Pub Date : 2023-04-03DOI: 10.1080/02670844.2023.2233256
V. Kumaran, B. Muralidharan
ABSTRACT This paper reports the effect of coating thickness on adhesive properties, and residual stresses by the electric discharge coating (EDC) process on Mg alloy with copper (Cu) nickel (Ni) powder metallurgical (P/M) electrodes. The composite coating layer thickness was measured by optical microscope and it ranges from 10.2 to 102.4 µm. The coating layer was characterized by a Field emission scanning microscope (FESEM) and Energy-dispersive spectroscopy (EDS). X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses were made to identify the chemical composition and functional group. Residual stresses were evaluated by an ETA diffractometer and it revealed that compressive residual stress increases with a range of −458 ± 118 MPa to −1078 ± 125 MPa and tensile residual stresses decrease from 656 ± 113 MPa to 27 ± 11 MPa. The critical load is measured by scratch test. The result shows the adhesive strength of the coated surface was improved with an increase in layer thickness.
{"title":"Analysis of adhesion strength and residual stresses developed by the EDC process","authors":"V. Kumaran, B. Muralidharan","doi":"10.1080/02670844.2023.2233256","DOIUrl":"https://doi.org/10.1080/02670844.2023.2233256","url":null,"abstract":"ABSTRACT This paper reports the effect of coating thickness on adhesive properties, and residual stresses by the electric discharge coating (EDC) process on Mg alloy with copper (Cu) nickel (Ni) powder metallurgical (P/M) electrodes. The composite coating layer thickness was measured by optical microscope and it ranges from 10.2 to 102.4 µm. The coating layer was characterized by a Field emission scanning microscope (FESEM) and Energy-dispersive spectroscopy (EDS). X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses were made to identify the chemical composition and functional group. Residual stresses were evaluated by an ETA diffractometer and it revealed that compressive residual stress increases with a range of −458 ± 118 MPa to −1078 ± 125 MPa and tensile residual stresses decrease from 656 ± 113 MPa to 27 ± 11 MPa. The critical load is measured by scratch test. The result shows the adhesive strength of the coated surface was improved with an increase in layer thickness.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48220513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1080/02670844.2023.2233258
Zhiwei Su, Yanwen Zhou, Yan Caibo, Zhang Kaice
ABSTRACT To reduce the destruction of organic biological fouling in marine steel, nickel-based (NiCrAlY) transition coatings with and without silver (Ag) doping were prepared on AH32 marine steel by plasma spraying. The coatings exhibited a layered structure, and AlNi3 (111), (200), and (220) diffraction peaks were detected. The Ag (111) peaks were also observed for the Ag-doped coatings. The number of sulphate-reducing bacteria (SRB) adsorbed on the coating surfaces reduced after immersion in the bacterial solution, and their shells were disintegrated because of the presence of Ag. The corrosion potentials of AH32, NiCrAlY, and NiCrAlY(Ag) coated AH32 plates were nearly identical at approximately −720 mV. After being covered with organic paint, the corrosion potential and current density of the NiCrAlY(Ag) coating increased to −624 mV and decreased by one order of 2.75 × 10− 6 A cm−2, respectively. The NiCrAlY(Ag) coating effectively inhibited biological fouling.
摘要为了减少船用钢中有机生物结垢的破坏,采用等离子喷涂法在AH32船用钢上制备了含银和不含银的镍基(NiCrAlY)过渡涂层。涂层表现出层状结构,并且检测到AlNi3(111)、(200)和(220)衍射峰。对于Ag掺杂的涂层,也观察到Ag(111)峰。吸附在涂层表面的硫酸盐还原菌(SRB)的数量在浸入细菌溶液后减少,并且由于Ag的存在,它们的外壳被分解。AH32、NiCrAlY和NiCrAlY(Ag)涂层的AH32板的腐蚀电位几乎相同,约为−720 mV。用有机涂料覆盖后,NiCrAlY(Ag)涂层的腐蚀电位和电流密度增加到−624 mV,并降低了2.75的一个数量级 × 10−6 A. cm−2。NiCrAlY(Ag)涂层有效地抑制了生物结垢。
{"title":"Biological fouling and corrosion resistance of Ni-based coating on AH32","authors":"Zhiwei Su, Yanwen Zhou, Yan Caibo, Zhang Kaice","doi":"10.1080/02670844.2023.2233258","DOIUrl":"https://doi.org/10.1080/02670844.2023.2233258","url":null,"abstract":"ABSTRACT To reduce the destruction of organic biological fouling in marine steel, nickel-based (NiCrAlY) transition coatings with and without silver (Ag) doping were prepared on AH32 marine steel by plasma spraying. The coatings exhibited a layered structure, and AlNi3 (111), (200), and (220) diffraction peaks were detected. The Ag (111) peaks were also observed for the Ag-doped coatings. The number of sulphate-reducing bacteria (SRB) adsorbed on the coating surfaces reduced after immersion in the bacterial solution, and their shells were disintegrated because of the presence of Ag. The corrosion potentials of AH32, NiCrAlY, and NiCrAlY(Ag) coated AH32 plates were nearly identical at approximately −720 mV. After being covered with organic paint, the corrosion potential and current density of the NiCrAlY(Ag) coating increased to −624 mV and decreased by one order of 2.75 × 10− 6 A cm−2, respectively. The NiCrAlY(Ag) coating effectively inhibited biological fouling.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47145767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1080/02670844.2023.2233263
R. Sharma, R. Das, S. Kumar
ABSTRACT The current investigation focuses on the comparative assessment of each alloying element such as titanium, chromium, boron, and molybdenum on mechanical and solid particle erosion behaviour of Iron amorphous composite coatings. Iron amorphous composite coatings were deposited on 316L steel. Based on mechanical and erosion properties, the ranking of the alloying element was derived using the Fuzzy analytic hierarchy process (FAHP) and Grey relational analysis (GRA). Eight different series of Iron-based composite coatings with varying alloying elements were deposited on 316L steel. The results indicated that titanium showed the maximum hardness and adhesion pull-off strength, boron showed maximum fracture toughness, Molybdenum indicated the lowest porosity and chromium indicated maximum corrosion resistance. The result of FAHP + GRA concluded that the ranking of Fe amorphous composite coatings followed the order as FeCSiMoBCr10Ti (C-2)> FeCSiMoBCr5Ti (C-1) FeCSiMo10BCrTi (C-6)> > FeCSiMo5BCrTi (C-5)> FeCSi10MoBCrTi (C-8) > FeCSiMoB10CrTi (C-4) > FeCSi5MoBCrTi (C-7) > FeCSiMoB5CrTi (C-3).
{"title":"HVOF Deposition, comparative investigation and optimum selection of molybdenum, boron, chromium, and titanium in Iron amorphous composite coatings","authors":"R. Sharma, R. Das, S. Kumar","doi":"10.1080/02670844.2023.2233263","DOIUrl":"https://doi.org/10.1080/02670844.2023.2233263","url":null,"abstract":"ABSTRACT The current investigation focuses on the comparative assessment of each alloying element such as titanium, chromium, boron, and molybdenum on mechanical and solid particle erosion behaviour of Iron amorphous composite coatings. Iron amorphous composite coatings were deposited on 316L steel. Based on mechanical and erosion properties, the ranking of the alloying element was derived using the Fuzzy analytic hierarchy process (FAHP) and Grey relational analysis (GRA). Eight different series of Iron-based composite coatings with varying alloying elements were deposited on 316L steel. The results indicated that titanium showed the maximum hardness and adhesion pull-off strength, boron showed maximum fracture toughness, Molybdenum indicated the lowest porosity and chromium indicated maximum corrosion resistance. The result of FAHP + GRA concluded that the ranking of Fe amorphous composite coatings followed the order as FeCSiMoBCr10Ti (C-2)> FeCSiMoBCr5Ti (C-1) FeCSiMo10BCrTi (C-6)> > FeCSiMo5BCrTi (C-5)> FeCSi10MoBCrTi (C-8) > FeCSiMoB10CrTi (C-4) > FeCSi5MoBCrTi (C-7) > FeCSiMoB5CrTi (C-3).","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46355536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1080/02670844.2023.2236829
Jie Liu, Xiangyu Zhang, X. Zeng, Zechang Xiong, Y. Liu, Yan Lei, Bing Yang
ABSTRACT (AlCrNbSiTi)N coatings were prepared by arc ion plating at a bias voltage in the range of −50 to −200 V. The as-deposited coatings were all found to have a face-centred cubic structure and exhibit columnar crystal. Si3N4 is distributed in the columnar grains in the form of a network, which separates the columnar grains into fine grains. Si3N4 presents a crystalline state and grows coherently with the surrounding grains to form a nc-(AlCrNbTi)N/nc-Si3N4 nanocomposite structure. The coating with the finest mechanical characteristics was applied at −200 V. The hardness, elastic modulus and wear rate are 34.76, 425 GPa and 0.82 × 10−9 mm3 N−1 m−1, respectively. Based on the outstanding mechanical performance of the coating, it is concluded that the (AlCrNbSiTi)N protective coating has a broad range of potential applications.
{"title":"Effect of bias voltages on microstructure and mechanical properties of (AlCrNbSiTi)N high entropy alloy nitride coatings deposited by arc ion plating","authors":"Jie Liu, Xiangyu Zhang, X. Zeng, Zechang Xiong, Y. Liu, Yan Lei, Bing Yang","doi":"10.1080/02670844.2023.2236829","DOIUrl":"https://doi.org/10.1080/02670844.2023.2236829","url":null,"abstract":"ABSTRACT (AlCrNbSiTi)N coatings were prepared by arc ion plating at a bias voltage in the range of −50 to −200 V. The as-deposited coatings were all found to have a face-centred cubic structure and exhibit columnar crystal. Si3N4 is distributed in the columnar grains in the form of a network, which separates the columnar grains into fine grains. Si3N4 presents a crystalline state and grows coherently with the surrounding grains to form a nc-(AlCrNbTi)N/nc-Si3N4 nanocomposite structure. The coating with the finest mechanical characteristics was applied at −200 V. The hardness, elastic modulus and wear rate are 34.76, 425 GPa and 0.82 × 10−9 mm3 N−1 m−1, respectively. Based on the outstanding mechanical performance of the coating, it is concluded that the (AlCrNbSiTi)N protective coating has a broad range of potential applications.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45071862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-04DOI: 10.1080/02670844.2023.2223454
Wu Ding, Lei Zhou, Jiaping Zhang, Q. Fu
ABSTRACT Slurry impregnation and gaseous Si infiltration were effectively used to produce compact MoSi2-doped Si–HfB2–SiC/Si–SiC (HMSS/SS) coatings with a thickness of 250 μm to protect carbon fibre reinforced carbon (Cf/C) composites from oxygen corrosion at 1700°C. The HMSS/SS coating obtained with a mosaic structure makes it possible to protect Cf/C composites at 1700°C for 276 h and the mass reduction is only 0.99%. The pinning effect of the embedded hafnia, the generated MoB together with the Hf, Mo co-doped Si-based glass layer, which successfully prevented the migration of oxygen, was attributed to the superior oxidation protection ability of the HMSS/SS coatings. This work provides a practical method for successfully extending the service life of Cf/C composites in the aerospace industry.
{"title":"Long-term oxidation of MoSi2-modified HfB2–SiC–Si/SiC–Si coating at 1700°C","authors":"Wu Ding, Lei Zhou, Jiaping Zhang, Q. Fu","doi":"10.1080/02670844.2023.2223454","DOIUrl":"https://doi.org/10.1080/02670844.2023.2223454","url":null,"abstract":"ABSTRACT Slurry impregnation and gaseous Si infiltration were effectively used to produce compact MoSi2-doped Si–HfB2–SiC/Si–SiC (HMSS/SS) coatings with a thickness of 250 μm to protect carbon fibre reinforced carbon (Cf/C) composites from oxygen corrosion at 1700°C. The HMSS/SS coating obtained with a mosaic structure makes it possible to protect Cf/C composites at 1700°C for 276 h and the mass reduction is only 0.99%. The pinning effect of the embedded hafnia, the generated MoB together with the Hf, Mo co-doped Si-based glass layer, which successfully prevented the migration of oxygen, was attributed to the superior oxidation protection ability of the HMSS/SS coatings. This work provides a practical method for successfully extending the service life of Cf/C composites in the aerospace industry.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46208443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-04DOI: 10.1080/02670844.2023.2218204
A. Govande, B. Ratna Sunil, R. Dumpala
ABSTRACT The WC–12Co coatings were deposited on SS 410 substrates using a high-velocity oxygen fuel (HVOF) process and the coatings were heat-treated at 750°C for 1 h in argon environment. Further, the coatings were subjected to cryogenic treatment for 1, 2, 8 and 24 h, and its influence on the reciprocating sliding wear and corrosion characteristics was studied. The structural changes in the coatings after post-treatment were assessed by X-ray diffraction analysis and Raman spectroscopy. Microhardness was improved for cryogenically treated coatings due to the α-Co transformation into ϵ-Co. Cryogenic treatment duration was not having a significant effect on the microhardness values. However, the specific wear rate was influenced by the cryogenic treatment duration. Also, corrosion resistance was increased with the increased cryogenic treatment duration. The protective layers consisting of WO3 and Co3O4 phases formed during the cryogenic treatment are attributed to the improved corrosion resistance of the coatings.
{"title":"Wear and corrosion behaviour of the cryogenically treated tungsten carbide coatings","authors":"A. Govande, B. Ratna Sunil, R. Dumpala","doi":"10.1080/02670844.2023.2218204","DOIUrl":"https://doi.org/10.1080/02670844.2023.2218204","url":null,"abstract":"ABSTRACT The WC–12Co coatings were deposited on SS 410 substrates using a high-velocity oxygen fuel (HVOF) process and the coatings were heat-treated at 750°C for 1 h in argon environment. Further, the coatings were subjected to cryogenic treatment for 1, 2, 8 and 24 h, and its influence on the reciprocating sliding wear and corrosion characteristics was studied. The structural changes in the coatings after post-treatment were assessed by X-ray diffraction analysis and Raman spectroscopy. Microhardness was improved for cryogenically treated coatings due to the α-Co transformation into ϵ-Co. Cryogenic treatment duration was not having a significant effect on the microhardness values. However, the specific wear rate was influenced by the cryogenic treatment duration. Also, corrosion resistance was increased with the increased cryogenic treatment duration. The protective layers consisting of WO3 and Co3O4 phases formed during the cryogenic treatment are attributed to the improved corrosion resistance of the coatings.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44572004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-04DOI: 10.1080/02670844.2023.2218208
P. Garcia, A. Cardoso, R. Chales, B. B. Almeida
ABSTRACT Welding is one of the major assembly processes employed in most common aeronautical applications. However, the consequences of the thermal cycle might be detrimental to the material’s fatigue resistance depending strongly on the resulting microstructure. The 4340 steel is known to present temper embrittlement, which greatly reduces its fatigue life and weldability. This work proposes plasma nitriding as an alternative solution to tempering as a post-weld treatment and investigates its effects on material’s hardness and fatigue life. This analysis was complemented by microstructural and fracture surface characterization. Plasma nitriding resulted in the formation of a double layer consisting of a smaller white micrometric nitride layer at the surface and a more diffuse sub-superficial region which led to better fatigue behaviour when compared with the conventional tempering treatment. The achieved higher surface hardness might also be interesting in other applications such as those involving high erosion and wear.
{"title":"Plasma nitriding effects in fatigue behaviour of the welded 4340 steel","authors":"P. Garcia, A. Cardoso, R. Chales, B. B. Almeida","doi":"10.1080/02670844.2023.2218208","DOIUrl":"https://doi.org/10.1080/02670844.2023.2218208","url":null,"abstract":"ABSTRACT Welding is one of the major assembly processes employed in most common aeronautical applications. However, the consequences of the thermal cycle might be detrimental to the material’s fatigue resistance depending strongly on the resulting microstructure. The 4340 steel is known to present temper embrittlement, which greatly reduces its fatigue life and weldability. This work proposes plasma nitriding as an alternative solution to tempering as a post-weld treatment and investigates its effects on material’s hardness and fatigue life. This analysis was complemented by microstructural and fracture surface characterization. Plasma nitriding resulted in the formation of a double layer consisting of a smaller white micrometric nitride layer at the surface and a more diffuse sub-superficial region which led to better fatigue behaviour when compared with the conventional tempering treatment. The achieved higher surface hardness might also be interesting in other applications such as those involving high erosion and wear.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46754100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-04DOI: 10.1080/02670844.2023.2217599
Ji Li, Junfeng Lu, Tian C. Zhang, Shaojun Yuan
ABSTRACT Dodecyltrimethoxysilane (DTMS)-modified reduced graphene oxide (rGO) nanocomposites were incorporated into polyurethane (PU) sponges by a combination of dip-coating and thermal curing reduction reaction to obtain a novel superhydrophobic DTMS-rGO-PU sponge for effective oil/water separation. The reaction conditions, such as the dip-coating solution concentration, the thermal curing reduction temperature, and the reaction time were demonstrated to be key factors in forming hierarchical DTMS-rGO nanocomposites, which significantly affected the surface wettability of the PU sponge. The resulting DTMS-rGO-PU sponge with a static water contact angle (WCA) of 152.2° displayed superior superhydrophobicity, and achieved an oil–water separation efficiency of 99.89% for various oil/water mixtures. This superhydrophobic sponge also showed minimal deterioration in its high oil adsorption capacity after 100 recycled adsorption operations. Furthermore, the as-prepared DTMS-rGO-PU sponge was proven to be physically and chemically stable and durable in harsh environmental conditions, suggesting its potential for industrial applications in oil spillage management.
{"title":"Superhydrophobic DTMS/rGO-nanocomposites modified polyurethane sponge for efficient oil–water separation","authors":"Ji Li, Junfeng Lu, Tian C. Zhang, Shaojun Yuan","doi":"10.1080/02670844.2023.2217599","DOIUrl":"https://doi.org/10.1080/02670844.2023.2217599","url":null,"abstract":"ABSTRACT Dodecyltrimethoxysilane (DTMS)-modified reduced graphene oxide (rGO) nanocomposites were incorporated into polyurethane (PU) sponges by a combination of dip-coating and thermal curing reduction reaction to obtain a novel superhydrophobic DTMS-rGO-PU sponge for effective oil/water separation. The reaction conditions, such as the dip-coating solution concentration, the thermal curing reduction temperature, and the reaction time were demonstrated to be key factors in forming hierarchical DTMS-rGO nanocomposites, which significantly affected the surface wettability of the PU sponge. The resulting DTMS-rGO-PU sponge with a static water contact angle (WCA) of 152.2° displayed superior superhydrophobicity, and achieved an oil–water separation efficiency of 99.89% for various oil/water mixtures. This superhydrophobic sponge also showed minimal deterioration in its high oil adsorption capacity after 100 recycled adsorption operations. Furthermore, the as-prepared DTMS-rGO-PU sponge was proven to be physically and chemically stable and durable in harsh environmental conditions, suggesting its potential for industrial applications in oil spillage management.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45173495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-04DOI: 10.1080/02670844.2023.2223452
Z. Li, Zhichao Qi, Tian-Dong Zhang, Zhankui Wang, J. Su
ABSTRACT In this paper, the tribochemical reaction mechanism between solid powder and 6H-SiC substrate was investigated. White light interferometer was used to detect surface roughness, FESEM was used to observe surface characteristics, EDS was used to detect surface elements and XRD was used to detect surface components. The tribochemical reaction mechanism of the reduced iron powder, anhydrous sodium carbonate and deionized water with 6H-SiC was analysed by the detection results. It is found that the reduced iron powder, anhydrous sodium carbonate and deionized water react with the 6H-SiC surface to form a soft interfacial transition layer which can be removed. The removal rate of the reduced iron powder is the highest at 191 nm h–1. The surface quality decreases after polishing with the anhydrous sodium carbonate. The results of this study provide a new idea for the field of ultra-precision machining.
{"title":"Investigation of the tribochemical reaction mechanism in dry-type CMP of 6H-SiC substrate","authors":"Z. Li, Zhichao Qi, Tian-Dong Zhang, Zhankui Wang, J. Su","doi":"10.1080/02670844.2023.2223452","DOIUrl":"https://doi.org/10.1080/02670844.2023.2223452","url":null,"abstract":"ABSTRACT In this paper, the tribochemical reaction mechanism between solid powder and 6H-SiC substrate was investigated. White light interferometer was used to detect surface roughness, FESEM was used to observe surface characteristics, EDS was used to detect surface elements and XRD was used to detect surface components. The tribochemical reaction mechanism of the reduced iron powder, anhydrous sodium carbonate and deionized water with 6H-SiC was analysed by the detection results. It is found that the reduced iron powder, anhydrous sodium carbonate and deionized water react with the 6H-SiC surface to form a soft interfacial transition layer which can be removed. The removal rate of the reduced iron powder is the highest at 191 nm h–1. The surface quality decreases after polishing with the anhydrous sodium carbonate. The results of this study provide a new idea for the field of ultra-precision machining.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43640902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-04DOI: 10.1080/02670844.2023.2212948
Shaolan Yang, Ping Wang, Jiwei Liu
ABSTRACT Micro-arc oxidation (MAO) coatings were fabricated on 2195 aluminium-lithium alloy substrate, using a silicate and phosphate electrolyte with variable scandium nitrate (Sc(NO3)3) concentrations. The properties of the coatings were analysed by scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical workstation. The comprehensive analysis demonstrates that adding proper amount of Sc(NO3)3 increased the oxidation voltage, which transformed the worm shape discharge micropores into round-hole shape, and the MAO coatings presented a double-layer structure. The primary phase composition of the coatings was γ-Al2O3, α-Al2O3, Sc2O3 and Al3Sc. The optimum concentration of Sc(NO3)3 was 0.6 g L−1. The hardness reached a maximum value of (1284 ± 43.5) HV, which was about 2.5 times higher than that without adding. The self-corrosion current density reduced from 138.00 × 10− 7 A cm−2 (substrate) to 3.65 × 10− 7 A cm−2, which was approximately two orders of magnitude lower, indicating that the corrosion resistance was improved.
采用扫描电子显微镜(SEM)、x射线衍射仪(XRD)、x射线光电子能谱仪(XPS)和电化学工作站对涂层的性能进行了分析。综合分析表明,加入适量的Sc(NO3)3可以提高氧化电压,使氧化膜的蜗杆状放电微孔转变为圆孔状放电微孔,氧化膜呈现双层结构。涂层的主要相组成为γ-Al2O3、α-Al2O3、Sc2O3和Al3Sc。Sc(NO3)3的最佳浓度为0.6 g L−1。硬度最大值为(1284±43.5)HV,是未添加时的2.5倍左右。自腐蚀电流密度从138.00 × 10−7 A cm−2(衬底)降低到3.65 × 10−7 A cm−2,降低了约2个数量级,表明耐蚀性得到了提高。
{"title":"Influences of Sc(NO3)3 on characteristics of micro-arc oxidation coatings","authors":"Shaolan Yang, Ping Wang, Jiwei Liu","doi":"10.1080/02670844.2023.2212948","DOIUrl":"https://doi.org/10.1080/02670844.2023.2212948","url":null,"abstract":"ABSTRACT Micro-arc oxidation (MAO) coatings were fabricated on 2195 aluminium-lithium alloy substrate, using a silicate and phosphate electrolyte with variable scandium nitrate (Sc(NO3)3) concentrations. The properties of the coatings were analysed by scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical workstation. The comprehensive analysis demonstrates that adding proper amount of Sc(NO3)3 increased the oxidation voltage, which transformed the worm shape discharge micropores into round-hole shape, and the MAO coatings presented a double-layer structure. The primary phase composition of the coatings was γ-Al2O3, α-Al2O3, Sc2O3 and Al3Sc. The optimum concentration of Sc(NO3)3 was 0.6 g L−1. The hardness reached a maximum value of (1284 ± 43.5) HV, which was about 2.5 times higher than that without adding. The self-corrosion current density reduced from 138.00 × 10− 7 A cm−2 (substrate) to 3.65 × 10− 7 A cm−2, which was approximately two orders of magnitude lower, indicating that the corrosion resistance was improved.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43012926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}