Pub Date : 2024-09-02DOI: 10.1016/j.soilbio.2024.109576
Rosina Magaña Ugarte , Miguel Hurtado Martínez , Elena Díaz-Santiago , Francisco I. Pugnaire
Germination onset is the first stage in the phenological plant cycle, influenced by abiotic and biotic factors. Both soil and seed microbiota are key drivers of germination, influencing seed storage, dormancy release, and germination rates. Interactions between plants and soil microbes contribute to plant adaptation to their environment. Therefore, plants could benefit more from interacting with soil microbes from the local (‘home’) environment than with those from other origins. As crucial germination drivers, plants may select for specific microbial taxa that provide them with a home-field advantage, regardless of microbial richness and diversity in their surroundings. Here, we looked at the role of seed-associated microorganisms on holm oak (Quercus ilex) germination, whether seed or soil microbes have a greater impact on this process, and how the interaction between seed and soil microbiotas influence holm oak germination. We found that microbes on Q. ilex seeds have a significant effect on germination, with non-sterilised seeds having higher germinated acorns than sterilised ones. Moreover, when co-occurring, soil microorganisms enhance the effect of seed-associated microbes on holm oak germination. Overall, our results evidence a home-field advantage where local soil communities, along with seed-associated microorganisms, enhance Q. ilex germination over that of different soil or plant species, evidencing the importance of local adaptation for plant fitness.
{"title":"Microbial controls on seed germination","authors":"Rosina Magaña Ugarte , Miguel Hurtado Martínez , Elena Díaz-Santiago , Francisco I. Pugnaire","doi":"10.1016/j.soilbio.2024.109576","DOIUrl":"10.1016/j.soilbio.2024.109576","url":null,"abstract":"<div><p>Germination onset is the first stage in the phenological plant cycle, influenced by abiotic and biotic factors. Both soil and seed microbiota are key drivers of germination, influencing seed storage, dormancy release, and germination rates. Interactions between plants and soil microbes contribute to plant adaptation to their environment. Therefore, plants could benefit more from interacting with soil microbes from the local (‘home’) environment than with those from other origins. As crucial germination drivers, plants may select for specific microbial taxa that provide them with a <em>home-field advantage</em>, regardless of microbial richness and diversity in their surroundings. Here, we looked at the role of seed-associated microorganisms on holm oak (<em>Quercus ilex</em>) germination, whether seed or soil microbes have a greater impact on this process, and how the interaction between seed and soil microbiotas influence holm oak germination. We found that microbes on <em>Q. ilex</em> seeds have a significant effect on germination, with non-sterilised seeds having higher germinated acorns than sterilised ones. Moreover, when co-occurring, soil microorganisms enhance the effect of seed-associated microbes on holm oak germination. Overall, our results evidence a <em>home-field advantage</em> where local soil communities, along with seed-associated microorganisms, enhance <em>Q. ilex</em> germination over that of different soil or plant species, evidencing the importance of local adaptation for plant fitness.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"199 ","pages":"Article 109576"},"PeriodicalIF":9.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038071724002657/pdfft?md5=8dc13881f265766ff1ccaf1f2a868861&pid=1-s2.0-S0038071724002657-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1016/j.soilbio.2024.109577
Andrea Rabbai , Josep Barba , Marco Canducci , Kris M. Hart , A. Robert MacKenzie , Nicholas Kettridge , Giulio Curioni , Sami Ullah , Stefan Krause
Newly-planted forests require careful management to ensure the successful establishment of young trees; this can include herbicide application, irrigation, fertilization, or a combination of these treatments. The global rise in nitrogen (N) fertilizer application in managed forest plantations is driven by policies aiming at rapid tree growth and carbon sequestration as a strategy to tackle climate change. However, the impact of N-fertilizer on production and consumption of greenhouse gases (GHG), such as carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) is poorly understood, particularly when combined with irrigation. As a result, assessing forest GHG balance is key to defining effective climate mitigation strategies through afforestation projects.
This study assessed the response of GHG fluxes to irrigation and fertilization on recently afforested lowland arable land in central England, across loamy and sandy loam soils. The application of 180 kg ha−1 of N via an irrigation system, aimed at enhancing wood production and C sequestration, resulted in an increase of CO2 and N2O emissions for both soil types. Particularly, the N2O emission factors (EF; kg N2O/kg N applied) for loamy and sandy loamy soils were 3.9% and 2.1%, respectively, higher than the IPCC default estimate of 1% for agricultural and forest land. Furthermore, both sandy loam and loamy soils showed a distinct transition from being CH4 sinks to sources. Thus, the combined application of irrigation and N-fertilizer had a significant impact on the total Global Warming Potential (GWP), which increased by 34% and 32% for sandy loam and loamy soil, respectively, when compared to their controls. Despite a significant increase in tree growth under fertilized conditions, the offset potential was only partial, highlighting the net contribution to GHG emissions. The outcomes of this study emphasise the potential for significant “carbon-equivalent-debt” from afforestation supported in its early years by irrigation and fertilization.
{"title":"Fertilization-induced greenhouse gas emissions partially offset carbon sequestration during afforestation","authors":"Andrea Rabbai , Josep Barba , Marco Canducci , Kris M. Hart , A. Robert MacKenzie , Nicholas Kettridge , Giulio Curioni , Sami Ullah , Stefan Krause","doi":"10.1016/j.soilbio.2024.109577","DOIUrl":"10.1016/j.soilbio.2024.109577","url":null,"abstract":"<div><p>Newly-planted forests require careful management to ensure the successful establishment of young trees; this can include herbicide application, irrigation, fertilization, or a combination of these treatments. The global rise in nitrogen (N) fertilizer application in managed forest plantations is driven by policies aiming at rapid tree growth and carbon sequestration as a strategy to tackle climate change. However, the impact of N-fertilizer on production and consumption of greenhouse gases (GHG), such as carbon dioxide (CO<sub>2</sub>), nitrous oxide (N<sub>2</sub>O), and methane (CH<sub>4</sub>) is poorly understood, particularly when combined with irrigation. As a result, assessing forest GHG balance is key to defining effective climate mitigation strategies through afforestation projects.</p><p>This study assessed the response of GHG fluxes to irrigation and fertilization on recently afforested lowland arable land in central England, across loamy and sandy loam soils. The application of 180 kg ha<sup>−1</sup> of N via an irrigation system, aimed at enhancing wood production and C sequestration, resulted in an increase of CO<sub>2</sub> and N<sub>2</sub>O emissions for both soil types. Particularly, the N<sub>2</sub>O emission factors (EF; kg N<sub>2</sub>O/kg N applied) for loamy and sandy loamy soils were 3.9% and 2.1%, respectively, higher than the IPCC default estimate of 1% for agricultural and forest land. Furthermore, both sandy loam and loamy soils showed a distinct transition from being CH<sub>4</sub> sinks to sources. Thus, the combined application of irrigation and N-fertilizer had a significant impact on the total Global Warming Potential (GWP), which increased by 34% and 32% for sandy loam and loamy soil, respectively, when compared to their controls. Despite a significant increase in tree growth under fertilized conditions, the offset potential was only partial, highlighting the net contribution to GHG emissions. The outcomes of this study emphasise the potential for significant “carbon-equivalent-debt” from afforestation supported in its early years by irrigation and fertilization.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"199 ","pages":"Article 109577"},"PeriodicalIF":9.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038071724002669/pdfft?md5=b150f632c8947a97153b01cc886de80e&pid=1-s2.0-S0038071724002669-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29DOI: 10.1016/j.soilbio.2024.109573
Beibei Chen , Ziheng Peng , Shi Chen , Yu Liu , Jiejun Qi , Haibo Pan , Hang Gao , Jiamin Gao , Chunling Liang , Jiai Liu , Xun Qian , Xiao Zhang , Sanfeng Chen , Jizhong Zhou , Gehong Wei , Shuo Jiao
Revealing the generation and maintenance of biodiversity is a central goal in ecology, but how dispersal, selection, and regional taxon pool size shape soil microbial communities is not well understood. Here, we examined how dispersal and environmental selection affected soil bacterial diversity and their related metabolic functions by leveraging large-scale cross-biome soil surveys of ∼1400 samples from diverse ecosystems across China, including agricultural, forest, grassland, and wetland soils. Our results showed that high dispersal increased α-diversity and decreased β-diversity, whereas strong selection generated the opposite pattern in various ecosystems. This is likely due to dispersal enabling species access to otherwise unreachable habitats, and environmental selection excluding non-adapted species from communities. The α-diversity increased with γ-diversity, whereas β-diversity did not covary. We also showed that bacterial phylotypes positively associated with dispersal and selection exhibited distinct metabolic diversity. Dispersal-induced phylotypes, which were abundant in agricultural soils, exhibited more metabolic diversity in fructose and mannose, starch and sucrose, and nitrogen metabolism. Conversely, selection-induced phylotypes, dominated in wetland soils, were primarily associated with sulfur and methane metabolism. In addition, the complexity of taxon associations increased when communities had higher selection increasing β-diversity. Our study establishes the predictive links of ecological processes to microbial diversity, metabolic functions, and taxon coexistence, thus facilitating a better understanding of the mechanisms underlying biodiversity generation and conservation.
{"title":"Bridging ecological processes to diversity formation and functional profiles in belowground bacterial communities","authors":"Beibei Chen , Ziheng Peng , Shi Chen , Yu Liu , Jiejun Qi , Haibo Pan , Hang Gao , Jiamin Gao , Chunling Liang , Jiai Liu , Xun Qian , Xiao Zhang , Sanfeng Chen , Jizhong Zhou , Gehong Wei , Shuo Jiao","doi":"10.1016/j.soilbio.2024.109573","DOIUrl":"10.1016/j.soilbio.2024.109573","url":null,"abstract":"<div><p>Revealing the generation and maintenance of biodiversity is a central goal in ecology, but how dispersal, selection, and regional taxon pool size shape soil microbial communities is not well understood. Here, we examined how dispersal and environmental selection affected soil bacterial diversity and their related metabolic functions by leveraging large-scale cross-biome soil surveys of ∼1400 samples from diverse ecosystems across China, including agricultural, forest, grassland, and wetland soils. Our results showed that high dispersal increased <em>α</em>-diversity and decreased <em>β</em>-diversity, whereas strong selection generated the opposite pattern in various ecosystems. This is likely due to dispersal enabling species access to otherwise unreachable habitats, and environmental selection excluding non-adapted species from communities. The <em>α</em>-diversity increased with <em>γ</em>-diversity, whereas <em>β</em>-diversity did not covary. We also showed that bacterial phylotypes positively associated with dispersal and selection exhibited distinct metabolic diversity. Dispersal-induced phylotypes, which were abundant in agricultural soils, exhibited more metabolic diversity in fructose and mannose, starch and sucrose, and nitrogen metabolism. Conversely, selection-induced phylotypes, dominated in wetland soils, were primarily associated with sulfur and methane metabolism. In addition, the complexity of taxon associations increased when communities had higher selection increasing <em>β</em>-diversity. Our study establishes the predictive links of ecological processes to microbial diversity, metabolic functions, and taxon coexistence, thus facilitating a better understanding of the mechanisms underlying biodiversity generation and conservation.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"198 ","pages":"Article 109573"},"PeriodicalIF":9.8,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1016/j.soilbio.2024.109572
Jianni Sun , Chongzhe Zhang , Daoyuan Yu , Xinyi Yin , Yanhong Cheng , Xiaoyun Chen , Manqiang Liu
Nitrogen (N) enrichment shapes litter chemistry, subsequently influencing soil invertebrates and litter decomposition. However, there has been a lack of attention to how soil invertebrates respond to changes in litter chemistry and then drive litter decomposition under N enrichment. Here, trait-based approaches were adopted to explore functional responses of Collembola, a crucial and functional group of invertebrates. We conducted reciprocal transplantation of plant litter between ambient N levels (0 kg N ha−1 yr−1) and N enrichment (90 kg N ha−1 yr−1) plots in a field experiment, quantifying Collembola traits and litter mass loss during litter decomposition process. Results showed that N enrichment-derived litter recruited Collembola with long antenna, legs, and strong mandibles in enrichment environment, while Collembola with same traits were recruited by ambient-derived litter in ambient environment. Collembola traits, including antenna to body ratio, leg to body ratio, and mandible width to length ratio, coincided with high litter decomposition rates under N enrichment. Overall, the results provide evidence that Collembola with strong resource acquisition abilities responded to changes in litter chemistry, and such shifts further accelerate litter decomposition under N enrichment. Our findings demonstrate that adopting trait-based approaches to link litter and invertebrates would advance the understanding of ecosystem processes governed by biological regulation under global change.
{"title":"Responses of invertebrate traits to litter chemistry accelerate decomposition under nitrogen enrichment","authors":"Jianni Sun , Chongzhe Zhang , Daoyuan Yu , Xinyi Yin , Yanhong Cheng , Xiaoyun Chen , Manqiang Liu","doi":"10.1016/j.soilbio.2024.109572","DOIUrl":"10.1016/j.soilbio.2024.109572","url":null,"abstract":"<div><p>Nitrogen (N) enrichment shapes litter chemistry, subsequently influencing soil invertebrates and litter decomposition. However, there has been a lack of attention to how soil invertebrates respond to changes in litter chemistry and then drive litter decomposition under N enrichment. Here, trait-based approaches were adopted to explore functional responses of Collembola, a crucial and functional group of invertebrates. We conducted reciprocal transplantation of plant litter between ambient N levels (0 kg N ha<sup>−1</sup> yr<sup>−1</sup>) and N enrichment (90 kg N ha<sup>−1</sup> yr<sup>−1</sup>) plots in a field experiment, quantifying Collembola traits and litter mass loss during litter decomposition process. Results showed that N enrichment-derived litter recruited Collembola with long antenna, legs, and strong mandibles in enrichment environment, while Collembola with same traits were recruited by ambient-derived litter in ambient environment. Collembola traits, including antenna to body ratio, leg to body ratio, and mandible width to length ratio, coincided with high litter decomposition rates under N enrichment. Overall, the results provide evidence that Collembola with strong resource acquisition abilities responded to changes in litter chemistry, and such shifts further accelerate litter decomposition under N enrichment. Our findings demonstrate that adopting trait-based approaches to link litter and invertebrates would advance the understanding of ecosystem processes governed by biological regulation under global change.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"198 ","pages":"Article 109572"},"PeriodicalIF":9.8,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1016/j.soilbio.2024.109560
Mochen Wu, Siyuan Xie, Jingxi Zang, Yuanze Sun, Shimeng Xu, Si Li, Jie Wang
Microbial communities in many ecosystems are suffering a wide range of environmental stressors induced by anthropogenic perturbations. While the impacts of a single stressor have been extensively estimated in numerous studies, the responses of microbial communities to multiple environmental stressors simultaneously are still poorly understood. In the current study, we investigated the taxonomic diversity, community resistance, and co-occurrence interaction of soil bacterial communities treated with different numbers of environmental stressors by conducting 136 microcosms. We found that the richness and Shannon diversity of the soil community decreased significantly from 1430 to 6.54 in the mono-factor treatments to 920 and 5.77 in the hepta-factor treatments. The counts of nodes and edges of the soil microbial networks decreased with the increasing stressor number, potentially indicating that multiple stressors can reduce the network size. Multiple stressors increased the community resistance potential to environmental disturbance. Additionally, the network cohesion suggested that the cooperative and competitive behaviors between microorganisms were induced by multiple stressors. The observation could be potentially due to the enrichment of the generalists by multiple environmental stressors. Although only a handful of stressors were included, our study still indicated that multiple environmental stressors would lead to diversity loss via deterministic processes.
{"title":"Multiple anthropogenic environmental stressors structure soil bacterial diversity and community network","authors":"Mochen Wu, Siyuan Xie, Jingxi Zang, Yuanze Sun, Shimeng Xu, Si Li, Jie Wang","doi":"10.1016/j.soilbio.2024.109560","DOIUrl":"10.1016/j.soilbio.2024.109560","url":null,"abstract":"<div><p>Microbial communities in many ecosystems are suffering a wide range of environmental stressors induced by anthropogenic perturbations. While the impacts of a single stressor have been extensively estimated in numerous studies, the responses of microbial communities to multiple environmental stressors simultaneously are still poorly understood. In the current study, we investigated the taxonomic diversity, community resistance, and co-occurrence interaction of soil bacterial communities treated with different numbers of environmental stressors by conducting 136 microcosms. We found that the richness and Shannon diversity of the soil community decreased significantly from 1430 to 6.54 in the mono-factor treatments to 920 and 5.77 in the hepta-factor treatments. The counts of nodes and edges of the soil microbial networks decreased with the increasing stressor number, potentially indicating that multiple stressors can reduce the network size. Multiple stressors increased the community resistance potential to environmental disturbance. Additionally, the network cohesion suggested that the cooperative and competitive behaviors between microorganisms were induced by multiple stressors. The observation could be potentially due to the enrichment of the generalists by multiple environmental stressors. Although only a handful of stressors were included, our study still indicated that multiple environmental stressors would lead to diversity loss via deterministic processes.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"198 ","pages":"Article 109560"},"PeriodicalIF":9.8,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1016/j.soilbio.2024.109562
Jinbo Liu , Siqi Shen , Kecheng Zhu , Ziyan Li , Na Chen , Eric Lichtfouse , Hanzhong Jia
Reactive oxygen species (ROS) are recognised as pivotal biogeochemical process drivers. However, the factors influencing ROS production in the rhizosphere and their role in pollutant transformation remain elusive. We investigated ROS with a focus on spatiotemporal variations in superoxide radicals (O2•−), hydrogen peroxide (H2O2), and hydroxyl radicals (•OH) in the rhizosphere of maize during root development, and elucidated the impact of environmental conditions on ROS production. In-situ visualisation by fluorescence imaging showed that ROS hotspots gradually shifted from seminal to lateral roots during maize growth, indicating that newly developed roots are the major contributors to ROS production. The three types of ROS contents changed with root growth, suggesting that root development regulates ROS production. The ROS contents reached a maximum at 25 °C and 45% maximum field capacity. Both ambient temperature and soil moisture indirectly influenced ROS production by regulating the release of root exudates to induce changes in water-soluble phenols and dissolved organic carbon (DOC). In contrast, ROS content gradually increased with oxygen availability, which directly mediated ROS generation by acting as a precursor. More interestingly, the presence of polycyclic aromatic hydrocarbons (PAHs) significantly enhanced ROS generation, which further promoted PAH removal with a contribution of 31.4–43.3%. These findings provide new insights into the occurrence, distribution, and environmental effects of ROS in the rhizosphere.
{"title":"Novel insights into the factors influencing rhizosphere reactive oxygen species production and their role in polycyclic aromatic hydrocarbons transformation","authors":"Jinbo Liu , Siqi Shen , Kecheng Zhu , Ziyan Li , Na Chen , Eric Lichtfouse , Hanzhong Jia","doi":"10.1016/j.soilbio.2024.109562","DOIUrl":"10.1016/j.soilbio.2024.109562","url":null,"abstract":"<div><p>Reactive oxygen species (ROS) are recognised as pivotal biogeochemical process drivers. However, the factors influencing ROS production in the rhizosphere and their role in pollutant transformation remain elusive. We investigated ROS with a focus on spatiotemporal variations in superoxide radicals (O<sub>2</sub><sup>•−</sup>), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and hydroxyl radicals (<sup>•</sup>OH) in the rhizosphere of maize during root development, and elucidated the impact of environmental conditions on ROS production. <em>In-situ</em> visualisation by fluorescence imaging showed that ROS hotspots gradually shifted from seminal to lateral roots during maize growth, indicating that newly developed roots are the major contributors to ROS production. The three types of ROS contents changed with root growth, suggesting that root development regulates ROS production. The ROS contents reached a maximum at 25 °C and 45% maximum field capacity. Both ambient temperature and soil moisture indirectly influenced ROS production by regulating the release of root exudates to induce changes in water-soluble phenols and dissolved organic carbon (DOC). In contrast, ROS content gradually increased with oxygen availability, which directly mediated ROS generation by acting as a precursor. More interestingly, the presence of polycyclic aromatic hydrocarbons (PAHs) significantly enhanced ROS generation, which further promoted PAH removal with a contribution of 31.4–43.3%. These findings provide new insights into the occurrence, distribution, and environmental effects of ROS in the rhizosphere.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"198 ","pages":"Article 109562"},"PeriodicalIF":9.8,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142050163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1016/j.soilbio.2024.109559
Haifeng Zheng , Lars Vesterdal , Evgenios Agathokleous , Xiangyang Yuan , Mingyue Yuan , Yansen Xu , Petr Heděnec , Bo Shang , Zhaozhong Feng , Johannes Rousk
Elevated ozone (eO3) and atmospheric nitrogen (N) deposition are important climate change components that can affect plant growth and plant-soil-microbe interactions. However, the understanding of how eO3 and its interaction with N deposition affect soil microbially mediated carbon (C) cycling and the fate of soil C stocks is limited. This study aimed to test how eO3 and N deposition affected soil microbial metrics (i.e., respiration, enzyme activities, biomass, necromass, and community composition) and resulting soil organic C (SOC) fractions in the rhizosphere of poplar plantations with different sensitivity to O3. Exposure to O3 and/or N deposition for four years was conducted within a free-air O3 concentration-enrichment facility. Elevated O3 reduced soil microbial respiration and biomass C but enhanced the enzymatic acquisition of C (i.e., potential soil hydrolase and oxidase activity) and shifted to a fungi-dominated community composition. These responses suggest that microbial C availability decreased and microbes allocated more energy to obtain C and nutrients from biochemically resistant substrates under eO3. Elevated O3 decreased bacterial necromass C and total necromass C, which could explain the observed decreases in mineral-associated organic C and SOC. The effects of eO3 on soil microbial C availability and community composition were strengthened by N addition, whereas there were no differences in the below-ground effects of eO3 between the two poplar clones. Taken together, the increased soil extracellular enzyme activities and slightly increased particulate organic C content suggest that the microbial C pump pathway via microbial ex vivo modification was strengthened by eO3, whereas the pathway via microbial in vivo turnover was weakened, as suggested by the decreases in soil microbial respiration, biomass, necromass, and mineral-associated organic C. Our study provides evidence that aboveground eO3 effects on trees may affect belowground microbial processing of organic matter and ultimately the persistence of SOC.
臭氧(eO3)升高和大气氮(N)沉积是重要的气候变化因素,会影响植物生长以及植物-土壤-微生物之间的相互作用。然而,人们对高浓度臭氧(eO3)及其与氮沉降的相互作用如何影响土壤微生物介导的碳(C)循环以及土壤中碳储量的去向了解有限。本研究旨在测试 eO3 和氮沉积如何影响土壤微生物指标(即呼吸作用、酶活性、生物量、坏死物质和群落组成)以及对 O3 敏感性不同的杨树种植园根瘤层中由此产生的土壤有机碳(SOC)组分。在一个自由空气臭氧浓度富集设施中,对臭氧和/或氮沉积进行了为期四年的暴露。高浓度的 O3 降低了土壤微生物的呼吸作用和生物量 C,但增强了酶对 C 的获取(即潜在的土壤水解酶和氧化酶活性),并转向以真菌为主的群落组成。这些反应表明,在 eO3 条件下,微生物的碳供应量减少,微生物分配更多能量从生化抗性基质中获取碳和养分。高浓度的氧化亚氮降低了细菌坏死物质 C 和总坏死物质 C,这可以解释所观察到的矿物相关有机 C 和 SOC 的减少。氮的添加加强了 eO3 对土壤微生物 C 供应和群落组成的影响,而 eO3 的地下影响在两种杨树克隆之间没有差异。综上所述,土壤胞外酶活性的提高和微粒有机碳含量的略微增加表明,通过微生物体内外修饰的微生物碳泵途径被 eO3 加强了,而通过微生物体内周转的途径则被削弱了,这一点从土壤微生物呼吸、生物量、坏死物质和矿质相关有机碳的减少可以看出。我们的研究提供的证据表明,地面 eO3 对树木的影响可能会影响地下微生物对有机物的处理,并最终影响 SOC 的持久性。
{"title":"Ozone strengthens the ex vivo but weakens the in vivo pathway of the microbial carbon pump in poplar plantations","authors":"Haifeng Zheng , Lars Vesterdal , Evgenios Agathokleous , Xiangyang Yuan , Mingyue Yuan , Yansen Xu , Petr Heděnec , Bo Shang , Zhaozhong Feng , Johannes Rousk","doi":"10.1016/j.soilbio.2024.109559","DOIUrl":"10.1016/j.soilbio.2024.109559","url":null,"abstract":"<div><p>Elevated ozone (eO<sub>3</sub>) and atmospheric nitrogen (N) deposition are important climate change components that can affect plant growth and plant-soil-microbe interactions. However, the understanding of how eO<sub>3</sub> and its interaction with N deposition affect soil microbially mediated carbon (C) cycling and the fate of soil C stocks is limited. This study aimed to test how eO<sub>3</sub> and N deposition affected soil microbial metrics (i.e., respiration, enzyme activities, biomass, necromass, and community composition) and resulting soil organic C (SOC) fractions in the rhizosphere of poplar plantations with different sensitivity to O<sub>3</sub>. Exposure to O<sub>3</sub> and/or N deposition for four years was conducted within a free-air O<sub>3</sub> concentration-enrichment facility. Elevated O<sub>3</sub> reduced soil microbial respiration and biomass C but enhanced the enzymatic acquisition of C (i.e., potential soil hydrolase and oxidase activity) and shifted to a fungi-dominated community composition. These responses suggest that microbial C availability decreased and microbes allocated more energy to obtain C and nutrients from biochemically resistant substrates under eO<sub>3</sub>. Elevated O<sub>3</sub> decreased bacterial necromass C and total necromass C, which could explain the observed decreases in mineral-associated organic C and SOC. The effects of eO<sub>3</sub> on soil microbial C availability and community composition were strengthened by N addition, whereas there were no differences in the below-ground effects of eO<sub>3</sub> between the two poplar clones. Taken together, the increased soil extracellular enzyme activities and slightly increased particulate organic C content suggest that the microbial C pump pathway via microbial <em>ex vivo</em> modification was strengthened by eO<sub>3</sub>, whereas the pathway via microbial <em>in vivo</em> turnover was weakened, as suggested by the decreases in soil microbial respiration, biomass, necromass, and mineral-associated organic C. Our study provides evidence that aboveground eO<sub>3</sub> effects on trees may affect belowground microbial processing of organic matter and ultimately the persistence of SOC.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"198 ","pages":"Article 109559"},"PeriodicalIF":9.8,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142050164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1016/j.soilbio.2024.109561
Mengqiang Wang , Dandan Gao , Shuguang Liu , Wende Yan , Jie Zhao
Chinese fir (Cunninghamia lanceolata) is one of the most important economic tree species in Central South China. Several decades of successive rotation of C. lanceolata monocultures have resulted in serious ecosystem degradation. Substantial efforts are underway to convert C. lanceolata monocultures to mixed forests to restore ecosystem functions and services. However, it is unclear whether forest restoration will improve soil quality. Soil nematodes were employed as an ecological indicator of soil quality to assess soil food web structure and energy flow along a forest restoration chronosequence. The chronosequence of transformation stages include: (i) early stage C. lanceolata monocultures aged 5, 10, and 20 years old; (ii) mid-stage conifer-broadleaf mixed forest aged over 20 years old; and (iii) late-stage broadleaf forest aged over 40 years old. Our results suggest that forest restoration changed soil nematode abundance, diversity, and community composition in both dry and wet seasons. Abundance of soil nematodes increased progressively along the restoration chronosequence, peaking in the conifer-broadleaf mixed forest. The relative abundance and energy flow of herbivorous nematodes decreased progressively by 25% and 82% with forest restoration stage, respectively. Forest restoration from C. lanceolata to mixed forests increased energy flow from basal resources to fungivorous nematodes and from fungivorous to omnivorous-carnivorous nematodes by 58% and 52%, respectively. Our findings suggest that forest restoration from C. lanceolata monocultures to mixed forests increases soil biodiversity and food web energy flows to trophic groups higher in the food chain. Therefore, converting C. lanceolata plantations to mixed forests has potential to boost forest ecosystem services and promote sustainable forest management.
{"title":"Forest restoration increases energy flow through the fungal channel and decreases energy flow through the herbivorous channel in soil micro-food webs","authors":"Mengqiang Wang , Dandan Gao , Shuguang Liu , Wende Yan , Jie Zhao","doi":"10.1016/j.soilbio.2024.109561","DOIUrl":"10.1016/j.soilbio.2024.109561","url":null,"abstract":"<div><p>Chinese fir (<em>Cunninghamia lanceolata</em>) is one of the most important economic tree species in Central South China. Several decades of successive rotation of <em>C. lanceolata</em> monocultures have resulted in serious ecosystem degradation. Substantial efforts are underway to convert <em>C. lanceolata</em> monocultures to mixed forests to restore ecosystem functions and services. However, it is unclear whether forest restoration will improve soil quality. Soil nematodes were employed as an ecological indicator of soil quality to assess soil food web structure and energy flow along a forest restoration chronosequence. The chronosequence of transformation stages include: (i) early stage <em>C. lanceolata</em> monocultures aged 5, 10, and 20 years old; (ii) mid-stage conifer-broadleaf mixed forest aged over 20 years old; and (iii) late-stage broadleaf forest aged over 40 years old. Our results suggest that forest restoration changed soil nematode abundance, diversity, and community composition in both dry and wet seasons. Abundance of soil nematodes increased progressively along the restoration chronosequence, peaking in the conifer-broadleaf mixed forest. The relative abundance and energy flow of herbivorous nematodes decreased progressively by 25% and 82% with forest restoration stage, respectively. Forest restoration from <em>C. lanceolata</em> to mixed forests increased energy flow from basal resources to fungivorous nematodes and from fungivorous to omnivorous-carnivorous nematodes by 58% and 52%, respectively. Our findings suggest that forest restoration from <em>C. lanceolata</em> monocultures to mixed forests increases soil biodiversity and food web energy flows to trophic groups higher in the food chain. Therefore, converting <em>C. lanceolata</em> plantations to mixed forests has potential to boost forest ecosystem services and promote sustainable forest management.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"198 ","pages":"Article 109561"},"PeriodicalIF":9.8,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19DOI: 10.1016/j.soilbio.2024.109557
José A. Siles, Roberto Gómez-Pérez, Alfonso Vera, Carlos García, Felipe Bastida
EL-FAME (ester-linked fatty acid methyl ester), PLFA (phospholipid fatty acid), and qPCR (quantitative PCR) of ribosomal genes are three of the most common methods used to quantify soil microbial communities due to their versatility. The reliability of these three methods has not been simultaneously compared in situations of rapid (in the frame of days and weeks) changes in soil microbial abundances. For this purpose, we (i) incubated badland, cropland, and forest soils with nutrients or antibiotics for 2, 7, 14, and 28 days, (ii) quantified total, bacterial, and fungal abundances through EL-FAME, PLFA, and qPCR methods, and (iii) measured soil basal respiration (as indicator of living biomass). The general dynamic patterns of the three soil microbial fractions in response to soil addition of nutrients and antibiotics were captured by the three methods, which led to strong and positive associations between the abundances of total microorganisms, bacteria, and fungi measured by the three procedures. However, these relationships were stronger between the EL-FAME and PLFA results. Further, soil basal respiration was associated to a higher extent with total, bacterial, and fungal abundances captured by EL-FAME and PLFA analyses than with those measured by qPCR, which suggests that the first two methods are most closely related to the soil living microbial community. In general, dynamics in the abundance of total and bacterial communities were better captured than those of fungi by the three methods. The PLFA analysis seems to perform better than the EL-FAME method in forest soil and in detecting the small antibiotic-induced decreases in microbial abundances. Since the EL-FAME method is cheaper and allows a much faster processing of samples than the PLFA method, and the reliability of both methods is similar in detecting rapid changes of soil microbial abundances, choosing EL-FAME over PLFA may be advantageous in most cases.
{"title":"A comparison among EL-FAME, PLFA, and quantitative PCR methods to detect changes in the abundance of soil bacteria and fungi","authors":"José A. Siles, Roberto Gómez-Pérez, Alfonso Vera, Carlos García, Felipe Bastida","doi":"10.1016/j.soilbio.2024.109557","DOIUrl":"10.1016/j.soilbio.2024.109557","url":null,"abstract":"<div><p>EL-FAME (ester-linked fatty acid methyl ester), PLFA (phospholipid fatty acid), and qPCR (quantitative PCR) of ribosomal genes are three of the most common methods used to quantify soil microbial communities due to their versatility. The reliability of these three methods has not been simultaneously compared in situations of rapid (in the frame of days and weeks) changes in soil microbial abundances. For this purpose, we (i) incubated badland, cropland, and forest soils with nutrients or antibiotics for 2, 7, 14, and 28 days, (ii) quantified total, bacterial, and fungal abundances through EL-FAME, PLFA, and qPCR methods, and (iii) measured soil basal respiration (as indicator of living biomass). The general dynamic patterns of the three soil microbial fractions in response to soil addition of nutrients and antibiotics were captured by the three methods, which led to strong and positive associations between the abundances of total microorganisms, bacteria, and fungi measured by the three procedures. However, these relationships were stronger between the EL-FAME and PLFA results. Further, soil basal respiration was associated to a higher extent with total, bacterial, and fungal abundances captured by EL-FAME and PLFA analyses than with those measured by qPCR, which suggests that the first two methods are most closely related to the soil living microbial community. In general, dynamics in the abundance of total and bacterial communities were better captured than those of fungi by the three methods. The PLFA analysis seems to perform better than the EL-FAME method in forest soil and in detecting the small antibiotic-induced decreases in microbial abundances. Since the EL-FAME method is cheaper and allows a much faster processing of samples than the PLFA method, and the reliability of both methods is similar in detecting rapid changes of soil microbial abundances, choosing EL-FAME over PLFA may be advantageous in most cases.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"198 ","pages":"Article 109557"},"PeriodicalIF":9.8,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038071724002463/pdfft?md5=641dacbca983abe4829638d41812c2f2&pid=1-s2.0-S0038071724002463-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-18DOI: 10.1016/j.soilbio.2024.109558
Isaac Yagle , Alon Levinzon , José M. Grünzweig , Jean Marc Dufour-Dror , Udi Zurgil , Vasily I. Grabovsky , Alexandra N. Kravchenko , Ilya Gelfand
The invasion of drylands by leguminous mesquite (Prosopis spp.) is frequently associated with increases in the soil organic carbon (C) and nitrogen (N) pools. These increases stimulate soil microbial activity and accelerate soil C and N cycling. However, the impact of mesquite invasion on soil biogeochemistry, especially the emission of trace gases, in an ecosystem with an already established population of N-fixing plants is not well studied. To fill this knowledge gap, we quantified the in-situ soil trace gas emissions and the potential microbial activity in soils under invasive mesquite (Prosopis juliflora) trees (Prosopis), native acacia (Acacia tortilis) trees (Acacia), and in unvegetated soil between trees (Bare soil) on the western shore of the Dead Sea. To account for contributions of spatial and weather variabilities to the emission processes we conducted measurements across two geographic sites, 45 km apart, over two years, both under naturally dry soil conditions and after soil wetting. Before wetting, soil emissions of carbon dioxide (CO2) and nitric oxide (NOx) followed the order: Acacia > Prosopis ≥ Bare soil, while soil nitrous oxide (N2O) emissions were low and uniform across the three habitats. The soil inorganic N concentration, microbial biomass, and water-extractable organic C were significantly higher under the A. tortilis canopies compared with P. juliflora and Bare soil. After wetting, soil trace gases emissions increased up to 66, 1534, and 42 times, for CO2, N2O, and NOx, respectively, and remained higher under the native A. tortilis than under P. juliflora and Bare soil (Acacia > Prosopis > Bare soil). The potential soil microbial activity, however, was similar between the soils under the tree canopies. Our results show that the establishment of invasive leguminous trees increase soil CO2 and gaseous N emissions relative to the Bare soils, but not relative to native leguminous trees.
豆科植物介壳虫(Prosopis spp.)对旱地的入侵往往与土壤有机碳(C)和氮(N)库的增加有关。这些增加刺激了土壤微生物的活动,加速了土壤碳和氮的循环。然而,在一个已有固氮植物种群的生态系统中,介壳虫入侵对土壤生物地球化学的影响,尤其是对痕量气体排放的影响,还没有得到很好的研究。为了填补这一知识空白,我们对死海西岸入侵介壳虫(Prosopis juliflora)树(Prosopis)下的土壤、本地刺槐(Acacia tortilis)树(刺槐)下的土壤以及树与树之间未植被的土壤(裸土)中的原位土壤痕量气体排放和潜在微生物活动进行了量化。为了考虑空间和天气变化对排放过程的影响,我们在相距 45 公里的两个地点进行了为期两年的测量,包括自然干燥土壤条件下和土壤湿润后。在土壤湿润之前,土壤中二氧化碳(CO2)和一氧化氮(NOx)的排放顺序如下相思树 > 槐树 ≥ 裸土,而三种生境的土壤一氧化二氮(N2O)排放量较低且一致。相思树树冠下的土壤无机氮浓度、微生物生物量和水提取有机碳含量明显高于糙叶金合欢和裸土。湿润后,土壤痕量气体排放量(CO2、N2O 和 NOx)分别增加了 66 倍、1534 倍和 42 倍,并且在原生 A. tortilis 树冠下仍然高于 P. juliflora 和裸土(Acacia > Prosopis > Bare soil)。不过,树冠下土壤的潜在土壤微生物活性相似。我们的研究结果表明,与裸土相比,外来入侵豆科树木会增加土壤中的二氧化碳和气态氮排放量,但与本地豆科树木相比则不会。
{"title":"Invasion of Prosopis trees into arid ecosystem alters soil carbon and nitrogen processes and soil trace gases emissions","authors":"Isaac Yagle , Alon Levinzon , José M. Grünzweig , Jean Marc Dufour-Dror , Udi Zurgil , Vasily I. Grabovsky , Alexandra N. Kravchenko , Ilya Gelfand","doi":"10.1016/j.soilbio.2024.109558","DOIUrl":"10.1016/j.soilbio.2024.109558","url":null,"abstract":"<div><p>The invasion of drylands by leguminous mesquite (<em>Prosopis</em> spp.) is frequently associated with increases in the soil organic carbon (C) and nitrogen (N) pools. These increases stimulate soil microbial activity and accelerate soil C and N cycling. However, the impact of mesquite invasion on soil biogeochemistry, especially the emission of trace gases, in an ecosystem with an already established population of N-fixing plants is not well studied. To fill this knowledge gap, we quantified the <em>in-situ</em> soil trace gas emissions and the potential microbial activity in soils under invasive mesquite (<em>Prosopis juliflora</em>) trees (Prosopis), native acacia (<em>Acacia tortilis</em>) trees (Acacia), and in unvegetated soil between trees (Bare soil) on the western shore of the Dead Sea. To account for contributions of spatial and weather variabilities to the emission processes we conducted measurements across two geographic sites, 45 km apart, over two years, both under naturally dry soil conditions and after soil wetting. Before wetting, soil emissions of carbon dioxide (CO<sub>2</sub>) and nitric oxide (NOx) followed the order: Acacia > Prosopis ≥ Bare soil, while soil nitrous oxide (N<sub>2</sub>O) emissions were low and uniform across the three habitats. The soil inorganic N concentration, microbial biomass, and water-extractable organic C were significantly higher under the <em>A</em>. <em>tortilis</em> canopies compared with <em>P</em>. <em>juliflora</em> and Bare soil. After wetting, soil trace gases emissions increased up to 66, 1534, and 42 times, for CO<sub>2</sub>, N<sub>2</sub>O, and NOx, respectively, and remained higher under the native <em>A</em>. <em>tortilis</em> than under <em>P</em>. <em>juliflora</em> and Bare soil (Acacia > Prosopis > Bare soil). The potential soil microbial activity, however, was similar between the soils under the tree canopies. Our results show that the establishment of invasive leguminous trees increase soil CO<sub>2</sub> and gaseous N emissions relative to the Bare soils, but not relative to native leguminous trees.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"198 ","pages":"Article 109558"},"PeriodicalIF":9.8,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142050165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}