Pub Date : 2016-12-13DOI: 10.1088/1361-6633/aa5398
Wei Wang, M. Tang, M. Tang, H. Stanley, L. Braunstein, L. Braunstein
Models of epidemic spreading on complex networks have attracted great attention among researchers in physics, mathematics, and epidemiology due to their success in predicting and controlling scenarios of epidemic spreading in real-world scenarios. To understand the interplay between epidemic spreading and the topology of a contact network, several outstanding theoretical approaches have been developed. An accurate theoretical approach describing the spreading dynamics must take both the network topology and dynamical correlations into consideration at the expense of increasing the complexity of the equations. In this short survey we unify the most widely used theoretical approaches for epidemic spreading on complex networks in terms of increasing complexity, including the mean-field, the heterogeneous mean-field, the quench mean-field, dynamical message-passing, link percolation, and pairwise approximation. We build connections among these approaches to provide new insights into developing an accurate theoretical approach to spreading dynamics on complex networks.
{"title":"Unification of theoretical approaches for epidemic spreading on complex networks","authors":"Wei Wang, M. Tang, M. Tang, H. Stanley, L. Braunstein, L. Braunstein","doi":"10.1088/1361-6633/aa5398","DOIUrl":"https://doi.org/10.1088/1361-6633/aa5398","url":null,"abstract":"Models of epidemic spreading on complex networks have attracted great attention among researchers in physics, mathematics, and epidemiology due to their success in predicting and controlling scenarios of epidemic spreading in real-world scenarios. To understand the interplay between epidemic spreading and the topology of a contact network, several outstanding theoretical approaches have been developed. An accurate theoretical approach describing the spreading dynamics must take both the network topology and dynamical correlations into consideration at the expense of increasing the complexity of the equations. In this short survey we unify the most widely used theoretical approaches for epidemic spreading on complex networks in terms of increasing complexity, including the mean-field, the heterogeneous mean-field, the quench mean-field, dynamical message-passing, link percolation, and pairwise approximation. We build connections among these approaches to provide new insights into developing an accurate theoretical approach to spreading dynamics on complex networks.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"26 105 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2016-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90261218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-20DOI: 10.1088/1361-6633/aa5bc5
J. Engel, J. Menendez
The nuclear matrix elements that govern the rate of neutrinoless double beta decay must be accurately calculated if experiments are to reach their full potential. Theorists have been working on the problem for a long time but have recently stepped up their efforts as ton-scale experiments have begun to look feasible. Here we review past and recent work on the matrix elements in a wide variety of nuclear models and discuss work that will be done in the near future. Ab initio nuclear-structure theory, which is developing rapidly, holds out hope of more accurate matrix elements with quantifiable error bars.
{"title":"Status and future of nuclear matrix elements for neutrinoless double-beta decay: a review","authors":"J. Engel, J. Menendez","doi":"10.1088/1361-6633/aa5bc5","DOIUrl":"https://doi.org/10.1088/1361-6633/aa5bc5","url":null,"abstract":"The nuclear matrix elements that govern the rate of neutrinoless double beta decay must be accurately calculated if experiments are to reach their full potential. Theorists have been working on the problem for a long time but have recently stepped up their efforts as ton-scale experiments have begun to look feasible. Here we review past and recent work on the matrix elements in a wide variety of nuclear models and discuss work that will be done in the near future. Ab initio nuclear-structure theory, which is developing rapidly, holds out hope of more accurate matrix elements with quantifiable error bars.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"6 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2016-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78954370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-18DOI: 10.1088/0034-4885/79/12/126501
S. Chowdhury, D. Jana
Inspired by the success of graphene, various two dimensional (2D) structures in free standing (FS) (hypothetical) form and on different substrates have been proposed recently. Silicene, a silicon counterpart of graphene, is predicted to possess massless Dirac fermions and to exhibit an experimentally accessible quantum spin Hall effect. Since the effective spin–orbit interaction is quite significant compared to graphene, buckling in silicene opens a gap of 1.55 meV at the Dirac point. This band gap can be further tailored by applying in plane stress, an external electric field, chemical functionalization and defects. In this topical theoretical review, we would like to explore the electronic, magnetic and optical properties, including Raman spectroscopy of various important derivatives of monolayer and bilayer silicene (BLS) with different adatoms (doping). The magnetic properties can be tailored by chemical functionalization, such as hydrogenation and introducing vacancy into the pristine planar silicene. Apart from some universal features of optical absorption present in all these 2D materials, the study on reflectivity modulation with doping (Al and P) concentration in silicene has indicated the emergence of some strong peaks having the robust characteristic of a doped reflective surface for both polarizations of the electromagnetic (EM) field. Besides this, attempts will be made to understand the electronic properties of silicene from some simple tight-binding Hamiltonian. We also point out the importance of shape dependence and optical anisotropy properties in silicene nanodisks and establish that a zigzag trigonal possesses the maximum magnetic moment. We also suggest future directions to be explored to make the synthesis of silicene and its various derivatives viable for verification of theoretical predictions. Although this is a fairly new route, the results obtained so far from experimental and theoretical studies in understanding silicene have shown enough significant promising features to open a new direction in the silicon industry, silicon based nano-structures in spintronics and in opto-electronic devices.
{"title":"A theoretical review on electronic, magnetic and optical properties of silicene","authors":"S. Chowdhury, D. Jana","doi":"10.1088/0034-4885/79/12/126501","DOIUrl":"https://doi.org/10.1088/0034-4885/79/12/126501","url":null,"abstract":"Inspired by the success of graphene, various two dimensional (2D) structures in free standing (FS) (hypothetical) form and on different substrates have been proposed recently. Silicene, a silicon counterpart of graphene, is predicted to possess massless Dirac fermions and to exhibit an experimentally accessible quantum spin Hall effect. Since the effective spin–orbit interaction is quite significant compared to graphene, buckling in silicene opens a gap of 1.55 meV at the Dirac point. This band gap can be further tailored by applying in plane stress, an external electric field, chemical functionalization and defects. In this topical theoretical review, we would like to explore the electronic, magnetic and optical properties, including Raman spectroscopy of various important derivatives of monolayer and bilayer silicene (BLS) with different adatoms (doping). The magnetic properties can be tailored by chemical functionalization, such as hydrogenation and introducing vacancy into the pristine planar silicene. Apart from some universal features of optical absorption present in all these 2D materials, the study on reflectivity modulation with doping (Al and P) concentration in silicene has indicated the emergence of some strong peaks having the robust characteristic of a doped reflective surface for both polarizations of the electromagnetic (EM) field. Besides this, attempts will be made to understand the electronic properties of silicene from some simple tight-binding Hamiltonian. We also point out the importance of shape dependence and optical anisotropy properties in silicene nanodisks and establish that a zigzag trigonal possesses the maximum magnetic moment. We also suggest future directions to be explored to make the synthesis of silicene and its various derivatives viable for verification of theoretical predictions. Although this is a fairly new route, the results obtained so far from experimental and theoretical studies in understanding silicene have shown enough significant promising features to open a new direction in the silicon industry, silicon based nano-structures in spintronics and in opto-electronic devices.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"37 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2016-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85602107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-17DOI: 10.1088/0034-4885/79/12/124501
G. Zwicknagl
This article attempts to review how band structure calculations can help to better understand the intriguing behavior of materials with strongly correlated electrons. Prominent examples are heavy-fermion systems whose highly anomalous low-temperature properties result from quantum correlations not captured by standard methods of electronic structure calculations. It is shown how the band approach can be modified to incorporate the typical many-body effects which characterize the low-energy excitations. Examples underlining the predictive power of this ansatz are discussed.
{"title":"The utility of band theory in strongly correlated electron systems","authors":"G. Zwicknagl","doi":"10.1088/0034-4885/79/12/124501","DOIUrl":"https://doi.org/10.1088/0034-4885/79/12/124501","url":null,"abstract":"This article attempts to review how band structure calculations can help to better understand the intriguing behavior of materials with strongly correlated electrons. Prominent examples are heavy-fermion systems whose highly anomalous low-temperature properties result from quantum correlations not captured by standard methods of electronic structure calculations. It is shown how the band approach can be modified to incorporate the typical many-body effects which characterize the low-energy excitations. Examples underlining the predictive power of this ansatz are discussed.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"100 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2016-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75958202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-12DOI: 10.1088/1361-6633/80/2/026901
W. Tichy
Spacetime is foliated by spatial hypersurfaces in the 3+1 split of general relativity. The initial value problem then consists of specifying initial data for all fields on one such a spatial hypersurface, such that the subsequent evolution forward in time is fully determined. On each hypersurface the 3-metric and extrinsic curvature describe the geometry. Together with matter fields such as fluid velocity, energy density and rest mass density, the 3-metric and extrinsic curvature then constitute the initial data. There is a lot of freedom in choosing such initial data. This freedom corresponds to the physical state of the system at the initial time. At the same time the initial data have to satisfy the Hamiltonian and momentum constraint equations of general relativity and can thus not be chosen completely freely. We discuss the conformal transverse traceless and conformal thin sandwich decompositions that are commonly used in the construction of constraint satisfying initial data. These decompositions allow us to specify certain free data that describe the physical nature of the system. The remaining metric fields are then determined by solving elliptic equations derived from the constraint equations. We describe initial data for single black holes and single neutron stars, and how we can use conformal decompositions to construct initial data for binaries made up of black holes or neutron stars. Orbiting binaries will emit gravitational radiation and thus lose energy. Since the emitted radiation tends to circularize the orbits over time, one can thus expect that the objects in a typical binary move on almost circular orbits with slowly shrinking radii. This leads us to the concept of quasi-equilibrium, which essentially assumes that time derivatives are negligible in corotating coordinates for binaries on almost circular orbits. We review how quasi-equilibrium assumptions can be used to make physically well motivated approximations that simplify the elliptic equations we have to solve.
{"title":"The initial value problem as it relates to numerical relativity","authors":"W. Tichy","doi":"10.1088/1361-6633/80/2/026901","DOIUrl":"https://doi.org/10.1088/1361-6633/80/2/026901","url":null,"abstract":"Spacetime is foliated by spatial hypersurfaces in the 3+1 split of general relativity. The initial value problem then consists of specifying initial data for all fields on one such a spatial hypersurface, such that the subsequent evolution forward in time is fully determined. On each hypersurface the 3-metric and extrinsic curvature describe the geometry. Together with matter fields such as fluid velocity, energy density and rest mass density, the 3-metric and extrinsic curvature then constitute the initial data. There is a lot of freedom in choosing such initial data. This freedom corresponds to the physical state of the system at the initial time. At the same time the initial data have to satisfy the Hamiltonian and momentum constraint equations of general relativity and can thus not be chosen completely freely. We discuss the conformal transverse traceless and conformal thin sandwich decompositions that are commonly used in the construction of constraint satisfying initial data. These decompositions allow us to specify certain free data that describe the physical nature of the system. The remaining metric fields are then determined by solving elliptic equations derived from the constraint equations. We describe initial data for single black holes and single neutron stars, and how we can use conformal decompositions to construct initial data for binaries made up of black holes or neutron stars. Orbiting binaries will emit gravitational radiation and thus lose energy. Since the emitted radiation tends to circularize the orbits over time, one can thus expect that the objects in a typical binary move on almost circular orbits with slowly shrinking radii. This leads us to the concept of quasi-equilibrium, which essentially assumes that time derivatives are negligible in corotating coordinates for binaries on almost circular orbits. We review how quasi-equilibrium assumptions can be used to make physically well motivated approximations that simplify the elliptic equations we have to solve.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"225 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2016-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72824633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-06DOI: 10.1088/0034-4885/79/11/114501
Y. Ōnuki, F. Honda, Y. Hirose, R. Settai, T. Takeuchi
We review the nature of strongly correlated electronic states in rare earth and actinide compounds, focusing on localized versus itinerant electronic states in CeRhIn5, quantum critical phenomena in YbIr2Zn20, residual resistivity in CeCu6, metamagnetism in heavy fermion compounds, and unconventional superconductivity in CeIrSi3 without inversion symmetry in the crystal structure, emphasizing that sample quality is essentially important to clarify the characteristic features for the heavy fermion compounds.
{"title":"High-quality single crystal growth and strongly correlated electronic states in rare earth and actinide compounds","authors":"Y. Ōnuki, F. Honda, Y. Hirose, R. Settai, T. Takeuchi","doi":"10.1088/0034-4885/79/11/114501","DOIUrl":"https://doi.org/10.1088/0034-4885/79/11/114501","url":null,"abstract":"We review the nature of strongly correlated electronic states in rare earth and actinide compounds, focusing on localized versus itinerant electronic states in CeRhIn5, quantum critical phenomena in YbIr2Zn20, residual resistivity in CeCu6, metamagnetism in heavy fermion compounds, and unconventional superconductivity in CeIrSi3 without inversion symmetry in the crystal structure, emphasizing that sample quality is essentially important to clarify the characteristic features for the heavy fermion compounds.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"40 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2016-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81366354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-04DOI: 10.1088/1361-6633/aa5e6c
S. X. Nakamura, H. Kamano, Y. Hayato, M. Hirai, Wataru Horiuchi, Shunzo Kumano, T. Murata, K. Saito, K. Saito, M. Sakuda, Toru Sato, Toru Sato, Yasuyuki Suzuki
A precise description of neutrino-nucleus reactions will play a key role in addressing fundamental questions such as the leptonic CP violation and the neutrino mass hierarchy through analyzing data from next-generation neutrino oscillation experiments. The neutrino energy relevant to the neutrino-nucleus reactions spans a broad range and, accordingly, the dominant reaction mechanism varies across the energy region from quasi-elastic scattering through nucleon resonance excitations to deep inelastic scattering. This corresponds to transitions of the effective degree of freedom for theoretical description from nucleons through meson-baryon to quarks. The main purpose of this review is to report our recent efforts towards a unified description of the neutrino-nucleus reactions over the wide energy range; recent overall progress in the field is also sketched. Starting with an overview of the current status of neutrino-nucleus scattering experiments, we formulate the cross section to be commonly used for the reactions over all the energy regions. A description of the neutrino-nucleon reactions follows and, in particular, a dynamical coupled-channels model for meson productions in and beyond the Δ(1232) region is discussed in detail. We then discuss the neutrino-nucleus reactions, putting emphasis on our theoretical approaches. We start the discussion with electroweak processes in few-nucleon systems studied with the correlated Gaussian method. Then we describe quasi-elastic scattering with nuclear spectral functions, and meson productions with a Δ-hole model. Nuclear modifications of the parton distribution functions determined through a global analysis are also discussed. Finally, we discuss issues to be addressed for future developments.
{"title":"Towards a unified model of neutrino-nucleus reactions for neutrino oscillation experiments","authors":"S. X. Nakamura, H. Kamano, Y. Hayato, M. Hirai, Wataru Horiuchi, Shunzo Kumano, T. Murata, K. Saito, K. Saito, M. Sakuda, Toru Sato, Toru Sato, Yasuyuki Suzuki","doi":"10.1088/1361-6633/aa5e6c","DOIUrl":"https://doi.org/10.1088/1361-6633/aa5e6c","url":null,"abstract":"A precise description of neutrino-nucleus reactions will play a key role in addressing fundamental questions such as the leptonic CP violation and the neutrino mass hierarchy through analyzing data from next-generation neutrino oscillation experiments. The neutrino energy relevant to the neutrino-nucleus reactions spans a broad range and, accordingly, the dominant reaction mechanism varies across the energy region from quasi-elastic scattering through nucleon resonance excitations to deep inelastic scattering. This corresponds to transitions of the effective degree of freedom for theoretical description from nucleons through meson-baryon to quarks. The main purpose of this review is to report our recent efforts towards a unified description of the neutrino-nucleus reactions over the wide energy range; recent overall progress in the field is also sketched. Starting with an overview of the current status of neutrino-nucleus scattering experiments, we formulate the cross section to be commonly used for the reactions over all the energy regions. A description of the neutrino-nucleon reactions follows and, in particular, a dynamical coupled-channels model for meson productions in and beyond the Δ(1232) region is discussed in detail. We then discuss the neutrino-nucleus reactions, putting emphasis on our theoretical approaches. We start the discussion with electroweak processes in few-nucleon systems studied with the correlated Gaussian method. Then we describe quasi-elastic scattering with nuclear spectral functions, and meson productions with a Δ-hole model. Nuclear modifications of the parton distribution functions determined through a global analysis are also discussed. Finally, we discuss issues to be addressed for future developments.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"1 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2016-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75236837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-09-19DOI: 10.1088/1361-6633/80/3/036501
M. Smidman, M. Salamon, Huiqiu Yuan, D. Agterberg
In non-centrosymmetric superconductors, where the crystal structure lacks a centre of inversion, parity is no longer a good quantum number and an electronic antisymmetric spin–orbit coupling (ASOC) is allowed to exist by symmetry. If this ASOC is sufficiently large, it has profound consequences on the superconducting state. For example, it generally leads to a superconducting pairing state which is a mixture of spin-singlet and spin-triplet components. The possibility of such novel pairing states, as well as the potential for observing a variety of unusual behaviors, led to intensive theoretical and experimental investigations. Here we review the experimental and theoretical results for superconducting systems lacking inversion symmetry. Firstly we give a conceptual overview of the key theoretical results. We then review the experimental properties of both strongly and weakly correlated bulk materials, as well as two dimensional systems. Here the focus is on evaluating the effects of ASOC on the superconducting properties and the extent to which there is evidence for singlet–triplet mixing. This is followed by a more detailed overview of theoretical aspects of non-centrosymmetric superconductivity. This includes the effects of the ASOC on the pairing symmetry and the superconducting magnetic response, magneto-electric effects, superconducting finite momentum pairing states, and the potential for non-centrosymmetric superconductors to display topological superconductivity.
{"title":"Superconductivity and spin–orbit coupling in non-centrosymmetric materials: a review","authors":"M. Smidman, M. Salamon, Huiqiu Yuan, D. Agterberg","doi":"10.1088/1361-6633/80/3/036501","DOIUrl":"https://doi.org/10.1088/1361-6633/80/3/036501","url":null,"abstract":"In non-centrosymmetric superconductors, where the crystal structure lacks a centre of inversion, parity is no longer a good quantum number and an electronic antisymmetric spin–orbit coupling (ASOC) is allowed to exist by symmetry. If this ASOC is sufficiently large, it has profound consequences on the superconducting state. For example, it generally leads to a superconducting pairing state which is a mixture of spin-singlet and spin-triplet components. The possibility of such novel pairing states, as well as the potential for observing a variety of unusual behaviors, led to intensive theoretical and experimental investigations. Here we review the experimental and theoretical results for superconducting systems lacking inversion symmetry. Firstly we give a conceptual overview of the key theoretical results. We then review the experimental properties of both strongly and weakly correlated bulk materials, as well as two dimensional systems. Here the focus is on evaluating the effects of ASOC on the superconducting properties and the extent to which there is evidence for singlet–triplet mixing. This is followed by a more detailed overview of theoretical aspects of non-centrosymmetric superconductivity. This includes the effects of the ASOC on the pairing symmetry and the superconducting magnetic response, magneto-electric effects, superconducting finite momentum pairing states, and the potential for non-centrosymmetric superconductors to display topological superconductivity.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"47 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2016-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77854478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-17DOI: 10.1088/0034-4885/79/11/114502
P. Gegenwart
The Grüneisen parameter, experimentally determined from the ratio of thermal expansion to specific heat, quantifies the pressure dependence of characteristic energy scales of matter. It is highly enhanced for Kondo lattice systems, whose properties are strongly dependent on the pressure sensitive antiferromagnetic exchange interaction between f- and conduction electrons. In this review, we focus on the divergence of the Grüneisen parameter and its magnetic analogue, the adiabatic magnetocaloric effect, for heavy-fermion metals near quantum critical points. We compare experimental results with current theoretical models, including the effect of strong geometrical frustration. We also discuss the possibility of using materials with the divergent magnetic Grüneisen parameter for adiabatic demagnetization cooling to very low temperatures.
{"title":"Grüneisen parameter studies on heavy fermion quantum criticality","authors":"P. Gegenwart","doi":"10.1088/0034-4885/79/11/114502","DOIUrl":"https://doi.org/10.1088/0034-4885/79/11/114502","url":null,"abstract":"The Grüneisen parameter, experimentally determined from the ratio of thermal expansion to specific heat, quantifies the pressure dependence of characteristic energy scales of matter. It is highly enhanced for Kondo lattice systems, whose properties are strongly dependent on the pressure sensitive antiferromagnetic exchange interaction between f- and conduction electrons. In this review, we focus on the divergence of the Grüneisen parameter and its magnetic analogue, the adiabatic magnetocaloric effect, for heavy-fermion metals near quantum critical points. We compare experimental results with current theoretical models, including the effect of strong geometrical frustration. We also discuss the possibility of using materials with the divergent magnetic Grüneisen parameter for adiabatic demagnetization cooling to very low temperatures.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"79 6 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2016-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76806331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-08DOI: 10.1088/1361-6633/80/2/026503
D. Maslov, A. Chubukov
Recent progress in experimental techniques has made it possible to extract detailed information on dynamics of carriers in a correlated electron material from its optical conductivity, σ(Ω,T). This review consists of three parts, addressing the following three aspects of optical response: (1) the role of momentum relaxation; (2) Ω/T scaling of the optical conductivity of a Fermi-liquid metal, and (3) the optical conductivity of non-Fermi-liquid metals. In the first part (section ), we analyze the interplay between the contributions to the conductivity from normal and umklapp electron–electron scattering. As a concrete example, we consider a two-band metal and show that although its optical conductivity is finite it does not obey the Drude formula. In the second part (sections and ), we re-visit the Gurzhi formula for the optical scattering rate, 1/τ(Ω,T)∝Ω2+4π2T2, and show that a factor of 4π2 is the manifestation of the ‘first-Matsubara-frequency rule’ for boson response, which states that 1/τ(Ω,T) must vanish upon analytic continuation to the first boson Matsubara frequency. However, recent experiments show that the coefficient b in the Gurzhi-like form, 1/τ(Ω,T)∝Ω2+bπ2T2, differs significantly from b = 4 in most of the cases. We suggest that the deviations from Gurzhi scaling may be due to the presence of elastic but energy-dependent scattering, which decreases the value of b below 4, with b = 1 corresponding to purely elastic scattering. In the third part (section ), we consider the optical conductivity of metals near quantum phase transitions to nematic and spin-density-wave states. In the last case, we focus on ‘composite’ scattering processes, which give rise to a non-Fermi-liquid behavior of the optical conductivity at T = 0: σ′(Ω)∝Ω−1/3 at low frequencies and σ′(Ω)∝Ω−1 at higher frequencies. We also discuss Ω/T scaling of the conductivity and show that σ′(Ω,T) in the same model scales in a non-Fermi-liquid way, as T4/3Ω−5/3.
{"title":"Optical response of correlated electron systems","authors":"D. Maslov, A. Chubukov","doi":"10.1088/1361-6633/80/2/026503","DOIUrl":"https://doi.org/10.1088/1361-6633/80/2/026503","url":null,"abstract":"Recent progress in experimental techniques has made it possible to extract detailed information on dynamics of carriers in a correlated electron material from its optical conductivity, σ(Ω,T). This review consists of three parts, addressing the following three aspects of optical response: (1) the role of momentum relaxation; (2) Ω/T scaling of the optical conductivity of a Fermi-liquid metal, and (3) the optical conductivity of non-Fermi-liquid metals. In the first part (section ), we analyze the interplay between the contributions to the conductivity from normal and umklapp electron–electron scattering. As a concrete example, we consider a two-band metal and show that although its optical conductivity is finite it does not obey the Drude formula. In the second part (sections and ), we re-visit the Gurzhi formula for the optical scattering rate, 1/τ(Ω,T)∝Ω2+4π2T2, and show that a factor of 4π2 is the manifestation of the ‘first-Matsubara-frequency rule’ for boson response, which states that 1/τ(Ω,T) must vanish upon analytic continuation to the first boson Matsubara frequency. However, recent experiments show that the coefficient b in the Gurzhi-like form, 1/τ(Ω,T)∝Ω2+bπ2T2, differs significantly from b = 4 in most of the cases. We suggest that the deviations from Gurzhi scaling may be due to the presence of elastic but energy-dependent scattering, which decreases the value of b below 4, with b = 1 corresponding to purely elastic scattering. In the third part (section ), we consider the optical conductivity of metals near quantum phase transitions to nematic and spin-density-wave states. In the last case, we focus on ‘composite’ scattering processes, which give rise to a non-Fermi-liquid behavior of the optical conductivity at T = 0: σ′(Ω)∝Ω−1/3 at low frequencies and σ′(Ω)∝Ω−1 at higher frequencies. We also discuss Ω/T scaling of the conductivity and show that σ′(Ω,T) in the same model scales in a non-Fermi-liquid way, as T4/3Ω−5/3.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"50 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2016-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78575725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}