Noémie M.-C. Hévin, Gael. J. Kergoat, Anne-Laure Clamens, Bruno Le Ru, Mervyn W. Mansell, Bruno Michel
Palparine and palparidiine antlions constitute an emblematic clade of large and occasionally colourful insects that are only distributed in the western portion of the Eastern hemisphere, with about half of the known species diversity occurring exclusively in Southern Africa. Little is known about their evolutionary history, and the boundaries and relationships of most genera are still unresolved. In this study, we analyse a molecular dataset consisting of seven loci (five mitochondrial and two nuclear genes) for 144 antlion species and provide the first phylogenetic hypothesis for a representative sampling of Palparini and Palparidiini (62 Palparini species, representing 15 of the 17 known genera, and all three known Palparidiini species). In addition, we reconstruct their timing of diversification and historical biogeography. The resulting tree indicates that several extant palparine genera are polyphyletic or paraphyletic and provides interesting leads that ought to be helpful for future taxonomic revisions; it also enables us to re-evaluate the taxonomic utility and relevancy of a number of morphological characters that were previously used to define some genera. Molecular dating analyses indicate that the most recent common ancestor of both groups originated about 92 million years ago (Ma) in the Late Cretaceous. Finally, the results of historical biogeography analyses provide strong support for an origin in Southern Africa, which further acted as both a cradle of diversification and a springboard for successive waves of northern dispersals.
{"title":"Evolution, systematics and historical biogeography of Palparini and Palparidiini antlions (Neuroptera: Myrmeleontidae): Old origin and in situ diversification in Southern Africa","authors":"Noémie M.-C. Hévin, Gael. J. Kergoat, Anne-Laure Clamens, Bruno Le Ru, Mervyn W. Mansell, Bruno Michel","doi":"10.1111/syen.12593","DOIUrl":"10.1111/syen.12593","url":null,"abstract":"<p>Palparine and palparidiine antlions constitute an emblematic clade of large and occasionally colourful insects that are only distributed in the western portion of the Eastern hemisphere, with about half of the known species diversity occurring exclusively in Southern Africa. Little is known about their evolutionary history, and the boundaries and relationships of most genera are still unresolved. In this study, we analyse a molecular dataset consisting of seven loci (five mitochondrial and two nuclear genes) for 144 antlion species and provide the first phylogenetic hypothesis for a representative sampling of Palparini and Palparidiini (62 Palparini species, representing 15 of the 17 known genera, and all three known Palparidiini species). In addition, we reconstruct their timing of diversification and historical biogeography. The resulting tree indicates that several extant palparine genera are polyphyletic or paraphyletic and provides interesting leads that ought to be helpful for future taxonomic revisions; it also enables us to re-evaluate the taxonomic utility and relevancy of a number of morphological characters that were previously used to define some genera. Molecular dating analyses indicate that the most recent common ancestor of both groups originated about 92 million years ago (Ma) in the Late Cretaceous. Finally, the results of historical biogeography analyses provide strong support for an origin in Southern Africa, which further acted as both a cradle of diversification and a springboard for successive waves of northern dispersals.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"48 4","pages":"600-617"},"PeriodicalIF":4.8,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/syen.12593","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45230910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the present work, we describe a new fossil family of Apoidea supported by phylogenetic analyses involving both fossil and extant groups. †Burmasphecidae fam.n. is based on †Burmasphex Melo & Rosa, a genus described from Burmese amber. We include in this family the monotypic genus †Decasphex Zheng, Zhang & Rasnitsyn also from Burmese amber. Additionally, we describe two new genera and four new species in †Burmasphecidae fam.n.: †Burmasphex mirabilissp.n.; †Simplisphexgen.n., containing S. scutellatussp.n. and †S. burmensissp.n.; and †Callisphex robustusgen. et sp.n. In our phylogenetic study, we extended a pre-existing matrix of morphological data and analysed it under parsimony and Bayesian inference. In the Bayesian inference analyses, the morphological dataset was partitioned under a homoplasy criterion. We postulate the first phylogenetic hypotheses for the placement of †Angarosphecidae based on the type species, †Angarosphex myrmicopterus Rasnitsyn, plus a new Burmese amber taxon, †A. alethessp.n. We demonstrate that †Burmasphecidae fam.n. clearly belongs to Apoidea and has a sister relationship with the other representatives of the superfamily. Our results indicate that †Burmasphecidae fam.n. and †Angarosphecidae are distinct lineages, with the second clearly more derived than the first. We discuss the phylogenetic relationships of these fossil lineages with extant groups of both Apoidea and other Aculeata, and present morphological evidence for the first time supporting the Formicidae + Apoidea clade. Finally, we indicate some considerations about the paleoenvironment and the nature of the Burmese amber biota, suggesting an alternative hypothesis to the island endemism described in previous works.
在目前的工作中,我们描述了一个新的化石家族,由化石和现存群体的系统发育分析支持。†Burmasphecidae fam.n。是基于†burmashex Melo & Rosa,一个从缅甸琥珀中描述的属。我们在这个科中包括†Decasphex Zheng, Zhang和Rasnitsyn,它们也来自缅甸琥珀。†Burmasphecidae科2新属4新种:†burmasphhex mirabilis sp.n.;†Simplisphex gen.n。,含scutellatus sp.n。和__。burmensis sp.n。和†大石斛(callispheus) gen. et sp.;在我们的系统发育研究中,我们扩展了一个预先存在的形态学数据矩阵,并在简约性和贝叶斯推理下对其进行了分析。在贝叶斯推理分析中,形态学数据集根据同质性标准进行分割。在模式种†Angarosphex myrmicopterus Rasnitsyn的基础上,我们提出了†angarospheidae的第一个系统发育假说,以及一个新的缅甸琥珀分类单元†a。alethes sp.n。我们证明了†Burmasphecidae fam.n。显然属于Apoidea,并且与超家族的其他代表有姐妹关系。结果表明:†Burmasphecidae fam.n;和†Angarosphecidae是不同的分支,后者明显比前者衍生更多。我们讨论了这些化石谱系与现存的足总科和其他足总科的系统发育关系,并首次提出了支持足总科+足总科进化枝的形态学证据。最后,作者对缅甸琥珀的古环境和生物群的性质提出了一些考虑,并提出了一种替代假说,以取代先前研究中所描述的岛屿特有假说。
{"title":"A new fossil family of aculeate wasp sheds light on early evolution of Apoidea (Hymenoptera)","authors":"Brunno B. Rosa, Gabriel A. R. Melo","doi":"10.1111/syen.12584","DOIUrl":"10.1111/syen.12584","url":null,"abstract":"<p>In the present work, we describe a new fossil family of Apoidea supported by phylogenetic analyses involving both fossil and extant groups. †Burmasphecidae <b>fam.n.</b> is based on †<i>Burmasphex</i> Melo & Rosa, a genus described from Burmese amber. We include in this family the monotypic genus †<i>Decasphex</i> Zheng, Zhang & Rasnitsyn also from Burmese amber. Additionally, we describe two new genera and four new species in †Burmasphecidae <b>fam.n.</b>: †<i>Burmasphex mirabilis</i> <b>sp.n.</b>; †<i>Simplisphex</i> <b>gen.n.</b>, containing <i>S. scutellatus</i> <b>sp.n.</b> and †<i>S</i>. <i>burmensis</i> <b>sp.n.</b>; and †<i>Callisphex robustus</i> <b>gen. et sp.n.</b> In our phylogenetic study, we extended a pre-existing matrix of morphological data and analysed it under parsimony and Bayesian inference. In the Bayesian inference analyses, the morphological dataset was partitioned under a homoplasy criterion. We postulate the first phylogenetic hypotheses for the placement of †Angarosphecidae based on the type species, †<i>Angarosphex myrmicopterus</i> Rasnitsyn, plus a new Burmese amber taxon, †<i>A</i>. <i>alethes</i> <b>sp.n.</b> We demonstrate that †Burmasphecidae <b>fam.n.</b> clearly belongs to Apoidea and has a sister relationship with the other representatives of the superfamily. Our results indicate that †Burmasphecidae <b>fam.n.</b> and †Angarosphecidae are distinct lineages, with the second clearly more derived than the first. We discuss the phylogenetic relationships of these fossil lineages with extant groups of both Apoidea and other Aculeata, and present morphological evidence for the first time supporting the Formicidae + Apoidea clade. Finally, we indicate some considerations about the paleoenvironment and the nature of the Burmese amber biota, suggesting an alternative hypothesis to the island endemism described in previous works.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"48 3","pages":"402-421"},"PeriodicalIF":4.8,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43251374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mantodea is a predatory insect group, its members occupying a diverse array of widely distributed habitats. Praying mantis species utilize hunting strategies including remarkable mimicry and unique camouflage for hiding from natural enemies while catching their prey. The emergence of a “cyclopean ear” in mantises is thought to be a morphological innovation of the group, and an “arms race” with echolocating bats is one of the hypotheses put forward to account for the emergence of the mantis ear from a coevolutionary perspective. However, this hypothesis has not been rigorously tested because of a lack of robust higher-level phylogeny and a detailed chronogram of Mantodea. Previous phylogenetic studies found an incongruence between traditional classification and molecular phylogenetics due to the convergent evolution of various ecomorphic strategies of the lineage. Here, we performed a comprehensive phylogenetic analysis of Mantodea based on data from 61 mitogenomes. Our analyses showed that the monophyly of Acanthopidae, Haaniidae, Nanomantidae, Miomantidae and Mantidea was supported. The newly updated Gonypetidae were paraphyletic, whereas Eremiaphilidae, Deroplatyidae and Toxoderidae were polyphyletic. Our molecular dating analyses inferred that Spinomantodea originated at ca. 149 Ma (Late Jurassic), whereas the origin of hearing mantises (Cernomantodea) was inferred as Early Cretaceous (119 Ma, 95% CI: 110–129 Ma). The molecular dating results indicated that the hearing organ in mantises did not arise in response to bat predation. Our study provides a robust framework for further evolutionary comparative studies of mantises.
{"title":"Phylogenetic relationships and divergence dating of Mantodea using mitochondrial phylogenomics","authors":"Yue Ma, Le-Ping Zhang, Yi-Jie Lin, Dan-Na Yu, Kenneth B. Storey, Jia-Yong Zhang","doi":"10.1111/syen.12596","DOIUrl":"10.1111/syen.12596","url":null,"abstract":"<p>Mantodea is a predatory insect group, its members occupying a diverse array of widely distributed habitats. Praying mantis species utilize hunting strategies including remarkable mimicry and unique camouflage for hiding from natural enemies while catching their prey. The emergence of a “cyclopean ear” in mantises is thought to be a morphological innovation of the group, and an “arms race” with echolocating bats is one of the hypotheses put forward to account for the emergence of the mantis ear from a coevolutionary perspective. However, this hypothesis has not been rigorously tested because of a lack of robust higher-level phylogeny and a detailed chronogram of Mantodea. Previous phylogenetic studies found an incongruence between traditional classification and molecular phylogenetics due to the convergent evolution of various ecomorphic strategies of the lineage. Here, we performed a comprehensive phylogenetic analysis of Mantodea based on data from 61 mitogenomes. Our analyses showed that the monophyly of Acanthopidae, Haaniidae, Nanomantidae, Miomantidae and Mantidea was supported. The newly updated Gonypetidae were paraphyletic, whereas Eremiaphilidae, Deroplatyidae and Toxoderidae were polyphyletic. Our molecular dating analyses inferred that Spinomantodea originated at ca. 149 Ma (Late Jurassic), whereas the origin of hearing mantises (Cernomantodea) was inferred as Early Cretaceous (119 Ma, 95% CI: 110–129 Ma). The molecular dating results indicated that the hearing organ in mantises did not arise in response to bat predation. Our study provides a robust framework for further evolutionary comparative studies of mantises.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"48 4","pages":"644-657"},"PeriodicalIF":4.8,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41520017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leidys Murillo-Ramos, Victoria Twort, Niklas Wahlberg, Pasi Sihvonen
Geometrid moths, the second largest radiation of Lepidoptera, have been the target of extensive phylogenetic studies. Those studies have flagged several problems in tree topology that have remained unanswered. We address three of those: (i) deep nodes of Geometridae (subfamilies Sterrhinae + Larentiinae, or Sterrhinae alone as sister to all other subfamilies), (ii) the taxonomic status of subfamily Orthostixinae and (iii) the systematic position of the genus Eumelea (classified in Desmobathrinae: Eumeleini or incertae sedis earlier). We address these questions by using a phylogenomic approach, a novel method on these moths, with up to 1000 protein-coding genes extracted from whole-genome shotgun sequencing data. Our datasets include representatives from all geometrid subfamilies and we analyse the data by using three different tree search strategies: partitioned models, GHOST model and multispecies coalescent analysis. Despite the extensive data, we found incongruences in tree topologies. Eumelea did not associate with Desmobathrinae as suggested earlier, but instead, it was recovered in three different phylogenetic positions, either as sister to Oenochrominae, Geometrinae or as sister to Oenochrominae + Geometrinae. Orthostixinae, represented by its type species, falls within Desmobathrinae. We propose the following taxonomic changes: we raise Eumeleini to subfamily rank as Eumeleinae stat. nov. and we treat Orthostixinae as a junior synonym of Desmobathrinae syn. nov.
{"title":"A phylogenomic perspective on the relationships of subfamilies in the family Geometridae (Lepidoptera)","authors":"Leidys Murillo-Ramos, Victoria Twort, Niklas Wahlberg, Pasi Sihvonen","doi":"10.1111/syen.12594","DOIUrl":"10.1111/syen.12594","url":null,"abstract":"<p>Geometrid moths, the second largest radiation of Lepidoptera, have been the target of extensive phylogenetic studies. Those studies have flagged several problems in tree topology that have remained unanswered. We address three of those: (i) deep nodes of Geometridae (subfamilies Sterrhinae + Larentiinae, or Sterrhinae alone as sister to all other subfamilies), (ii) the taxonomic status of subfamily Orthostixinae and (iii) the systematic position of the genus <i>Eumelea</i> (classified in Desmobathrinae: Eumeleini or <i>incertae sedis</i> earlier). We address these questions by using a phylogenomic approach, a novel method on these moths, with up to 1000 protein-coding genes extracted from whole-genome shotgun sequencing data. Our datasets include representatives from all geometrid subfamilies and we analyse the data by using three different tree search strategies: partitioned models, GHOST model and multispecies coalescent analysis. Despite the extensive data, we found incongruences in tree topologies. <i>Eumelea</i> did not associate with Desmobathrinae as suggested earlier, but instead, it was recovered in three different phylogenetic positions, either as sister to Oenochrominae, Geometrinae or as sister to Oenochrominae + Geometrinae. Orthostixinae, represented by its type species, falls within Desmobathrinae. We propose the following taxonomic changes: we raise Eumeleini to subfamily rank as Eumeleinae <b>stat. nov.</b> and we treat Orthostixinae as a junior synonym of Desmobathrinae <b>syn. nov.</b></p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"48 4","pages":"618-632"},"PeriodicalIF":4.8,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/syen.12594","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46455408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reza Zahiri, Jeremy D. Holloway, Jadranka Rota, B. Christian Schmidt, Markku J. Pellinen, Ian J. Kitching, Scott E. Miller, Niklas Wahlberg
We performed a molecular phylogenetic analysis on the family Euteliidae to clarify deep divergences and elucidate evolutionary relationships at the level of the subfamily, tribe, and genus. Our dataset consists of 6.3 kbp of one mitochondrial and seven nuclear DNA loci and was analysed using model-based phylogenetic methods, that is, maximum likelihood and Bayesian inference. Based on the recovered topology, we recognize two subfamilies, Euteliinae and Stictopterinae, and the tribes Stictopterini and Odontini. We identify apomorphic morphological character states for Euteliidae and its component subfamilies and tribes. Several genera (e.g., Targalla, Paectes, Marathyssa, Eutelia) were found polyphyletic and require taxonomic revision. Two new genera (Niklastelia Zahiri & Holloway gen.nov. and Pellinentelia Holloway & Zahiri gen.nov.) are described and a number of taxonomic changes (new combinations and new synonymies) are established. The Neotropical genus Thyriodes, currently included in Euteliidae, is found to be associated with Erebinae (Erebidae). The divergence time estimate for the split between the Euteliidae and Noctuidae is at 53 Ma, and the Euteliidae subfamilies Euteliinae and Stictopterinae are estimated to have diverged at 42 Ma. In Stictopterinae, the tribes Stictopterini and Odontodini split at 31 Ma, while Euteliinae began diversifying at 34 Ma. Malpighiales are inferred to have been the ancestral larval hostplant order for Euteliidae. The ancestors of Stictopterinae also appear to have been Malpighiales feeders, but then diverged to Malvales specialists (Odontodini) and Malpighiales specialists (Stictopterini) hostplants. Larvae of Stictopterini appear to be restricted primarily to Clusiaceae, apart from a few records from Dipterocarpaceae. In Euteliinae, Anacardiaceae are predominant as larval hosts. Thus, all hosts in the family are lactiferous, possibly providing some degree of pre-adaptation for exploiting Dipterocarpaceae.
{"title":"Evolutionary history of Euteliidae (Lepidoptera, Noctuoidea)","authors":"Reza Zahiri, Jeremy D. Holloway, Jadranka Rota, B. Christian Schmidt, Markku J. Pellinen, Ian J. Kitching, Scott E. Miller, Niklas Wahlberg","doi":"10.1111/syen.12587","DOIUrl":"https://doi.org/10.1111/syen.12587","url":null,"abstract":"<p>We performed a molecular phylogenetic analysis on the family Euteliidae to clarify deep divergences and elucidate evolutionary relationships at the level of the subfamily, tribe, and genus. Our dataset consists of 6.3 kbp of one mitochondrial and seven nuclear DNA loci and was analysed using model-based phylogenetic methods, that is, maximum likelihood and Bayesian inference. Based on the recovered topology, we recognize two subfamilies, Euteliinae and Stictopterinae, and the tribes Stictopterini and Odontini. We identify apomorphic morphological character states for Euteliidae and its component subfamilies and tribes. Several genera (e.g., <i>Targalla, Paectes, Marathyssa, Eutelia</i>) were found polyphyletic and require taxonomic revision. Two new genera (<i>Niklastelia</i> Zahiri & Holloway <b>gen.nov.</b> and <i>Pellinentelia</i> Holloway & Zahiri <b>gen.nov.</b>) are described and a number of taxonomic changes (new combinations and new synonymies) are established. The Neotropical genus <i>Thyriodes</i>, currently included in Euteliidae, is found to be associated with Erebinae (Erebidae). The divergence time estimate for the split between the Euteliidae and Noctuidae is at 53 Ma, and the Euteliidae subfamilies Euteliinae and Stictopterinae are estimated to have diverged at 42 Ma. In Stictopterinae, the tribes Stictopterini and Odontodini split at 31 Ma, while Euteliinae began diversifying at 34 Ma. Malpighiales are inferred to have been the ancestral larval hostplant order for Euteliidae. The ancestors of Stictopterinae also appear to have been Malpighiales feeders, but then diverged to Malvales specialists (Odontodini) and Malpighiales specialists (Stictopterini) hostplants. Larvae of Stictopterini appear to be restricted primarily to Clusiaceae, apart from a few records from Dipterocarpaceae. In Euteliinae, Anacardiaceae are predominant as larval hosts. Thus, all hosts in the family are lactiferous, possibly providing some degree of pre-adaptation for exploiting Dipterocarpaceae.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"48 3","pages":"445-462"},"PeriodicalIF":4.8,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/syen.12587","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50131000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marianne Espeland, Shinichi Nakahara, Thamara Zacca, Eduardo P. Barbosa, Blanca Huertas, Mario A. Marín, Gerardo Lamas, Mohamed Benmesbah, Christian Brévignon, Mirna M. Casagrande, Christer Fåhraeus, Nick Grishin, Akito Y. Kawahara, Olaf H. H. Mielke, Jacqueline Y. Miller, Ichiro Nakamura, Vanessa Navas, Brooke Patrusky, Tomasz W. Pyrcz, Lindsay Richards, Denise Tan, Stephanie Tyler, Ángel Viloria, Andrew D. Warren, Lei Xiao, André V. L. Freitas, Keith R. Willmott
The diverse, largely Neotropical subtribe Euptychiina is widely regarded as one of the most taxonomically challenging groups among all butterflies. Over the last two decades, morphological and molecular studies have revealed widespread paraphyly and polyphyly among genera, and a comprehensive, robust phylogenetic hypothesis is needed to build a firm generic classification to support ongoing taxonomic revisions at the species level. Here, we generated a dataset that includes sequences for up to nine nuclear genes and the mitochondrial COI ‘barcode’ for a total of 1280 specimens representing 449 described and undescribed species of Euptychiina and 39 out-groups, resulting in the most complete phylogeny for the subtribe to date. In combination with a recently developed genomic backbone tree, this dataset resulted in a topology with strong support for most branches. We recognize eight major clades that each contain two or more genera, together containing all but seven Euptychiina genera. We provide a summary of the taxonomy, diversity and natural history of each clade, and discuss taxonomic changes implied by the phylogenetic results. We describe nine new genera to accommodate 38 described species: Lazulina Willmott, Nakahara & Espeland, gen.n., Saurona Huertas & Willmott, gen.n., Argentaria Huertas & Willmott, gen.n., Taguaiba Freitas, Zacca & Siewert, gen.n., Xenovena Marín & Nakahara, gen.n., Deltaya Willmott, Nakahara & Espeland, gen.n., Modica Zacca, Casagrande & Willmott, gen.n., Occulta Nakahara & Willmott, gen.n., and Trico Nakahara & Espeland, gen.n. We also synonymize Nubila Viloria, Andrade & Henao, 2019 (syn.n.) with Splendeuptychia Forster, 1964, Macrocissia Viloria, Le Crom & Andrade, 2019 (syn.n.) with Satyrotaygetis Forster, 1964, and Rudyphthimoides Viloria, 2022 (syn.n.) with Malaveria Viloria & Benmesbah, 2020. Overall, we revised the generic placement of 79 species (74 new generic combinations and five revised combinations), and as a result all but six described species of Euptychiina are accommodated within 70 named, monophyletic genera. For all newly described genera, we provide illustrations of representative species, drawings of wing venation and male and (where possible) female genitalia, and distribution maps, and summarize the natural history of the genus. For three new monotypic genera, Occultagen.n., Tricogen.n. and Xenovenagen.n. we provide a taxonomic revision with a review of the taxonomy of each species and data from examined specimens. We provide a revised synonymic list for Euptychiina containing 460 valid described species, 53 subspecies and 255 synonyms, including several new synonyms and reinstated species.
{"title":"Combining target enrichment and Sanger sequencing data to clarify the systematics of the diverse Neotropical butterfly subtribe Euptychiina (Nymphalidae, Satyrinae)","authors":"Marianne Espeland, Shinichi Nakahara, Thamara Zacca, Eduardo P. Barbosa, Blanca Huertas, Mario A. Marín, Gerardo Lamas, Mohamed Benmesbah, Christian Brévignon, Mirna M. Casagrande, Christer Fåhraeus, Nick Grishin, Akito Y. Kawahara, Olaf H. H. Mielke, Jacqueline Y. Miller, Ichiro Nakamura, Vanessa Navas, Brooke Patrusky, Tomasz W. Pyrcz, Lindsay Richards, Denise Tan, Stephanie Tyler, Ángel Viloria, Andrew D. Warren, Lei Xiao, André V. L. Freitas, Keith R. Willmott","doi":"10.1111/syen.12590","DOIUrl":"10.1111/syen.12590","url":null,"abstract":"<p>The diverse, largely Neotropical subtribe Euptychiina is widely regarded as one of the most taxonomically challenging groups among all butterflies. Over the last two decades, morphological and molecular studies have revealed widespread paraphyly and polyphyly among genera, and a comprehensive, robust phylogenetic hypothesis is needed to build a firm generic classification to support ongoing taxonomic revisions at the species level. Here, we generated a dataset that includes sequences for up to nine nuclear genes and the mitochondrial COI ‘barcode’ for a total of 1280 specimens representing 449 described and undescribed species of Euptychiina and 39 out-groups, resulting in the most complete phylogeny for the subtribe to date. In combination with a recently developed genomic backbone tree, this dataset resulted in a topology with strong support for most branches. We recognize eight major clades that each contain two or more genera, together containing all but seven Euptychiina genera. We provide a summary of the taxonomy, diversity and natural history of each clade, and discuss taxonomic changes implied by the phylogenetic results. We describe nine new genera to accommodate 38 described species: <i>Lazulina</i> Willmott, Nakahara & Espeland, <b>gen.n.</b>, <i>Saurona</i> Huertas & Willmott, <b>gen.n.</b>, <i>Argentaria</i> Huertas & Willmott, <b>gen.n.</b>, <i>Taguaiba</i> Freitas, Zacca & Siewert, <b>gen.n.</b>, <i>Xenovena</i> Marín & Nakahara, <b>gen.n.</b>, <i>Deltaya</i> Willmott, Nakahara & Espeland, <b>gen.n.</b>, <i>Modica</i> Zacca, Casagrande & Willmott, <b>gen.n.</b>, <i>Occulta</i> Nakahara & Willmott, <b>gen.n.</b>, and <i>Trico</i> Nakahara & Espeland, <b>gen.n.</b> We also synonymize <i>Nubila</i> Viloria, Andrade & Henao, 2019 (<b>syn.n.</b>) with <i>Splendeuptychia</i> Forster, 1964, <i>Macrocissia</i> Viloria, Le Crom & Andrade, 2019 (<b>syn.n.</b>) with <i>Satyrotaygetis</i> Forster, 1964, and <i>Rudyphthimoides</i> Viloria, 2022 (<b>syn.n.</b>) with <i>Malaveria</i> Viloria & Benmesbah, 2020. Overall, we revised the generic placement of 79 species (74 new generic combinations and five revised combinations), and as a result all but six described species of Euptychiina are accommodated within 70 named, monophyletic genera. For all newly described genera, we provide illustrations of representative species, drawings of wing venation and male and (where possible) female genitalia, and distribution maps, and summarize the natural history of the genus. For three new monotypic genera, <i>Occulta</i> <b>gen.n.</b>, <i>Trico</i> <b>gen.n.</b> and <i>Xenovena</i> <b>gen.n.</b> we provide a taxonomic revision with a review of the taxonomy of each species and data from examined specimens. We provide a revised synonymic list for Euptychiina containing 460 valid described species, 53 subspecies and 255 synonyms, including several new synonyms and reinstated species.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"48 4","pages":"498-570"},"PeriodicalIF":4.8,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/syen.12590","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42840224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bo He, Youjie Zhao, Chengyong Su, Gonghua Lin, Yunliang Wang, Luyan Li, Junye Ma, Qun Yang, Jiasheng Hao
Under rapid radiation, the earliest components of evolutionary divergence are often difficult to resolve, which were always driven by the characteristics of taxa and the limitations of alternative analytical methods. The origin and radiation of the alpine butterfly Parnassius, a high-altitude mountainous insect group, can be attributed to the uplift of the Qinghai-Tibet Plateau. Despite detailed phylogenetic analyses of the genus, deep phylogenetic relationships among the major subgenera remain recalcitrant. In this study, 102 individuals from 10 representative Parnassius species were sampled to resolve the phylogenetic relationships among subgenera based on nuclear and mitochondrial genome datasets. Gene-tree/species-tree conflicts were detected by concatenation and multispecies coalescent (MSC) approaches. We recovered a well-supported species tree, despite these conflicts, and detected considerable phylogenetic discordance among genomic regions. The main explanation for the topological discordance among subgenera was extensive incomplete lineage sorting (ILS), whereas introgression events were not prominent. The origin and explosive radiation of Parnassius (i.e., rapid succession of speciation events) in the late Miocene associated with environmental events on the plateau led to short internal branches, thereby increasing ILS and topological conflicts, especially among closely related subgenera. Our results also suggested that MSC approaches (SNP and AFLP Package for Phylogenetic analysis [SNAPP] and SVDquartets) are accurate and superior to the concatenation approach; in particular, SVDquartets can explicitly accommodate gene-tree/species-tree conflicts caused by high ILS and demonstrate strong robustness. Finally, we explored the phylogenomic data by testing multiple sources of phylogenomic conflict to clarify the strengths and limitations of different approaches, while considering phylogenetic signal variation in mitochondrial loci. We anticipate that the phylogeny described here will be the backbone of future evolutionary studies of the genus and will provide insight into phylogenetic discordance due to rapid radiation.
在快速辐射下,进化分化的最早组成部分往往难以解决,这往往是由分类群的特征和其他分析方法的局限性所驱动的。高山蝴蝶是一种高海拔山地昆虫类群,其起源和辐射可归因于青藏高原的隆升。尽管对该属进行了详细的系统发育分析,但主要亚属之间的深层系统发育关系仍然难以确定。本研究从10个有代表性的Parnassius物种中选取了102个个体,基于核和线粒体基因组数据分析了亚属之间的系统发育关系。基因树/物种树冲突通过串联和多物种聚结(MSC)方法检测。尽管存在这些冲突,但我们恢复了一个得到良好支持的物种树,并在基因组区域之间发现了相当大的系统发育不一致。亚属间拓扑结构不一致的主要原因是广泛的不完全谱系分类(ILS),而遗传渗入事件并不突出。中新世晚期Parnassius的起源和爆炸辐射(即物种形成事件的快速演变)与高原环境事件相关,导致内部分支较短,从而增加了ILS和拓扑冲突,特别是在密切相关的亚属之间。我们的研究结果还表明,MSC方法(SNP和AFLP Package for Phylogenetic analysis [SNAPP]和SVDquartets)准确且优于串联方法;特别是,sv四重奏可以明确地适应由高ILS引起的基因树/物种树冲突,并表现出很强的鲁棒性。最后,我们通过测试多种系统发育冲突来源来探索系统发育数据,以阐明不同方法的优势和局限性,同时考虑线粒体位点的系统发育信号变异。我们预计,这里描述的系统发育将成为未来该属进化研究的支柱,并将为快速辐射引起的系统发育不一致提供见解。
{"title":"Phylogenomics reveal extensive phylogenetic discordance due to incomplete lineage sorting following the rapid radiation of alpine butterflies (Papilionidae: Parnassius)","authors":"Bo He, Youjie Zhao, Chengyong Su, Gonghua Lin, Yunliang Wang, Luyan Li, Junye Ma, Qun Yang, Jiasheng Hao","doi":"10.1111/syen.12592","DOIUrl":"10.1111/syen.12592","url":null,"abstract":"<p>Under rapid radiation, the earliest components of evolutionary divergence are often difficult to resolve, which were always driven by the characteristics of taxa and the limitations of alternative analytical methods. The origin and radiation of the alpine butterfly <i>Parnassius</i>, a high-altitude mountainous insect group, can be attributed to the uplift of the Qinghai-Tibet Plateau. Despite detailed phylogenetic analyses of the genus, deep phylogenetic relationships among the major subgenera remain recalcitrant. In this study, 102 individuals from 10 representative <i>Parnassius</i> species were sampled to resolve the phylogenetic relationships among subgenera based on nuclear and mitochondrial genome datasets. Gene-tree/species-tree conflicts were detected by concatenation and multispecies coalescent (MSC) approaches. We recovered a well-supported species tree, despite these conflicts, and detected considerable phylogenetic discordance among genomic regions. The main explanation for the topological discordance among subgenera was extensive incomplete lineage sorting (ILS), whereas introgression events were not prominent. The origin and explosive radiation of <i>Parnassius</i> (i.e., rapid succession of speciation events) in the late Miocene associated with environmental events on the plateau led to short internal branches, thereby increasing ILS and topological conflicts, especially among closely related subgenera. Our results also suggested that MSC approaches (SNP and AFLP Package for Phylogenetic analysis [SNAPP] and SVDquartets) are accurate and superior to the concatenation approach; in particular, SVDquartets can explicitly accommodate gene-tree/species-tree conflicts caused by high ILS and demonstrate strong robustness. Finally, we explored the phylogenomic data by testing multiple sources of phylogenomic conflict to clarify the strengths and limitations of different approaches, while considering phylogenetic signal variation in mitochondrial loci. We anticipate that the phylogeny described here will be the backbone of future evolutionary studies of the genus and will provide insight into phylogenetic discordance due to rapid radiation.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"48 4","pages":"585-599"},"PeriodicalIF":4.8,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43449722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao Tian, ShiFang Mo, Dan Liang, HouShuai Wang, Peng Zhang
The alpine butterfly genus Parnassius is a popular model group for studying biogeography, evolution, conservation biology, and ecology. Despite its scientific importance, a comprehensive and robust phylogeny of this group is still lacking. In this study, we used an amplicon capture strategy to sequence 144 nuclear protein-coding genes and complete mitochondrial genomes for 60 Parnassius specimens covering 42 species and all eight subgenera of Parnassius. Our results strongly support the monophyly of the genus and eight subgenera. The relationships among subgenera are robustly resolved as (Sachaia, (Kreizbergia, (Driopa, (Parnassius, (Tadumia, Lingamius), (Kailasius, Koramius))))), which is different from all previous results. Biogeographic and divergence time analyses indicate that the ancestor of Parnassius originated in an area including the Himalayas and Tibetan Plateau (HTP) and Mongolian steppes in the middle Miocene approximately 13.19 Mya. The middle Miocene global cooling event (starting from ~13.9 Mya) probably provided climatic opportunities for the diversification of cold-adapted Parnassius. The ancestral state reconstruction analyses suggest that the ancestor of Parnassius butterflies most likely lived in a medium elevational area (2000–4000 m) and fed on Papaveraceae plants. The host shift from Papaveraceae to Crassulaceae in the subgenus Parnassius increases the species diversity of this subgenus, concurring with the “escape and radiate” hypothesis. Overall, our work provides valuable nuclear gene and mitochondrial genome data and a robust phylogenetic framework of Parnassius for future studies of the taxonomy, evolution, and ecology of this group.
{"title":"Amplicon capture phylogenomics provides new insights into the phylogeny and evolution of alpine Parnassius butterflies (Lepidoptera: Papilionidae)","authors":"Xiao Tian, ShiFang Mo, Dan Liang, HouShuai Wang, Peng Zhang","doi":"10.1111/syen.12591","DOIUrl":"10.1111/syen.12591","url":null,"abstract":"<p>The alpine butterfly genus <i>Parnassius</i> is a popular model group for studying biogeography, evolution, conservation biology, and ecology. Despite its scientific importance, a comprehensive and robust phylogeny of this group is still lacking. In this study, we used an amplicon capture strategy to sequence 144 nuclear protein-coding genes and complete mitochondrial genomes for 60 <i>Parnassius</i> specimens covering 42 species and all eight subgenera of <i>Parnassius</i>. Our results strongly support the monophyly of the genus and eight subgenera. The relationships among subgenera are robustly resolved as (<i>Sachaia</i>, (<i>Kreizbergia</i>, (<i>Driopa</i>, (<i>Parnassius</i>, (<i>Tadumia</i>, <i>Lingamius</i>), (<i>Kailasius</i>, <i>Koramius</i>))))), which is different from all previous results. Biogeographic and divergence time analyses indicate that the ancestor of <i>Parnassius</i> originated in an area including the Himalayas and Tibetan Plateau (HTP) and Mongolian steppes in the middle Miocene approximately 13.19 Mya. The middle Miocene global cooling event (starting from ~13.9 Mya) probably provided climatic opportunities for the diversification of cold-adapted <i>Parnassius</i>. The ancestral state reconstruction analyses suggest that the ancestor of <i>Parnassius</i> butterflies most likely lived in a medium elevational area (2000–4000 m) and fed on Papaveraceae plants. The host shift from Papaveraceae to Crassulaceae in the subgenus <i>Parnassius</i> increases the species diversity of this subgenus, concurring with the “escape and radiate” hypothesis. Overall, our work provides valuable nuclear gene and mitochondrial genome data and a robust phylogenetic framework of <i>Parnassius</i> for future studies of the taxonomy, evolution, and ecology of this group.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"48 4","pages":"571-584"},"PeriodicalIF":4.8,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43964259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emilio Garcia-Rosello, Jacinto Gonzalez-Dacosta, Cástor Guisande, Jorge M. Lobo
The Global Biodiversity Information Facility (GBIF) is the largest databank on primary biodiversity data. We examined the completeness and geographical biases for all insect data on GBIF to determine its representativeness. Our results demonstrate that GBIF is far from providing a reliable representation about the global distribution of insects. Despite the growing number of records during the last years, few spatial units are well‐surveyed. At coarse resolutions, 34% of the world terrestrial cells lack data and barely 0.5% have completeness values above 90%. Insects are crucial in many ecological functions, and their alarming decline makes it more pressing to have a representative sample to improve our predictive capacity. However, the dynamic nature of species distributions and the strength of anthropogenic forces call for immediate conservation decisions that cannot wait for the empirical data on the identity and distribution of insects.
{"title":"GBIF falls short of providing a representative picture of the global distribution of insects","authors":"Emilio Garcia-Rosello, Jacinto Gonzalez-Dacosta, Cástor Guisande, Jorge M. Lobo","doi":"10.1111/syen.12589","DOIUrl":"10.1111/syen.12589","url":null,"abstract":"The Global Biodiversity Information Facility (GBIF) is the largest databank on primary biodiversity data. We examined the completeness and geographical biases for all insect data on GBIF to determine its representativeness. Our results demonstrate that GBIF is far from providing a reliable representation about the global distribution of insects. Despite the growing number of records during the last years, few spatial units are well‐surveyed. At coarse resolutions, 34% of the world terrestrial cells lack data and barely 0.5% have completeness values above 90%. Insects are crucial in many ecological functions, and their alarming decline makes it more pressing to have a representative sample to improve our predictive capacity. However, the dynamic nature of species distributions and the strength of anthropogenic forces call for immediate conservation decisions that cannot wait for the empirical data on the identity and distribution of insects.","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"48 4","pages":"489-497"},"PeriodicalIF":4.8,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/syen.12589","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46553659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
George C. Waldren, Emily A. Sadler, Elizabeth A. Murray, Silas Bossert, Bryan N. Danforth, James P. Pitts
<p>The family Mutillidae (Hymenoptera) is a species-rich group of aculeate wasps that occur worldwide. The higher-level classification of the family has historically been controversial due, in part, to the extreme sexual dimorphism exhibited by these insects and their morphological similarity to other wasp taxa that also have apterous females. Modern hypotheses on the internal higher classification of Mutillidae have been exclusively based on morphology and, further, they include Myrmosinae as a mutillid subfamily. In contrast, several molecular-based family-level studies of Aculeata recovered Myrmosinae as a nonmutillid taxon. To test the validity of these morphology-based classifications and the phylogenetic placement of the controversial taxon Myrmosinae, a phylogenomic study of Mutillidae was conducted using ultraconserved elements (UCEs). All currently recognized subfamilies and tribes of Mutillidae were represented in this study using 140 ingroup taxa. The maximum likelihood criterion (ML) and the maximum parsimony criterion (MP) were used to infer the phylogenetic relationships within the family and related taxa using an aligned data set of 238,764 characters; the topologies of these respective analyses were largely congruent. The modern higher classification of Mutillidae, based on morphology, is largely congruent with the phylogenomic results of this study at the subfamily level, whereas the tribal classification is poorly supported. The subfamily Myrmosinae was recovered as sister to Sapygidae in the ML analysis and sister to Sapygidae + Pompilidae in the MP analysis; it is consequently raised to the family level, Myrmosidae, <b>stat.nov.</b> The two constituent tribes of Myrmosidae are raised to the subfamily level, Kudakrumiinae, <b>stat.nov.</b>, and Myrmosinae, <b>stat.nov.</b> All four recognized tribes of Mutillinae were found to be non-monophyletic; three additional mutilline clades were recovered in addition to Ctenotillini, Mutillini, Smicromyrmini, and Trogaspidiini sensu stricto. Three new tribes are erected for members of these clades: Pristomutillini Waldren, <b>trib.nov.</b>, Psammothermini Waldren, <b>trib.nov.</b>, and Zeugomutillini Waldren, <b>trib.nov.</b> All three recognized tribes of Sphaeropthalminae were found to be non-monophyletic; six additional sphaeropthalmine clades were recovered in addition to Dasymutillini, Pseudomethocini, and Sphaeropthalmini sensu stricto. The subtribe Ephutina of Mutillinae: Mutillini was found to be polyphyletic, with the <i>Ephuta</i> genus-group recovered within Sphaeropthalminae and the <i>Odontomutilla</i> genus-group recovered as sister to Myrmillinae + Mutillinae. Consequently, the subtribe Ephutina is transferred from Mutillinae: Mutillini and is raised to a tribe within Sphaeropthalminae, Ephutini, <b>stat.nov.</b> Further, the taxon Odontomutillinae, <b>stat.nov.</b>, is raised from a synonym of Ephutina to the subfamily level. The sphaeropthalmine tribe Pseudomethocini was
{"title":"Phylogenomic inference of the higher classification of velvet ants (Hymenoptera: Mutillidae)","authors":"George C. Waldren, Emily A. Sadler, Elizabeth A. Murray, Silas Bossert, Bryan N. Danforth, James P. Pitts","doi":"10.1111/syen.12588","DOIUrl":"10.1111/syen.12588","url":null,"abstract":"<p>The family Mutillidae (Hymenoptera) is a species-rich group of aculeate wasps that occur worldwide. The higher-level classification of the family has historically been controversial due, in part, to the extreme sexual dimorphism exhibited by these insects and their morphological similarity to other wasp taxa that also have apterous females. Modern hypotheses on the internal higher classification of Mutillidae have been exclusively based on morphology and, further, they include Myrmosinae as a mutillid subfamily. In contrast, several molecular-based family-level studies of Aculeata recovered Myrmosinae as a nonmutillid taxon. To test the validity of these morphology-based classifications and the phylogenetic placement of the controversial taxon Myrmosinae, a phylogenomic study of Mutillidae was conducted using ultraconserved elements (UCEs). All currently recognized subfamilies and tribes of Mutillidae were represented in this study using 140 ingroup taxa. The maximum likelihood criterion (ML) and the maximum parsimony criterion (MP) were used to infer the phylogenetic relationships within the family and related taxa using an aligned data set of 238,764 characters; the topologies of these respective analyses were largely congruent. The modern higher classification of Mutillidae, based on morphology, is largely congruent with the phylogenomic results of this study at the subfamily level, whereas the tribal classification is poorly supported. The subfamily Myrmosinae was recovered as sister to Sapygidae in the ML analysis and sister to Sapygidae + Pompilidae in the MP analysis; it is consequently raised to the family level, Myrmosidae, <b>stat.nov.</b> The two constituent tribes of Myrmosidae are raised to the subfamily level, Kudakrumiinae, <b>stat.nov.</b>, and Myrmosinae, <b>stat.nov.</b> All four recognized tribes of Mutillinae were found to be non-monophyletic; three additional mutilline clades were recovered in addition to Ctenotillini, Mutillini, Smicromyrmini, and Trogaspidiini sensu stricto. Three new tribes are erected for members of these clades: Pristomutillini Waldren, <b>trib.nov.</b>, Psammothermini Waldren, <b>trib.nov.</b>, and Zeugomutillini Waldren, <b>trib.nov.</b> All three recognized tribes of Sphaeropthalminae were found to be non-monophyletic; six additional sphaeropthalmine clades were recovered in addition to Dasymutillini, Pseudomethocini, and Sphaeropthalmini sensu stricto. The subtribe Ephutina of Mutillinae: Mutillini was found to be polyphyletic, with the <i>Ephuta</i> genus-group recovered within Sphaeropthalminae and the <i>Odontomutilla</i> genus-group recovered as sister to Myrmillinae + Mutillinae. Consequently, the subtribe Ephutina is transferred from Mutillinae: Mutillini and is raised to a tribe within Sphaeropthalminae, Ephutini, <b>stat.nov.</b> Further, the taxon Odontomutillinae, <b>stat.nov.</b>, is raised from a synonym of Ephutina to the subfamily level. The sphaeropthalmine tribe Pseudomethocini was","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"48 3","pages":"463-487"},"PeriodicalIF":4.8,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43644293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}