coagulated by adding Mn2+and Mg2+ while it was unaltered by adding Zn2+, Fe2+, and Cu2+ ions, leading to their colloidal stability. Therefore, these metal ions were chosen further to study the pre-vulcanization of compounded HANR latex. The presence of Zn2+, Fe2+, and Cu2+ in the latex is responsible for the delay in the vulcanization process and changes the appearance of compounded latex. Before compounding, the addition of such metal ions led to the reduction in tensile strength of the obtained gloves. At the same time, there was no effect on the tensile properties of the gloves made from the compounded HANR latex containing the metal ions.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"21 11","pages":"125 - 138"},"PeriodicalIF":2.6,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72372266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-22DOI: 10.1177/14777606211062912
Saghar Baghban, K. Mo, Z. Ibrahim, Mohammed K. H. Radwan, Syed Nasir Shah
This paper aims to study the influence of basalt fiber (BF) and polypropylene fiber (PPF) in crumb rubber (CR) mortar made of two different types of cement, including ordinary Portland cement (OPC) and calcium aluminate cement (CAC). CR was used to partially (5%, 10%, 15%, and 20% by volume) replace the fine aggregate in OPC and CAC mortars. BF and PPF were added (0.1%, 0.3%, and 0.5% by total volume) in the CR mortars. The consistency, density, compressive, and flexural strength of cement mortars were investigated. The use of CAC cement slightly increased the consistency; however, the results showed that the CR replacement and the addition of both fiber types tend to reduce the consistency in OPC and CAC mortars. Significant reduction in the density of fiber-added CR mortar was found with increasing CR content, whereas the influence of both PPF and BF was minimal. The fiber-added CR mortar made of both binder and fiber types in general exhibited a reducing trend in the 28 days compressive strength when increasing CR and fiber contents. Nevertheless, an enhancement in the compressive strength of CAC mortar with 20% CR was found with the addition of 0.1% of both fibers. The use of CR and addition of the fibers generally decreased the flexural strength of mortar made of both binder types; however, the addition of 0.3% BF in mortars containing 15–20% CR positively affected the flexural performance. Finally, the artificial neural network (ANN) approach demonstrated the ability to predict the compressive strength of fiber-added CR mortars. The model showed a considerably insignificant mean square error (MSE) of 1.4–1.5 and high plot regression (R) results of 0.97–0.98.
{"title":"Effect of basalt and polypropylene fibers on crumb rubber mortar with Portland cement and calcium aluminate cement binders: Strength and artificial neural network prediction model","authors":"Saghar Baghban, K. Mo, Z. Ibrahim, Mohammed K. H. Radwan, Syed Nasir Shah","doi":"10.1177/14777606211062912","DOIUrl":"https://doi.org/10.1177/14777606211062912","url":null,"abstract":"This paper aims to study the influence of basalt fiber (BF) and polypropylene fiber (PPF) in crumb rubber (CR) mortar made of two different types of cement, including ordinary Portland cement (OPC) and calcium aluminate cement (CAC). CR was used to partially (5%, 10%, 15%, and 20% by volume) replace the fine aggregate in OPC and CAC mortars. BF and PPF were added (0.1%, 0.3%, and 0.5% by total volume) in the CR mortars. The consistency, density, compressive, and flexural strength of cement mortars were investigated. The use of CAC cement slightly increased the consistency; however, the results showed that the CR replacement and the addition of both fiber types tend to reduce the consistency in OPC and CAC mortars. Significant reduction in the density of fiber-added CR mortar was found with increasing CR content, whereas the influence of both PPF and BF was minimal. The fiber-added CR mortar made of both binder and fiber types in general exhibited a reducing trend in the 28 days compressive strength when increasing CR and fiber contents. Nevertheless, an enhancement in the compressive strength of CAC mortar with 20% CR was found with the addition of 0.1% of both fibers. The use of CR and addition of the fibers generally decreased the flexural strength of mortar made of both binder types; however, the addition of 0.3% BF in mortars containing 15–20% CR positively affected the flexural performance. Finally, the artificial neural network (ANN) approach demonstrated the ability to predict the compressive strength of fiber-added CR mortars. The model showed a considerably insignificant mean square error (MSE) of 1.4–1.5 and high plot regression (R) results of 0.97–0.98.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"41 1","pages":"99 - 124"},"PeriodicalIF":2.6,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85757594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-06DOI: 10.1177/14777606211042030
Trinh Thi Minh Hang, I. Mahendra, T. M. Thang, S. Kawahara, P. T. Nghia
The temperature glass behavior of epoxy deproteinized natural rubber/polymethylmethacrylate/lithium trifluoromethanesulfonate (EDPNR/PMMA/LiCF3SO3) and the conductivity behavior of EDPNR in the ternary blends were studied by DSC and multichannel potentiostat. The DSC result revealed the temperature glass of the EDPNR was shifted to the right with the increase of lithium salt amount in these binary blends composition. However, in the ternary blends of EDPNR/PMMA/LiCF3SO3 the temperature glass revealed the miscibility of these ternary blends. Two different temperature glass values were obtained when the ratio of EDPNR in EDPNR/PMMA was less than 80 wt.%. The ionic conductivity of EDPNR could be improved by increasing the amount of lithium salt up to 35 wt.%, after this amount the ionic conductivity of EDPNR was significantly decreased. While in the ternary blends, the highest ionic conductivity value was found at the ratio 80/20 of EDPNR/PMMA. Furthermore, the factors influencing the temperature glass and conductivity behavior of EDPNR were systematically studied in this work. The results demonstrated an intimate correlation between temperature glass and conductivity behavior of EDPNR.
{"title":"Temperature glass and conductivity behavior of epoxy deproteinized natural rubber in ternary blend of EDPNR/PMMA/LiCF3SO3","authors":"Trinh Thi Minh Hang, I. Mahendra, T. M. Thang, S. Kawahara, P. T. Nghia","doi":"10.1177/14777606211042030","DOIUrl":"https://doi.org/10.1177/14777606211042030","url":null,"abstract":"The temperature glass behavior of epoxy deproteinized natural rubber/polymethylmethacrylate/lithium trifluoromethanesulfonate (EDPNR/PMMA/LiCF3SO3) and the conductivity behavior of EDPNR in the ternary blends were studied by DSC and multichannel potentiostat. The DSC result revealed the temperature glass of the EDPNR was shifted to the right with the increase of lithium salt amount in these binary blends composition. However, in the ternary blends of EDPNR/PMMA/LiCF3SO3 the temperature glass revealed the miscibility of these ternary blends. Two different temperature glass values were obtained when the ratio of EDPNR in EDPNR/PMMA was less than 80 wt.%. The ionic conductivity of EDPNR could be improved by increasing the amount of lithium salt up to 35 wt.%, after this amount the ionic conductivity of EDPNR was significantly decreased. While in the ternary blends, the highest ionic conductivity value was found at the ratio 80/20 of EDPNR/PMMA. Furthermore, the factors influencing the temperature glass and conductivity behavior of EDPNR were systematically studied in this work. The results demonstrated an intimate correlation between temperature glass and conductivity behavior of EDPNR.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"10 1","pages":"89 - 98"},"PeriodicalIF":2.6,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89370467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-03DOI: 10.1177/14777606211038951
Haopeng Wang, Xueyan Liu, A. Varveri, Hongzhi Zhang, S. Erkens, A. Skarpas, Z. Leng
Considering the application scenarios of rubber granules from waste tires in the bitumen modification process (wet or dry process), both aerobic and anaerobic aging of rubber may occur. The current study aims to investigate the thermal aging behavior of waste tire rubber samples using nanoindentation and environment scanning electron microscopy (ESEM) tests. Both aerobic and anaerobic aging tests with different durations were conducted on rubber samples. The complex moduli of aged rubber samples were measured by nanoindentation tests. The surface morphology and elemental composition of aged samples were obtained by ESEM tests together with the energy dispersive X-ray analysis. Results have shown that for both aerobic and anaerobic aging, the equilibrium modulus derived from the complex modulus curve first increases and then decreases with aging time. However, the time needed for the aerobically aged sample to reach the maximum equilibrium modulus is shorter than the anaerobic case. Aging results in crack propagation and an increase of sulfur content on the rubber surface until it reaches the peak. The degree of crosslinking reflected by sulfur content for anaerobic aging is higher than aerobic aging. The morphological change and elemental change of rubber correlate well with the change of mechanical properties. The aging of rubber from the waste truck tire at 180°C can generally be separated into two stages: crosslinking dominant stage and chain scission dominant stage.
{"title":"Thermal aging behaviors of the waste tire rubber used in bitumen modification","authors":"Haopeng Wang, Xueyan Liu, A. Varveri, Hongzhi Zhang, S. Erkens, A. Skarpas, Z. Leng","doi":"10.1177/14777606211038951","DOIUrl":"https://doi.org/10.1177/14777606211038951","url":null,"abstract":"Considering the application scenarios of rubber granules from waste tires in the bitumen modification process (wet or dry process), both aerobic and anaerobic aging of rubber may occur. The current study aims to investigate the thermal aging behavior of waste tire rubber samples using nanoindentation and environment scanning electron microscopy (ESEM) tests. Both aerobic and anaerobic aging tests with different durations were conducted on rubber samples. The complex moduli of aged rubber samples were measured by nanoindentation tests. The surface morphology and elemental composition of aged samples were obtained by ESEM tests together with the energy dispersive X-ray analysis. Results have shown that for both aerobic and anaerobic aging, the equilibrium modulus derived from the complex modulus curve first increases and then decreases with aging time. However, the time needed for the aerobically aged sample to reach the maximum equilibrium modulus is shorter than the anaerobic case. Aging results in crack propagation and an increase of sulfur content on the rubber surface until it reaches the peak. The degree of crosslinking reflected by sulfur content for anaerobic aging is higher than aerobic aging. The morphological change and elemental change of rubber correlate well with the change of mechanical properties. The aging of rubber from the waste truck tire at 180°C can generally be separated into two stages: crosslinking dominant stage and chain scission dominant stage.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"260 1","pages":"56 - 69"},"PeriodicalIF":2.6,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76698370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}