Pub Date : 2023-05-15DOI: 10.1177/14777606231175921
S. Behera, R. Gautam, S. Mohan, A. Tiwari
Egg shells and fish scales are two abundantly available by-products from food industries which can be used as filler materials to reinforce polymer composites. The bulk of discarded chicken eggshells and fish scales are disposed of in landfills, which cause environmental issues. The present research work focuses on the water absorption, mechanical and tribological properties of epoxy composites reinforced with chicken eggshells and catla fish scale particles. Hybrid composites incorporating both fillers were also made and evaluated. Results from the water absorption tests showed that the addition of fillers decreased the water absorption of the composites than neat epoxy. Tensile and impact tests revealed that the inclusion of fillers reduced the tensile and impact strength of the composites compared to neat epoxy, but improved the tensile modulus. The hybrid composite (EFREC) showed improvement in both flexural strength and modulus in comparison to neat epoxy. Also, the results from the wear tests revealed that the addition of fillers improved the wear resistance of the composites. Among all the mechanical and wear tested composite specimens, the hybrid composite (EFREC) showed the best performance. This was also validated from the SEM images of the fracture and wear surfaces of the composites.
{"title":"Mechanical, water absorption and tribological properties of epoxy composites filled with waste eggshell and fish scale particles","authors":"S. Behera, R. Gautam, S. Mohan, A. Tiwari","doi":"10.1177/14777606231175921","DOIUrl":"https://doi.org/10.1177/14777606231175921","url":null,"abstract":"Egg shells and fish scales are two abundantly available by-products from food industries which can be used as filler materials to reinforce polymer composites. The bulk of discarded chicken eggshells and fish scales are disposed of in landfills, which cause environmental issues. The present research work focuses on the water absorption, mechanical and tribological properties of epoxy composites reinforced with chicken eggshells and catla fish scale particles. Hybrid composites incorporating both fillers were also made and evaluated. Results from the water absorption tests showed that the addition of fillers decreased the water absorption of the composites than neat epoxy. Tensile and impact tests revealed that the inclusion of fillers reduced the tensile and impact strength of the composites compared to neat epoxy, but improved the tensile modulus. The hybrid composite (EFREC) showed improvement in both flexural strength and modulus in comparison to neat epoxy. Also, the results from the wear tests revealed that the addition of fillers improved the wear resistance of the composites. Among all the mechanical and wear tested composite specimens, the hybrid composite (EFREC) showed the best performance. This was also validated from the SEM images of the fracture and wear surfaces of the composites.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"42 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91098735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-09DOI: 10.1177/14777606231174919
A. Verma, H. Pramanik
The main objective of this study is to enhance the valuable octane booster aromatics benzene, toluene, and ethylbenzene (BTE) and reduction of styrene in the fuel oil obtained from the pyrolysis of equally mixed waste expanded polystyrene (WEPS) and waste high density polyethylene (WHDPE). This research article, demonstrated the pyrolysis of equally mixed (50 wt.%:50 wt.%) waste expanded polystyrene (WEPS) and waste high-density polyethylene (WHDPE) followed by in situ-hydrogenation and aromatization in a small laboratory scale reactor for the production of value added commodity and gasoline octane boosters mainly benzene, toluene, and ethylbenzene (BTE). Three reactor arrangements i.e., liquid phase/L-type, vapour phase/V-type, and multiphase/M-type were used for conducting the catalytic pyrolysis of feedstock using ZSM-5, ammonium powder as a catalyst. The maximum liquid yield of 87.41 wt.% was obtained for thermal pyrolysis at a temperature of 650°C and at a heating rate of 15°C/min. Whereas, the maximum liquid yield of 82.65 wt.% was obtained for liquid phase/L-type catalytic pyrolysis at a temperature of 600°C, and at a heating rate of 15°C/min. On the other side, vapour phase/V-type and multiphase/M-type catalytic pyrolysis produced a maximum liquid yield of 78.62 wt.% and 74.07 wt.%, respectively at a reaction temperature of 550°C and at the same heating rate. The pyrolysis oil obtained from thermal pyrolysis contained lowest BTE content of 10.43 wt.% and highest styrene content of 66.25 wt.%. Whereas, the highest BTE content of 30.16 wt.% and lowest styrene content of 53.32 wt.% was found in pyrolysis oil obtained from multiphase/M-type catalytic pyrolysis. The quantitative measurement of BTE and styrene content in the pyrolysis oil was made by the gas chromatography (GC) in a flame ionization detector (FID) mode.
{"title":"Production of gasoline octane booster aromatics benzene, toluene and ethylbenzene from multiphase catalytic pyrolysis of mixed waste expanded polystyrene and high density polyethylene","authors":"A. Verma, H. Pramanik","doi":"10.1177/14777606231174919","DOIUrl":"https://doi.org/10.1177/14777606231174919","url":null,"abstract":"The main objective of this study is to enhance the valuable octane booster aromatics benzene, toluene, and ethylbenzene (BTE) and reduction of styrene in the fuel oil obtained from the pyrolysis of equally mixed waste expanded polystyrene (WEPS) and waste high density polyethylene (WHDPE). This research article, demonstrated the pyrolysis of equally mixed (50 wt.%:50 wt.%) waste expanded polystyrene (WEPS) and waste high-density polyethylene (WHDPE) followed by in situ-hydrogenation and aromatization in a small laboratory scale reactor for the production of value added commodity and gasoline octane boosters mainly benzene, toluene, and ethylbenzene (BTE). Three reactor arrangements i.e., liquid phase/L-type, vapour phase/V-type, and multiphase/M-type were used for conducting the catalytic pyrolysis of feedstock using ZSM-5, ammonium powder as a catalyst. The maximum liquid yield of 87.41 wt.% was obtained for thermal pyrolysis at a temperature of 650°C and at a heating rate of 15°C/min. Whereas, the maximum liquid yield of 82.65 wt.% was obtained for liquid phase/L-type catalytic pyrolysis at a temperature of 600°C, and at a heating rate of 15°C/min. On the other side, vapour phase/V-type and multiphase/M-type catalytic pyrolysis produced a maximum liquid yield of 78.62 wt.% and 74.07 wt.%, respectively at a reaction temperature of 550°C and at the same heating rate. The pyrolysis oil obtained from thermal pyrolysis contained lowest BTE content of 10.43 wt.% and highest styrene content of 66.25 wt.%. Whereas, the highest BTE content of 30.16 wt.% and lowest styrene content of 53.32 wt.% was found in pyrolysis oil obtained from multiphase/M-type catalytic pyrolysis. The quantitative measurement of BTE and styrene content in the pyrolysis oil was made by the gas chromatography (GC) in a flame ionization detector (FID) mode.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"61 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84691714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-09DOI: 10.1177/14777606231168653
F. Belblidia, M. Gabr, J. Pittman, Abisheera Rajkumar
An account is presented of successfully implemented Extended Producer Responsibility (EPR) with recycling to high value products, to help overcome barriers and generate confidence in moving towards Circular Economy (CE) business models. A template for organisations proposing to recycle a thermoplastic is provided by describing appropriate tests and considerations in implementing the recovery and re-use of high impact polystyrene (HIPS) based on a practical, industry case. Simulating the repeated 100% closed loop reprocessing of production scrap, original HIPS has been injection molded to produce tensile and impact test pieces, reground and reprocessed eight times. Assessing the present results together with literature, repeated recycling of production scrap is possible without the need for a remedial compounding step, or changes to processing parameters. Integral to the EPR model is recovery of plastic from returned end-of-life (EoL) products, and in relation to the in-use environment, studies of the effects of UV exposure on virgin material show that significant property degradation can occur. However, with indoor use, as in the present case, this is not seen. Within the CE business model it is desirable to use blends of recovered HIPS originating from different original resin manufacturers. Feeding dry blend regrind directly to the molding machine proved satisfactory, avoiding the need for a compounding/pelletizing step. As an outcome of this study, products are being successfully manufactured from 100% HIPS recovered from EoL products in an environmentally and economically positive CE plan.
{"title":"Recycling high impact polystyrene: Material properties and reprocessing in a circular economy business model","authors":"F. Belblidia, M. Gabr, J. Pittman, Abisheera Rajkumar","doi":"10.1177/14777606231168653","DOIUrl":"https://doi.org/10.1177/14777606231168653","url":null,"abstract":"An account is presented of successfully implemented Extended Producer Responsibility (EPR) with recycling to high value products, to help overcome barriers and generate confidence in moving towards Circular Economy (CE) business models. A template for organisations proposing to recycle a thermoplastic is provided by describing appropriate tests and considerations in implementing the recovery and re-use of high impact polystyrene (HIPS) based on a practical, industry case. Simulating the repeated 100% closed loop reprocessing of production scrap, original HIPS has been injection molded to produce tensile and impact test pieces, reground and reprocessed eight times. Assessing the present results together with literature, repeated recycling of production scrap is possible without the need for a remedial compounding step, or changes to processing parameters. Integral to the EPR model is recovery of plastic from returned end-of-life (EoL) products, and in relation to the in-use environment, studies of the effects of UV exposure on virgin material show that significant property degradation can occur. However, with indoor use, as in the present case, this is not seen. Within the CE business model it is desirable to use blends of recovered HIPS originating from different original resin manufacturers. Feeding dry blend regrind directly to the molding machine proved satisfactory, avoiding the need for a compounding/pelletizing step. As an outcome of this study, products are being successfully manufactured from 100% HIPS recovered from EoL products in an environmentally and economically positive CE plan.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"16 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81818562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-06DOI: 10.1177/14777606231174915
P. Chaiwutthinan, Chalermkiat Phetreung, A. Larpkasemsuk
The synergistic effects of thermoplastic poly(ether-ester) elastomer (TPEE) and bentonite nanoclay on mechanical, morphological, thermal, and dynamic mechanical properties of recycled poly(ethylene terephthalate) (R-PET) were investigated. The efficiency of TPEE as impact modifier for the R-PET was evidenced by a significant increase in the impact strength and elongation at break with increasing TPEE contents (from 10 to 30 wt%), while the tensile strength and Young’s modulus exhibited an opposite trend. The 70/30 (wt%/wt%) R-PET/TPEE blend was selected as an optimum formulation for further blending with a very low loading of bentonite (1−5 parts per hundred of resin, phr) using the same processing techniques (extruding and injection molding). X-ray diffraction and transmission electron microscopy revealed that the 1 phr bentonite nanocomposite exhibited an exfoliated structure with the highest improvement in the mechanical properties compared with other nanocomposites and the unfilled blend. Meanwhile, the nanocomposites with 2, 3, and 5 phr bentonite formed tactoid or agglomerated bentonite morphology. Differential scanning calorimetry, thermogravimetric and dynamic mechanical analyses demonstrated a noticeable increase in the crystallization temperature, a comparable thermal stability, and a slight increase in the glass transition temperature, respectively, of all nanocomposites when compared with those of the neat R-PET. Graphical Abstract
{"title":"Effects of thermoplastic poly(ether-ester) elastomer and bentonite on properties of recycled poly(ethylene terephthalate)","authors":"P. Chaiwutthinan, Chalermkiat Phetreung, A. Larpkasemsuk","doi":"10.1177/14777606231174915","DOIUrl":"https://doi.org/10.1177/14777606231174915","url":null,"abstract":"The synergistic effects of thermoplastic poly(ether-ester) elastomer (TPEE) and bentonite nanoclay on mechanical, morphological, thermal, and dynamic mechanical properties of recycled poly(ethylene terephthalate) (R-PET) were investigated. The efficiency of TPEE as impact modifier for the R-PET was evidenced by a significant increase in the impact strength and elongation at break with increasing TPEE contents (from 10 to 30 wt%), while the tensile strength and Young’s modulus exhibited an opposite trend. The 70/30 (wt%/wt%) R-PET/TPEE blend was selected as an optimum formulation for further blending with a very low loading of bentonite (1−5 parts per hundred of resin, phr) using the same processing techniques (extruding and injection molding). X-ray diffraction and transmission electron microscopy revealed that the 1 phr bentonite nanocomposite exhibited an exfoliated structure with the highest improvement in the mechanical properties compared with other nanocomposites and the unfilled blend. Meanwhile, the nanocomposites with 2, 3, and 5 phr bentonite formed tactoid or agglomerated bentonite morphology. Differential scanning calorimetry, thermogravimetric and dynamic mechanical analyses demonstrated a noticeable increase in the crystallization temperature, a comparable thermal stability, and a slight increase in the glass transition temperature, respectively, of all nanocomposites when compared with those of the neat R-PET. Graphical Abstract","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"1 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84577401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-29DOI: 10.1177/14777606231168655
Hakimeh Pakbar, S. Ostad Movahed, S. Jourabchi
The absence of an effective technique for separation of an individual plastic from a mixture of plastics, is one of the most important concern in plastics waste management. The recently introduced floatation technique used to separate the selected engineering plastics including, polystyrene (PS), polyethylene terephthalate (PET), and polyvinylchloride (PVC) from each other. The floatation was assisted by using the traditional depressants (chemical agents). The effects of plastics surface pre-microwave irradiation at different microwave output powers, 20–100% studied on the floatation of each plastic. Also, the effect of depressant concentration, 400–2000 mg/L on the plastics floatation was evaluated. The results showed the pre-microwave irradiation of the plastics surface at different microwave output powers and depressant concentrations had important influence on the sink-float behavior of the studied plastics with the exception of PET. It seemed, the number and type of the active sites on the plastics surface changed after microwave irradiation. There was not any regular trend for the floatability of a plastic with increasing the microwave output power. The results reinforced by the traditional identification techniques including contact angle (θ) measurement, scanning electron microscope (SEM) images, and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectra analysis. The driven equations by a design of experiment software (Design-Expert ®) showed suitable conformity between the predicted and actual plastics flotation values.
{"title":"The effect of pre-microwave irradiation on the floatation of polystyrene, polyethylene terephthalate, and polyvinylchloride using numerous traditional depressants","authors":"Hakimeh Pakbar, S. Ostad Movahed, S. Jourabchi","doi":"10.1177/14777606231168655","DOIUrl":"https://doi.org/10.1177/14777606231168655","url":null,"abstract":"The absence of an effective technique for separation of an individual plastic from a mixture of plastics, is one of the most important concern in plastics waste management. The recently introduced floatation technique used to separate the selected engineering plastics including, polystyrene (PS), polyethylene terephthalate (PET), and polyvinylchloride (PVC) from each other. The floatation was assisted by using the traditional depressants (chemical agents). The effects of plastics surface pre-microwave irradiation at different microwave output powers, 20–100% studied on the floatation of each plastic. Also, the effect of depressant concentration, 400–2000 mg/L on the plastics floatation was evaluated. The results showed the pre-microwave irradiation of the plastics surface at different microwave output powers and depressant concentrations had important influence on the sink-float behavior of the studied plastics with the exception of PET. It seemed, the number and type of the active sites on the plastics surface changed after microwave irradiation. There was not any regular trend for the floatability of a plastic with increasing the microwave output power. The results reinforced by the traditional identification techniques including contact angle (θ) measurement, scanning electron microscope (SEM) images, and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectra analysis. The driven equations by a design of experiment software (Design-Expert ®) showed suitable conformity between the predicted and actual plastics flotation values.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"1 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87080968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-28DOI: 10.1177/14777606221145706
Mete Bakir
The effective, high-value reutilization of reclaimed rubber, obtained from end-of-life tires, in the production of new high-performance tires remains an environmental and technological challenge. Cryogenically ground micron-sized rubber particles demonstrate a significant promise to realize satisfactory physical performance measures in reclaimed rubber-based tires. However, the maximum useable content of the cryogenically ground micron-sized rubber particles to be incorporated into tires is strictly limited by their ineffective interfacial chemical interactions with the host pristine rubber matrix during the post-polymerization process. Here, this work presents the non-covalent chemical functionalization of the cryogenically ground micron-sized styrene-butadiene rubber particles with reactive silica particles via a solid-state cryogenic mixing process. The highly-scalable solid-state mixing process enables the sufficiently uniform and near-homogenous distribution of the silica particles on the micron-sized rubber particles. Scanning electron microscope images highlight the micron-sized rubber particles decorated with individual silica particles. Fourier transform infrared and solid-state nuclear magnetic resonance spectra of the functionalized micron-sized rubber particles demonstrate a non-covalent conjugation mechanism between the silica and rubber particles in which the chemical fingerprint of the prime rubber backbone chains remains chemically intact. The chemically functionalized cryogenically ground micron-sized rubber particles possess reactive silica particle sites that are ultimately designed to facilitate the participation of the recycled rubber particles in post-polymerization processes with host matrix which shall allow higher loading levels than the state-of-the-art configurations.
{"title":"Non-covalent chemical functionalization of micron-sized styrene-butadiene rubber with silica particles via solid-state cryogenic mixing process","authors":"Mete Bakir","doi":"10.1177/14777606221145706","DOIUrl":"https://doi.org/10.1177/14777606221145706","url":null,"abstract":"The effective, high-value reutilization of reclaimed rubber, obtained from end-of-life tires, in the production of new high-performance tires remains an environmental and technological challenge. Cryogenically ground micron-sized rubber particles demonstrate a significant promise to realize satisfactory physical performance measures in reclaimed rubber-based tires. However, the maximum useable content of the cryogenically ground micron-sized rubber particles to be incorporated into tires is strictly limited by their ineffective interfacial chemical interactions with the host pristine rubber matrix during the post-polymerization process. Here, this work presents the non-covalent chemical functionalization of the cryogenically ground micron-sized styrene-butadiene rubber particles with reactive silica particles via a solid-state cryogenic mixing process. The highly-scalable solid-state mixing process enables the sufficiently uniform and near-homogenous distribution of the silica particles on the micron-sized rubber particles. Scanning electron microscope images highlight the micron-sized rubber particles decorated with individual silica particles. Fourier transform infrared and solid-state nuclear magnetic resonance spectra of the functionalized micron-sized rubber particles demonstrate a non-covalent conjugation mechanism between the silica and rubber particles in which the chemical fingerprint of the prime rubber backbone chains remains chemically intact. The chemically functionalized cryogenically ground micron-sized rubber particles possess reactive silica particle sites that are ultimately designed to facilitate the participation of the recycled rubber particles in post-polymerization processes with host matrix which shall allow higher loading levels than the state-of-the-art configurations.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"68 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77152294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-28DOI: 10.1177/14777606231161368
QL Aung, W. Chow, YP Yong, CN Lam
The demand for gloves (e.g., disposable gloves, medical gloves) is increasing due to the Coronavirus disease 2019 (COVID-19) pandemic. Stability in the supply chain in the glove industry is important, and thus strategies are used to solve the problem of the shortage of nitrile gloves. The blending of nitrile butadiene rubber (NBR) with polyurethane (PU) and the use of the nanocomposite concept is among the feasible approaches. The present study aims to investigate the effects of nanokaolin (NK) on the tensile and chemical properties of carboxylated nitrile butadiene rubber (NBR)/polyurethane (PU) latex blends. Three different loadings of NK (10, 20, and 30 parts per hundred rubber) were added to the NBR/PU (at a blending ratio of 85/15). The zeta potential showed that all the NBR compounds exhibit good colloidal stability. The incorporation of NK increased the crosslink density and tensile strength of the NBR/PU latex blends. The highest tensile strength was achieved when the NK loading was 20 phr. All the NBR blends and nanocomposites (NBR/PU-based) possess tensile properties that fulfill the requirements for glove application. The chemical resistance of NBR compounds was increased by the incorporation of NK due to the higher crosslink density and barrier properties contributed by the NK.
{"title":"Nanokaolin reinforced carboxylated nitrile butadiene rubber/polyurethane blend-based latex with enhanced tensile properties and chemical resistance","authors":"QL Aung, W. Chow, YP Yong, CN Lam","doi":"10.1177/14777606231161368","DOIUrl":"https://doi.org/10.1177/14777606231161368","url":null,"abstract":"The demand for gloves (e.g., disposable gloves, medical gloves) is increasing due to the Coronavirus disease 2019 (COVID-19) pandemic. Stability in the supply chain in the glove industry is important, and thus strategies are used to solve the problem of the shortage of nitrile gloves. The blending of nitrile butadiene rubber (NBR) with polyurethane (PU) and the use of the nanocomposite concept is among the feasible approaches. The present study aims to investigate the effects of nanokaolin (NK) on the tensile and chemical properties of carboxylated nitrile butadiene rubber (NBR)/polyurethane (PU) latex blends. Three different loadings of NK (10, 20, and 30 parts per hundred rubber) were added to the NBR/PU (at a blending ratio of 85/15). The zeta potential showed that all the NBR compounds exhibit good colloidal stability. The incorporation of NK increased the crosslink density and tensile strength of the NBR/PU latex blends. The highest tensile strength was achieved when the NK loading was 20 phr. All the NBR blends and nanocomposites (NBR/PU-based) possess tensile properties that fulfill the requirements for glove application. The chemical resistance of NBR compounds was increased by the incorporation of NK due to the higher crosslink density and barrier properties contributed by the NK.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"8 1","pages":"281 - 293"},"PeriodicalIF":2.6,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83375557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-17DOI: 10.1177/14777606231152507
S. M. Silva, E. Medeiros, Luciana S. Galvão, Amélia S F Santos
Although the consequences of adhesive residues from post-consumer Poly(ethylene terephthalate) (PET) beverage bottles on the performance of recycled products are known, the quantitative effects of these adhesives are not well-stablished in the literature. Therefore, these residues were determined by gravimetry, and the adhesive content range from 200 to 2800 ppm in post-consumer PET bottles, depending on the drink filled. Through FTIR analysis, it was determined that the adhesives for bottles labelling are composed by poly(ethylene-co-vinyl acetate) (EVA). Based on these results, recycled PET with 0, 200, 700, 1500 and 3000 ppm of hot-melt EVA were processed in an internal mixer connected to a torque rheometer at 265°C for 10 min. Tensile tests indicate that 200 ppm of adhesive reduced PET tensile strength by 15%. Furthermore, when about 1500 ppm of adhesive is present, PET mechanical properties are reduced by 50%. Therefore, it is of utmost importance to warn the PET bottle production chain to reduce adhesive content used in labelling so that it should not exceed 200 ppm, if a high quality recycled PET is desirable. Graphical Abstract
{"title":"Characterization of adhesive content in post-consumer poly(ethylene terephthalate) bottles and assessment of its impact on poly(ethylene terephthalate) recyclability","authors":"S. M. Silva, E. Medeiros, Luciana S. Galvão, Amélia S F Santos","doi":"10.1177/14777606231152507","DOIUrl":"https://doi.org/10.1177/14777606231152507","url":null,"abstract":"Although the consequences of adhesive residues from post-consumer Poly(ethylene terephthalate) (PET) beverage bottles on the performance of recycled products are known, the quantitative effects of these adhesives are not well-stablished in the literature. Therefore, these residues were determined by gravimetry, and the adhesive content range from 200 to 2800 ppm in post-consumer PET bottles, depending on the drink filled. Through FTIR analysis, it was determined that the adhesives for bottles labelling are composed by poly(ethylene-co-vinyl acetate) (EVA). Based on these results, recycled PET with 0, 200, 700, 1500 and 3000 ppm of hot-melt EVA were processed in an internal mixer connected to a torque rheometer at 265°C for 10 min. Tensile tests indicate that 200 ppm of adhesive reduced PET tensile strength by 15%. Furthermore, when about 1500 ppm of adhesive is present, PET mechanical properties are reduced by 50%. Therefore, it is of utmost importance to warn the PET bottle production chain to reduce adhesive content used in labelling so that it should not exceed 200 ppm, if a high quality recycled PET is desirable. Graphical Abstract","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"2020 1","pages":"250 - 263"},"PeriodicalIF":2.6,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77830371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-13DOI: 10.1177/14777606231152508
M. Sermaraj, K. Ramanathan, D. R. Rajkumar, M. Alphin
Composites reinforced with landfill waste materials have find the applications in engineering materials and they can lead to reduce the environmental pollutions. Waste tyre rubber, broken ceramic tiles and wood particles are creating the environmental hazard to the surroundings. In particular, the recycling of used tyre rubber is highly challenging, but it has very good property to absorb the energy. The reinforcement of rubber as single filler in composite has the limitations in processing and applications. Hence, the above waste materials are incorporated to prepare the composite in the present work. The fracture toughness and shear strength of composites were evaluated and compared with other combinations along with pure epoxy specimen. In order to find the application of composite in dynamic conditions the vibration analysis were done. The presents of rubber decreased the fracture toughness and at the same time the incorporation of ceramic largely improved the fracture toughness of epoxy composite. The shear strength of composites increased with the addition of ceramic and wood particles. But the rubber particle has the great influence on the damping behavior of ceramic base epoxy composites. The addition of ceramic with the epoxy increased the natural frequency and decreased the damping factor. This can be compensated by the inclusion of rubber with ceramic in epoxy resin matrix. 15 wt % addition of rubber with ceramic and epoxy increased the natural frequency of 18.52% and damping factor of 288% than 5 wt % of rubber with ceramic and epoxy. The natural frequency and damping factor of ceramic and rubber based epoxy composite have the highest amount of all combinations and can be used for vibration applications to absorb the energy at high frequencies.
{"title":"Effect of crack and vibration of waste tyre rubber hybrid composite for energy absorption applications","authors":"M. Sermaraj, K. Ramanathan, D. R. Rajkumar, M. Alphin","doi":"10.1177/14777606231152508","DOIUrl":"https://doi.org/10.1177/14777606231152508","url":null,"abstract":"Composites reinforced with landfill waste materials have find the applications in engineering materials and they can lead to reduce the environmental pollutions. Waste tyre rubber, broken ceramic tiles and wood particles are creating the environmental hazard to the surroundings. In particular, the recycling of used tyre rubber is highly challenging, but it has very good property to absorb the energy. The reinforcement of rubber as single filler in composite has the limitations in processing and applications. Hence, the above waste materials are incorporated to prepare the composite in the present work. The fracture toughness and shear strength of composites were evaluated and compared with other combinations along with pure epoxy specimen. In order to find the application of composite in dynamic conditions the vibration analysis were done. The presents of rubber decreased the fracture toughness and at the same time the incorporation of ceramic largely improved the fracture toughness of epoxy composite. The shear strength of composites increased with the addition of ceramic and wood particles. But the rubber particle has the great influence on the damping behavior of ceramic base epoxy composites. The addition of ceramic with the epoxy increased the natural frequency and decreased the damping factor. This can be compensated by the inclusion of rubber with ceramic in epoxy resin matrix. 15 wt % addition of rubber with ceramic and epoxy increased the natural frequency of 18.52% and damping factor of 288% than 5 wt % of rubber with ceramic and epoxy. The natural frequency and damping factor of ceramic and rubber based epoxy composite have the highest amount of all combinations and can be used for vibration applications to absorb the energy at high frequencies.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"459 1","pages":"233 - 249"},"PeriodicalIF":2.6,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80134232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-13DOI: 10.1177/14777606231152268
Domenico Ferrari, A. Sanguineti, Marco Mirenda, Yves Vanderveken
The exceptional low permeability to oxygen and water of PVDC and the retention of barrier properties to oxygen even in humid conditions explain its success for packaging in food industry as barrier layer in Polyolefins (PO) multilayer films, whose contribution to the reduction of food waste is largely recognized. Several chemical recycling technologies have emerged in the recent years that, together with methodologies based on separation of layers by the use of solvents, will strongly increase in a near future the extent of recycling of multilayer films, including the PVDC-containing ones. At the same time, it is generally accepted that for several years these technologies will be complemented by the now dominating mechanical recycling. A lack of detailed study in the literature and a general confusion between very different PVDC grades, with and without internal stabilization, led to the idea that the dehydrochlorination of PVDC would cause a low quality of the recyclate obtained by mechanical recycling of PO in presence of PVDC and a corrosion risk for the equipment. In this study, the effect of a stabilized PVDC grade developed for coextrusion, at concentration typical of real life PO mix for mechanical recycling and in suitable condition, has been investigated in a pilot scale extruder and corrosion tests were performed. In conclusion, quantities of PVDC to be found in PO streams for mechanical recycling are compatible with a PO recyclate of excellent characteristics, even at extrusion temperatures as high as 220°C, with no damage to the PO structure, with only minimum discoloration, that can be mitigated by relatively low quantities of additives of general use in PO extrusion, and with no risk of corrosion of the equipment.
{"title":"Compatibility of polyvinylidene chloride with mechanical recycling of polyolefins","authors":"Domenico Ferrari, A. Sanguineti, Marco Mirenda, Yves Vanderveken","doi":"10.1177/14777606231152268","DOIUrl":"https://doi.org/10.1177/14777606231152268","url":null,"abstract":"The exceptional low permeability to oxygen and water of PVDC and the retention of barrier properties to oxygen even in humid conditions explain its success for packaging in food industry as barrier layer in Polyolefins (PO) multilayer films, whose contribution to the reduction of food waste is largely recognized. Several chemical recycling technologies have emerged in the recent years that, together with methodologies based on separation of layers by the use of solvents, will strongly increase in a near future the extent of recycling of multilayer films, including the PVDC-containing ones. At the same time, it is generally accepted that for several years these technologies will be complemented by the now dominating mechanical recycling. A lack of detailed study in the literature and a general confusion between very different PVDC grades, with and without internal stabilization, led to the idea that the dehydrochlorination of PVDC would cause a low quality of the recyclate obtained by mechanical recycling of PO in presence of PVDC and a corrosion risk for the equipment. In this study, the effect of a stabilized PVDC grade developed for coextrusion, at concentration typical of real life PO mix for mechanical recycling and in suitable condition, has been investigated in a pilot scale extruder and corrosion tests were performed. In conclusion, quantities of PVDC to be found in PO streams for mechanical recycling are compatible with a PO recyclate of excellent characteristics, even at extrusion temperatures as high as 220°C, with no damage to the PO structure, with only minimum discoloration, that can be mitigated by relatively low quantities of additives of general use in PO extrusion, and with no risk of corrosion of the equipment.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"118 1","pages":"264 - 280"},"PeriodicalIF":2.6,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81779792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}