Introduction: Nonsmokers with chronic obstructive pulmonary disease (COPD) are neglected despite constituting half of all cases in studies from the developed world. Herein, we systematically reviewed the prevalence of COPD among nonsmokers in India.
Content: We searched Embase, Scopus, and PubMed databases for studies examining the prevalence of COPD among nonsmokers in India. We used the Joanna Briggs Institute (JBI) checklist to assess included studies' quality. Meta-analysis was performed using random-effects model.
Summary: Seven studies comprising 6,903 subjects were included. The quality of the studies ranged from 5/9 to 8/9. The prevalence of COPD varied between 1.6 and 26.6 %. Studies differed considerably in demographics and biomass exposure profiles of subjects. Among the four studies that enrolled both middle-aged and elderly Indian nonsmokers not screened based on biomass fuel exposure, the pooled prevalence of COPD was 3 % (95 % CI, 2-3 %; I2=50.52 %, p=0.11). The pooled prevalence of COPD among biomass fuel-exposed individuals was 10 % (95 % CI, 2-18 %; I2=98.8 %, p<0.001).
Outlook: Limited evidence suggests a sizable burden of COPD among nonsmokers and biomass fuel-exposed individuals in India. More epidemiological studies of COPD in nonsmokers are needed from low and middle-income countries.
Objective: Numerous evidence indicates the association between polychlorinated biphenyls (PCBs), an endocrine disrupter, with thyroid hormone disruption, contradictory findings also exist. Herein, we tried to address this question by performing a scoping review.
Content: The search was performed on PubMed, Scopus, Web of Science, and Google Scholar databases from 2010 onwards. Animal studies on PCBs' effect on thyroid function were searched. The SYRCLE's RoB scale assessed the risk of bias. I2 and Q tests are used for investigating heterogeneity. A random-effects model with the pooled standard means difference (SMD) and 95 % confidence interval (CI) was performed for the TSH, TT4, TT3, and FT4 outcomes using Comprehensive Meta-Analyses (CMA) Software version 3. Also, we conducted subgroup analyses based on the different types of PCB. The initial search identified 1,279 publications from the main databases 26 of them fulfilled our eligibility criteria for the study, and then five studies among selected studies had sufficient data for analysis. Meta-analysis of data revealed that Aroclor 1260 (SDM: -0.47, 95 % CI: -0.92, -0.01, p=0.044) and PCB 126 (SDM: 0.17, 95 % CI: -0.40, 0.75, p=0.559) significantly increased TSH concentration in the exposed groups vs. the control groups. Related to the effects of PCBs on the TT4, our findings indicated a significant reduction the TT4 concentration of animals exposed to Aroclor 1260 (SDM: -5.62, 95 % CI: -8.30, -2.94, p=0.0001), PCB 118 (SDM: -6.24, 95 % CI: -7.76, -4.72, p=0.0001), PCB 126 (SDM: -1.81, 95 % CI: -2.90, -0.71, p=0.001), and PCB 153 (SDM: -1.32, 95 % CI: -2.29, -0.35, p=0.007) vs. the controls. Our meta-analysis indicated a significant increase in TT3 concentration following exposure to PCB 118 and PCB 153 (SDM: -0.89, 95 % CI: -1.36, -0.42, p=0.0001, and SDM: -1.45, 95 % CI: -2.15, -0.75, p=0.0001, respectively). Aroclor 1254 and PCB 126 significantly decreased TT3 concentration (SDM: 1.25, 95 % CI: 0.29, 2.21, p=0.01 and SDM: 3.33, 95 % CI: 2.49, 4.18, p=0.0001, respectively). PCB 126 significantly decreased FT4 in the exposed groups vs. the control groups (SDM: -7.80, 95 % CI: -11.51, -5.35, p=0.0001).
Summary: Our findings showed an association between PCBs exposure and hypothyroidism in rodents, fish, and chicken embryos.
Outlook: Regarding to the most evidence of hypothyroidism effects of PCBs in animal species, it is necessary to consider large cohort studies to address the association between PCBs exposure and thyroid function impairment in humans.
This paper presents the results of modeling the distribution process of industrial emission components at specified distances from the emission source along the normal. The model uses a system of differential diffusion equations to compute the concentration profiles of aerosols, industrial gases, and fine particles in the atmosphere. In order to investigate the regularity of the emitter propagation into the atmosphere, a theory of impurity dispersion was developed. The model is constrained by the effect of particle interactions. The partial derivative equations are presented to calculate the concentrations of aerosols and fine particles under the turbulent airflow in the atmosphere, dispersion of inert impurities, and distribution of chemically active compounds. The adequacy of the mathematical model for a series of theoretical calculations was checked by contrasting the data of the atmospheric air monitoring for the cities of Almaty, Ust-Kamenogorsk, Pavlodar, Atyrau, Krasnodar, Chelyabinsk, Beijing, and Shanghai. Air monitoring data included PM10, SO2, and NO2 levels. The mathematical model solutions for the relative values of the emitter concentration in the direction along the normal of the pollution source at the surface were obtained. Graphical interpretation of the calculation results over the 0…200 m distance for time intervals ranging from 3 to 600 min was provided. According to the multiple factor cluster analysis, the critical values of SO2 concentrations in Atyrau exceeded MPC in 26.2% of cases. The level of NO2 for Shanghai was 15.6%, and those for PM10 concentrations in Almaty and Atyrau amounted to 16.4%. A comparison of theoretical values and results obtained from official sources showed arithmetic mean of 49.4 mg/m3 and maximum value of 823.0 mg/m3. Standard deviation comprised 48.9 mg/m3. Results were considered statistically significant at p≤0.005. The mathematical model developed in this study can be used to predict the status of atmospheric air.
Objectives: Environmental risk factors contribute to 24% of the global burden of disease from all causes in disability-adjusted life years (DALYs), and to 23% of all global deaths. Malaysia being an advanced developing country, there is a need to prioritise environmental health issues to enable environmental health practitioners to focus on the most significant and urgent environmental health concerns.
Content: This project was undertaken by a Thematic Working Group on Environmental Health Experts (TWG 10) under the Malaysian National Environmental Health Action Plan. Sixteen pre-selected environmental health issues were presented to a two focus group discussions among 20 environmental health and related professionals who then scored each issue on its magnitude and severity scale.
Summary: The total of these scores generated a list of priority environmental health issues for Malaysia. Children environmental health came out as the environmental health issue of the highest priority.
Outlook: We hope that this list of priority environmental health issues will be used for prioritising academic and professional manpower training, research funding allocation and planning for intervention programmes by various stakeholders.