Pub Date : 2023-05-04DOI: 10.1080/02670844.2023.2239027
L. Razzaboni, L. Casanova, M. Pedeferri, M. Ormellese
ABSTRACT The electroless deposition of a novel vanadium-based conversion coating (VCC) on carbon steel was investigated varying parameters as vanadium salt concentration, immersion time, bath pH and temperature. The novelty resides on the deposition of a protective layer from a V4+ solution comprising green reducing agents like ascorbic and citric acids. The VCC was found to be amorphous, composed by closely packed particles rich in vanadium oxides/hydroxides. Corrosion resistance was evaluated by linear polarization resistance, Tafel extrapolation and electrochemical impedance spectroscopy. Such conversion coating provided an optimum corrosion performance for steel substrates immersed in sulphates and chlorides rich solutions. An optimum was achieved with a 0.1 M KVO3 solution held at 45°C, at pH = 3 and a deposition time of 10 min. Higher values of the latter parameters did not provide any further improvements: the formation of cracks during the dehydration process compromised the coating integrity.
研究了钒盐浓度、浸泡时间、镀液pH和温度等因素对钒基转化涂层(VCC)在碳钢表面化学沉积的影响。其新颖之处在于由含有抗坏血酸和柠檬酸等绿色还原剂的V4+溶液沉积的保护层。发现VCC是无定形的,由富含钒氧化物/氢氧化物的紧密堆积的颗粒组成。采用线性极化电阻法、塔菲尔外推法和电化学阻抗谱法对其耐蚀性进行了评价。这种转化涂层对浸泡在富含硫酸盐和氯化物溶液中的钢基体具有最佳的腐蚀性能。在45°C, pH = 3,沉积时间为10分钟的条件下,0.1 M KVO3溶液达到了最佳效果。后一个参数的更高值并没有提供任何进一步的改善:在脱水过程中形成的裂缝损害了涂层的完整性。
{"title":"A green vanadium-based formulation for the conversion of steel","authors":"L. Razzaboni, L. Casanova, M. Pedeferri, M. Ormellese","doi":"10.1080/02670844.2023.2239027","DOIUrl":"https://doi.org/10.1080/02670844.2023.2239027","url":null,"abstract":"ABSTRACT The electroless deposition of a novel vanadium-based conversion coating (VCC) on carbon steel was investigated varying parameters as vanadium salt concentration, immersion time, bath pH and temperature. The novelty resides on the deposition of a protective layer from a V4+ solution comprising green reducing agents like ascorbic and citric acids. The VCC was found to be amorphous, composed by closely packed particles rich in vanadium oxides/hydroxides. Corrosion resistance was evaluated by linear polarization resistance, Tafel extrapolation and electrochemical impedance spectroscopy. Such conversion coating provided an optimum corrosion performance for steel substrates immersed in sulphates and chlorides rich solutions. An optimum was achieved with a 0.1 M KVO3 solution held at 45°C, at pH = 3 and a deposition time of 10 min. Higher values of the latter parameters did not provide any further improvements: the formation of cracks during the dehydration process compromised the coating integrity.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"39 1","pages":"613 - 624"},"PeriodicalIF":2.8,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48459319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-04DOI: 10.1080/02670844.2023.2242117
A. Agnihotri, S. Kalsi, H. Kansal
ABSTRACT Hot corrosion of boiler tubes used in steam-generating systems has been recognized as a severe problem, resulting in tube wall thinning and premature failure. In this study, the effect of burnishing the thermal sprayed coatings against high-temperature corrosion of SA213-T22 boiler steel in actual environmental conditions of coal-fired boiler has been investigated. An experimental study was carried out for ten cycles, where the individual cycle consists of one-hundred hours of exposure trailed by one hour of ambient cooling. The hot corroded specimens are visually inspected at the end of each cycle to check for any variation in colour, luster, spalling tendency, and other physical changes in scale. The tested specimens were characterized through Thermogravimetric Technique, Microhardness Tester, Optical Microscope, Scanning Electron Microscope, and X-Ray Diffractometer to study their hot corrosion performance. The findings of this work suggest that burnishing can be potentially used for providing superior hot corrosion protection to any of the thermal sprayed coated specimens.
{"title":"Effect of burnishing on HVOF coated boiler steel against hot corrosion in actual boiler environment","authors":"A. Agnihotri, S. Kalsi, H. Kansal","doi":"10.1080/02670844.2023.2242117","DOIUrl":"https://doi.org/10.1080/02670844.2023.2242117","url":null,"abstract":"ABSTRACT Hot corrosion of boiler tubes used in steam-generating systems has been recognized as a severe problem, resulting in tube wall thinning and premature failure. In this study, the effect of burnishing the thermal sprayed coatings against high-temperature corrosion of SA213-T22 boiler steel in actual environmental conditions of coal-fired boiler has been investigated. An experimental study was carried out for ten cycles, where the individual cycle consists of one-hundred hours of exposure trailed by one hour of ambient cooling. The hot corroded specimens are visually inspected at the end of each cycle to check for any variation in colour, luster, spalling tendency, and other physical changes in scale. The tested specimens were characterized through Thermogravimetric Technique, Microhardness Tester, Optical Microscope, Scanning Electron Microscope, and X-Ray Diffractometer to study their hot corrosion performance. The findings of this work suggest that burnishing can be potentially used for providing superior hot corrosion protection to any of the thermal sprayed coated specimens.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"39 1","pages":"559 - 571"},"PeriodicalIF":2.8,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44447336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-04DOI: 10.1080/02670844.2023.2247862
Saroj Kumar Ghosh, P. K. Limaye, C. Srivastava, A. K. Sahu
ABSTRACT Electroplated hard Cr-coated 17-4 PH stainless steel is regularly used in various parts of fuel handling system of nuclear reactors. In this study, the Cr-coated samples were investigated in detail for the coating adhesion using micro-scratch tester and ball indentation. Tribological investigation of the Cr coating was done in a reciprocating ball-on-plate dry sliding geometry against SS 440C ball counterbody. The wear and coefficient of friction (COF) tests were performed under five different loading conditions (3, 5, 7, 9 and 11 N) and three different sliding frequencies (5, 10 and 15 Hz). Wear scars on chromium coating were examined in detail by FESEM and 3D optical profilometer to understand the wear mechanism. It was observed that beyond 7 N critical load, the coating was prone to wear out drastically. Corrosion rate of the coating was estimated in 3.5 wt% NaCl solution by potentiodynamic experiment.
{"title":"Investigation of tribological and corrosion performance of electroplated hard chromium coating on 17-4 PH steel","authors":"Saroj Kumar Ghosh, P. K. Limaye, C. Srivastava, A. K. Sahu","doi":"10.1080/02670844.2023.2247862","DOIUrl":"https://doi.org/10.1080/02670844.2023.2247862","url":null,"abstract":"ABSTRACT Electroplated hard Cr-coated 17-4 PH stainless steel is regularly used in various parts of fuel handling system of nuclear reactors. In this study, the Cr-coated samples were investigated in detail for the coating adhesion using micro-scratch tester and ball indentation. Tribological investigation of the Cr coating was done in a reciprocating ball-on-plate dry sliding geometry against SS 440C ball counterbody. The wear and coefficient of friction (COF) tests were performed under five different loading conditions (3, 5, 7, 9 and 11 N) and three different sliding frequencies (5, 10 and 15 Hz). Wear scars on chromium coating were examined in detail by FESEM and 3D optical profilometer to understand the wear mechanism. It was observed that beyond 7 N critical load, the coating was prone to wear out drastically. Corrosion rate of the coating was estimated in 3.5 wt% NaCl solution by potentiodynamic experiment.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"39 1","pages":"521 - 531"},"PeriodicalIF":2.8,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42612230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-04DOI: 10.1080/02670844.2023.2242116
Changliang Wang, Zhang Li, M. Iefimov, B. Mordyuk
ABSTRACT Quasicrystalline (QC) AlCuFe coating is produced on the AA2024 alloy using high-velocity air-fuel (HVAF) spraying. The HVAF sprayed coatings are studied in as-deposited and subsequently annealed (400°C, 1 h) states. XRD, SEM, and EDX analysis revealed a two-phase microstructure comprising QC icosahedral ψ-phase (the volume fraction of ∼75%) and interlayered bcc β-phase that remains the same as that in a water-atomized AlCuFe powder used as feeding material. The used annealing exerts a negligible effect on the protective properties of the HVAF coating that possesses good adhesion strength (>12 MPa), a high HV microhardness (7.1 ± 0.2 GPa), nanohardness (11.1 ± 0.2 GPa), elastic modulus (169 GPa), the essentially lowered wear losses (0.71 μm), coefficient of friction (CoF≈0.03), and corrosion current density (6.7 μm cm−2) in a 3.5%NaCl medium. These characteristics are much better than those of the original AA2024 alloy.
{"title":"Protection of AA2024 alloy against wear and corrosion by HVAF sprayed AlCuFe coating","authors":"Changliang Wang, Zhang Li, M. Iefimov, B. Mordyuk","doi":"10.1080/02670844.2023.2242116","DOIUrl":"https://doi.org/10.1080/02670844.2023.2242116","url":null,"abstract":"ABSTRACT Quasicrystalline (QC) AlCuFe coating is produced on the AA2024 alloy using high-velocity air-fuel (HVAF) spraying. The HVAF sprayed coatings are studied in as-deposited and subsequently annealed (400°C, 1 h) states. XRD, SEM, and EDX analysis revealed a two-phase microstructure comprising QC icosahedral ψ-phase (the volume fraction of ∼75%) and interlayered bcc β-phase that remains the same as that in a water-atomized AlCuFe powder used as feeding material. The used annealing exerts a negligible effect on the protective properties of the HVAF coating that possesses good adhesion strength (>12 MPa), a high HV microhardness (7.1 ± 0.2 GPa), nanohardness (11.1 ± 0.2 GPa), elastic modulus (169 GPa), the essentially lowered wear losses (0.71 μm), coefficient of friction (CoF≈0.03), and corrosion current density (6.7 μm cm−2) in a 3.5%NaCl medium. These characteristics are much better than those of the original AA2024 alloy.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"39 1","pages":"532 - 540"},"PeriodicalIF":2.8,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42619481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-04DOI: 10.1080/02670844.2023.2245604
Monty Kumar, A. Sharma, Kailash Jha, A. Mandal
ABSTRACT The present work emphasizes the fabrication of a series of V-groove channels utilizing electrical discharge machining using a pointed tungsten tool electrode. The prepared textured surface is tested for the shape of V-groove channel, wetting behavior, and tribological aspect. A decrease in shape error of V-groove channel is observed as the peak current increases from 4 A to 10 A due to an increase in discharge energy which functions as the melting or vaporizing of machined materials. The water contact angle decreases from 61.3160 (untextured surface) to 49.5670 (sample 4) showing an increase in hydrophilic behavior for the samples having nearly a V-groove-shaped channel. Further, there is a decrease in COF value from 0.48 (untextured surface) to 0.23 (sample 4). The decreased COF value attributes to the formation of metallic bridges in the V-groove channel. The prime wear mechanism for an untextured surface is found to be ploughing whereas adhesion with ploughing is dominant for textured surfaces.
{"title":"Die-sink EDM texturing to fabricate hydrophilic and wear resistant surface","authors":"Monty Kumar, A. Sharma, Kailash Jha, A. Mandal","doi":"10.1080/02670844.2023.2245604","DOIUrl":"https://doi.org/10.1080/02670844.2023.2245604","url":null,"abstract":"ABSTRACT The present work emphasizes the fabrication of a series of V-groove channels utilizing electrical discharge machining using a pointed tungsten tool electrode. The prepared textured surface is tested for the shape of V-groove channel, wetting behavior, and tribological aspect. A decrease in shape error of V-groove channel is observed as the peak current increases from 4 A to 10 A due to an increase in discharge energy which functions as the melting or vaporizing of machined materials. The water contact angle decreases from 61.3160 (untextured surface) to 49.5670 (sample 4) showing an increase in hydrophilic behavior for the samples having nearly a V-groove-shaped channel. Further, there is a decrease in COF value from 0.48 (untextured surface) to 0.23 (sample 4). The decreased COF value attributes to the formation of metallic bridges in the V-groove channel. The prime wear mechanism for an untextured surface is found to be ploughing whereas adhesion with ploughing is dominant for textured surfaces.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"39 1","pages":"591 - 599"},"PeriodicalIF":2.8,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45680734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-04DOI: 10.1080/02670844.2023.2240991
L. Gopal, T. Sudarshan
Catheters have been an indispensable tool in medical practice since ancient times, their use dating back to the sixth century BC by the Indian surgeon Sushruta [1]. Originally made using materials like gold, silver, iron, and wood, catheters have evolved into advanced designs over the centuries across the world. Benjamin Franklin’s 1752 invention of a silver catheter made of hinged segments of tubes may be considered the first flexible catheter in recorded history [Figure 1]. The modern balloon-based self-retaining catheter, introduced in 1933, marked a turning point in catheter design and development. Today, three main types of catheters are used: indwelling, external, and short-term catheters, which are available in various sizes, materials (including latex, silicone, Teflon, PVC, etc.), and types (straight or coude tip). The invasive nature of catheters comes with risks of microbial growth and incompatibility with the human system, leading to infection, inflammation and device rejection and the need to change them frequently especially in the elderly. Catheter-associated urinary infections (CAUTIs) pose a significant concern, contributing to increased mortality rates and substantial economic burdens. UTIs account for 20 to 40% of hospital-associated infections, with an estimated 80% linked to urinary catheters [3]. There has been increasing interest in developing surface modification techniques to afford microbicidal properties and biocompatibility to catheter surfaces, as seen in the increasing number of publications in the area [Figure 2]. These surface modification methods involve the use of coatings or physical microand nano-dimensional surface modifications [4]. Coatings can be classified based on their mechanism of action: passive strategies include antifouling surfaces, while active approaches involve antimicrobial coatings that disrupt biological pathways. Antifouling coatings, especially hydrogels [5], poly (tetrafluoroethylene) [6], polyzwitterions [7], and poly (ethylene glycol) [8] are being explored. These coatings are often loaded with antimicrobial agents such as antibiotics, biocidal enzymes, and bacteriophages [9]. The agents prevent CAUTIs through mechanisms such as the slow release of microbicidal chemicals, modifying catheter surfaces to prevent microbial adherence, and disrupting biofilms that allow pathogen colonization. For example, researchers developed a poly(sulfobetaine methacrylate)-tannic acid hydrogel coating loaded with antimicrobials (poly(vinylpyrrolidone)-iodine, copper ions, and nitrofurazone) through non-covalent interactions. The coating exhibited pH-responsive release of the antibacterial agents under alkaline conditions, offering improved antibacterial activity against urease-producing bacteria [10]. Urinary catheters have been coated with thin layers of silver in the form of silver oxide or silver alloy, as well as noble metal alloys (gold, silver, and palladium), to reduce bacterial adherence to their s
{"title":"Surface modification of urinary catheters","authors":"L. Gopal, T. Sudarshan","doi":"10.1080/02670844.2023.2240991","DOIUrl":"https://doi.org/10.1080/02670844.2023.2240991","url":null,"abstract":"Catheters have been an indispensable tool in medical practice since ancient times, their use dating back to the sixth century BC by the Indian surgeon Sushruta [1]. Originally made using materials like gold, silver, iron, and wood, catheters have evolved into advanced designs over the centuries across the world. Benjamin Franklin’s 1752 invention of a silver catheter made of hinged segments of tubes may be considered the first flexible catheter in recorded history [Figure 1]. The modern balloon-based self-retaining catheter, introduced in 1933, marked a turning point in catheter design and development. Today, three main types of catheters are used: indwelling, external, and short-term catheters, which are available in various sizes, materials (including latex, silicone, Teflon, PVC, etc.), and types (straight or coude tip). The invasive nature of catheters comes with risks of microbial growth and incompatibility with the human system, leading to infection, inflammation and device rejection and the need to change them frequently especially in the elderly. Catheter-associated urinary infections (CAUTIs) pose a significant concern, contributing to increased mortality rates and substantial economic burdens. UTIs account for 20 to 40% of hospital-associated infections, with an estimated 80% linked to urinary catheters [3]. There has been increasing interest in developing surface modification techniques to afford microbicidal properties and biocompatibility to catheter surfaces, as seen in the increasing number of publications in the area [Figure 2]. These surface modification methods involve the use of coatings or physical microand nano-dimensional surface modifications [4]. Coatings can be classified based on their mechanism of action: passive strategies include antifouling surfaces, while active approaches involve antimicrobial coatings that disrupt biological pathways. Antifouling coatings, especially hydrogels [5], poly (tetrafluoroethylene) [6], polyzwitterions [7], and poly (ethylene glycol) [8] are being explored. These coatings are often loaded with antimicrobial agents such as antibiotics, biocidal enzymes, and bacteriophages [9]. The agents prevent CAUTIs through mechanisms such as the slow release of microbicidal chemicals, modifying catheter surfaces to prevent microbial adherence, and disrupting biofilms that allow pathogen colonization. For example, researchers developed a poly(sulfobetaine methacrylate)-tannic acid hydrogel coating loaded with antimicrobials (poly(vinylpyrrolidone)-iodine, copper ions, and nitrofurazone) through non-covalent interactions. The coating exhibited pH-responsive release of the antibacterial agents under alkaline conditions, offering improved antibacterial activity against urease-producing bacteria [10]. Urinary catheters have been coated with thin layers of silver in the form of silver oxide or silver alloy, as well as noble metal alloys (gold, silver, and palladium), to reduce bacterial adherence to their s","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"39 1","pages":"515 - 520"},"PeriodicalIF":2.8,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42912370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-04DOI: 10.1080/02670844.2023.2239028
M. Shamsi, M. Sedighi
ABSTRACT Magnesium implants are susceptible to premature failure due to corrosion and cyclic loading within the body. Composite fibre coatings are effective at reducing corrosion in magnesium materials. In this study, an Mg/HA composite was fabricated, and microscopic and mechanical characterisation was performed. The samples were then electrospun with PCL/2.5%HA fibres, and corrosion behaviour was explored by immersion tests. Finally, rotary bending fatigue tests in air and SBF environments were conducted. According to the findings, the Mg/2.5%HA and coated Mg/2.5%HA samples can withstand more than 1 million cycles under 60 MPa. Compared to pure Mg, Mg/2.5%HA has better corrosion and corrosion fatigue resistance. Furthermore, a PCL/2.5%HA fibre coating can increase the corrosion fatigue resistance of Mg/2.5%HA as a result of the polymer scaffold, passive protective layer, and apatite adsorption capability. Results suggest that Mg/2.5%HA composites coated with PCL/2.5%HA fibres are potentially suitable for use in orthopaedic biomaterials.
{"title":"Corrosion fatigue behaviour of electrospun PCL/HA coated magnesium biocomposites","authors":"M. Shamsi, M. Sedighi","doi":"10.1080/02670844.2023.2239028","DOIUrl":"https://doi.org/10.1080/02670844.2023.2239028","url":null,"abstract":"ABSTRACT Magnesium implants are susceptible to premature failure due to corrosion and cyclic loading within the body. Composite fibre coatings are effective at reducing corrosion in magnesium materials. In this study, an Mg/HA composite was fabricated, and microscopic and mechanical characterisation was performed. The samples were then electrospun with PCL/2.5%HA fibres, and corrosion behaviour was explored by immersion tests. Finally, rotary bending fatigue tests in air and SBF environments were conducted. According to the findings, the Mg/2.5%HA and coated Mg/2.5%HA samples can withstand more than 1 million cycles under 60 MPa. Compared to pure Mg, Mg/2.5%HA has better corrosion and corrosion fatigue resistance. Furthermore, a PCL/2.5%HA fibre coating can increase the corrosion fatigue resistance of Mg/2.5%HA as a result of the polymer scaffold, passive protective layer, and apatite adsorption capability. Results suggest that Mg/2.5%HA composites coated with PCL/2.5%HA fibres are potentially suitable for use in orthopaedic biomaterials.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"39 1","pages":"541 - 558"},"PeriodicalIF":2.8,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41548490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-04DOI: 10.1080/02670844.2023.2239552
Dongwei Wang, Faqiang Li, Qichang Huang, Fanyu Wang
ABSTRACT Three kinds of laser surface texture (LST), i.e. square pit-textured surface (SPTS), round pit-textured surface (RPTS) and groove-textured surface (GTS), are fabricated on the flat brass (H65) sample surfaces. The current-carrying tribological behaviour of these surfaces are investigated. It is noticed the COFs of smooth surface, SPTS and RPTS are all greater than 0.6 after the test, while the GTS has the lowest COF, which remains around 0.2 throughout the test. The vibration signals detected from all surfaces indicate the larger COF will not trigger the FIV generation in this state. All the texture surfaces will not cause electrical contact breaks. Worn surface analysis indicates the wear level of GTS is the weakest, with slight damage and debris accumulation occurs along the groove edges. Finite element analysis is performed to calculate the variation of contact force, contact temperature and voltage signal, and the test results can be well explained.
{"title":"Improvement of current-carrying tribological behaviour via laser surface texture","authors":"Dongwei Wang, Faqiang Li, Qichang Huang, Fanyu Wang","doi":"10.1080/02670844.2023.2239552","DOIUrl":"https://doi.org/10.1080/02670844.2023.2239552","url":null,"abstract":"ABSTRACT Three kinds of laser surface texture (LST), i.e. square pit-textured surface (SPTS), round pit-textured surface (RPTS) and groove-textured surface (GTS), are fabricated on the flat brass (H65) sample surfaces. The current-carrying tribological behaviour of these surfaces are investigated. It is noticed the COFs of smooth surface, SPTS and RPTS are all greater than 0.6 after the test, while the GTS has the lowest COF, which remains around 0.2 throughout the test. The vibration signals detected from all surfaces indicate the larger COF will not trigger the FIV generation in this state. All the texture surfaces will not cause electrical contact breaks. Worn surface analysis indicates the wear level of GTS is the weakest, with slight damage and debris accumulation occurs along the groove edges. Finite element analysis is performed to calculate the variation of contact force, contact temperature and voltage signal, and the test results can be well explained.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"39 1","pages":"572 - 583"},"PeriodicalIF":2.8,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49520818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-04DOI: 10.1080/02670844.2023.2240565
Yong Chen, Qiong Chen, Ming-an Chen
ABSTRACT The influence of silane pretreatment with five different volume ratios (100/0, 75/25, 50/50, 25/75, and 0/100) of 3-aminopropyltriethoxysilane (APTES)/tetraethylorthosilicate (TEOS) on microstructure and corrosion resistance of the hydrothermal synthesized zeolite coatings on the H13 steel substrates was investigated. The surface of the zeolite coatings on the 100/0, 75/25, and 50/50 mixture of the APTES/TEOS pretreated substrates was composed of intergrown rectangular particles. Additionally, pores were observed. A 25/75 mixture of APTES/TEOS pretreatment smoothed the edges and angles of zeolite particles with gel-like materials filled in the pores. In pure TEOS pretreatment, microcracks, and much gel-like materials were observed on the zeolite coating. The electrochemical test revealed that the zeolite coating on a 50/50 mixture of the APTES/TEOS pretreated substrate exhibited the highest corrosion resistance in 3.5 wt-% NaCl solution. This was because a 50/50 mixture of APTES/TEOS pretreatment advantageously promoted development of a dense and thick gel layer, which enhanced the intergrowth of zeolite particles.
{"title":"Influence of 3-aminopropyltriethoxysilane/tetraethylorthosilicate mixture pretreatment on the microstructure and corrosion resistance of zeolite coating","authors":"Yong Chen, Qiong Chen, Ming-an Chen","doi":"10.1080/02670844.2023.2240565","DOIUrl":"https://doi.org/10.1080/02670844.2023.2240565","url":null,"abstract":"ABSTRACT The influence of silane pretreatment with five different volume ratios (100/0, 75/25, 50/50, 25/75, and 0/100) of 3-aminopropyltriethoxysilane (APTES)/tetraethylorthosilicate (TEOS) on microstructure and corrosion resistance of the hydrothermal synthesized zeolite coatings on the H13 steel substrates was investigated. The surface of the zeolite coatings on the 100/0, 75/25, and 50/50 mixture of the APTES/TEOS pretreated substrates was composed of intergrown rectangular particles. Additionally, pores were observed. A 25/75 mixture of APTES/TEOS pretreatment smoothed the edges and angles of zeolite particles with gel-like materials filled in the pores. In pure TEOS pretreatment, microcracks, and much gel-like materials were observed on the zeolite coating. The electrochemical test revealed that the zeolite coating on a 50/50 mixture of the APTES/TEOS pretreated substrate exhibited the highest corrosion resistance in 3.5 wt-% NaCl solution. This was because a 50/50 mixture of APTES/TEOS pretreatment advantageously promoted development of a dense and thick gel layer, which enhanced the intergrowth of zeolite particles.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"39 1","pages":"625 - 635"},"PeriodicalIF":2.8,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49639732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-04DOI: 10.1080/02670844.2023.2247861
Meysam Karimi, A. Hadipour, M. Araghchi, Amir Razazzadeh
ABSTRACT In this study, the surface properties of copper layers on a zirconium substrate were investigated. The copper deposits with thicknesses of 25, 50, and 100 μm were formed using the electroplating method. The evaluations of coating thickness, surface morphology, crystallite size, and grain distribution were performed by using the relevant analytical equipment. The results showed that by increasing the thickness of the copper layer, a more uniform cauliflower morphology was obtained. Also, by increasing the thickness of the copper deposit, the crystallite size was decreased from 70 to 20 nanometers and the strain energy was decreased from 2.9 × 10−3 J to 6.5 × 10−3 J. The copper layer with a thickness of 100 μm was the most wear resistance compared to other coatings. The highest hardness value, uniform morphology, and more twin islands in different areas were the main reasons for improving the wear resistance of the copper layer with a thickness of 100 μm.
{"title":"Investigation of electrodeposited copper layer with island twinning structure on Zr substrate","authors":"Meysam Karimi, A. Hadipour, M. Araghchi, Amir Razazzadeh","doi":"10.1080/02670844.2023.2247861","DOIUrl":"https://doi.org/10.1080/02670844.2023.2247861","url":null,"abstract":"ABSTRACT In this study, the surface properties of copper layers on a zirconium substrate were investigated. The copper deposits with thicknesses of 25, 50, and 100 μm were formed using the electroplating method. The evaluations of coating thickness, surface morphology, crystallite size, and grain distribution were performed by using the relevant analytical equipment. The results showed that by increasing the thickness of the copper layer, a more uniform cauliflower morphology was obtained. Also, by increasing the thickness of the copper deposit, the crystallite size was decreased from 70 to 20 nanometers and the strain energy was decreased from 2.9 × 10−3 J to 6.5 × 10−3 J. The copper layer with a thickness of 100 μm was the most wear resistance compared to other coatings. The highest hardness value, uniform morphology, and more twin islands in different areas were the main reasons for improving the wear resistance of the copper layer with a thickness of 100 μm.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"39 1","pages":"600 - 612"},"PeriodicalIF":2.8,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47787329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}