首页 > 最新文献

Systematic Entomology最新文献

英文 中文
Systematic bias and the phylogeny of Coleoptera—A response to Cai et al. (2022) following the responses to Cai et al. (2020) 系统偏见和鞘翅目的系统发育——对蔡等人的回应(2022)继对蔡等人(2020)的回应之后
IF 4.8 1区 农林科学 Q1 ENTOMOLOGY Pub Date : 2022-10-27 DOI: 10.1111/syen.12570
Brendon E. Boudinot, Martin Fikáček, Ziv E. Lieberman, Dominik Kusy, Ladislav Bocak, Duane D. Mckenna, Rolf Georg Beutel

Systematic bias is one of the major phylogenetic issues arising over the last two decades. Using methods designed to reduce compositional and rate heterogeneity, hence systematic bias, Cai and co-workers (2022) (= CEA22) reanalyzed the DNA sequence dataset for Coleoptera of Zhang et al. (2018) (= ZEA). CEA22 suggest that their phylogenetic results and major evolutionary hypotheses about the Coleoptera should be favoured over other recently published studies. Here, we discuss the methodology of CEA22 with particular attention to how their perfunctory reanalysis of ZEA obfuscates rather than illuminates beetle phylogeny. Similar to published rebuttals of an earlier study of theirs, we specifically find that many of their claims are misleading, unsupported, or false. Critically, CEA22 fail to establish the stated premise for their reanalysis. They fail to demonstrate how composition or rate heterogeneity supposedly impacted the phylogeny estimate of ZEA, let alone the results of other recent studies. Moreover, despite their claim of comprehensive sampling of Coleoptera, their dataset is neither the most diverse with respect to species and higher taxa included, nor anywhere near the largest in terms of sequence data and sampled loci. Although CEA22 does contribute additional fossils for calibration, those seeking the best available estimate for Coleoptera phylogeny and evolution based on molecular data are advised to look elsewhere.

系统偏见是过去二十年中出现的主要系统发育问题之一。蔡和同事(2022)(=CEA22)使用旨在减少成分和速率异质性的方法,重新分析了张等人的鞘翅目的DNA序列数据集。(2018)(=ZEA)。CEA22表明,他们关于鞘翅目的系统发育结果和主要进化假说应该比最近发表的其他研究更受欢迎。在这里,我们讨论了CEA22的方法论,特别注意他们对ZEA的敷衍重新分析如何混淆而不是阐明甲虫的系统发育。与他们早期研究的已发表反驳类似,我们特别发现他们的许多说法具有误导性、无根据或虚假。至关重要的是,CEA22未能为其重新分析建立既定前提。他们未能证明组成或速率异质性是如何影响ZEA的系统发育估计的,更不用说最近其他研究的结果了。此外,尽管他们声称对鞘翅目进行了全面采样,但他们的数据集在包括的物种和高等分类群方面既不是最多样化的,在序列数据和采样位点方面也不是最大的。尽管CEA22确实为校准提供了额外的化石,但建议那些寻求基于分子数据对鞘翅目系统发育和进化进行最佳估计的人去别处寻找。
{"title":"Systematic bias and the phylogeny of Coleoptera—A response to Cai et al. (2022) following the responses to Cai et al. (2020)","authors":"Brendon E. Boudinot,&nbsp;Martin Fikáček,&nbsp;Ziv E. Lieberman,&nbsp;Dominik Kusy,&nbsp;Ladislav Bocak,&nbsp;Duane D. Mckenna,&nbsp;Rolf Georg Beutel","doi":"10.1111/syen.12570","DOIUrl":"10.1111/syen.12570","url":null,"abstract":"<p>Systematic bias is one of the major phylogenetic issues arising over the last two decades. Using methods designed to reduce compositional and rate heterogeneity, hence systematic bias, Cai and co-workers (2022) (= CEA22) reanalyzed the DNA sequence dataset for Coleoptera of Zhang et al. (2018) (= ZEA). CEA22 suggest that their phylogenetic results and major evolutionary hypotheses about the Coleoptera should be favoured over other recently published studies. Here, we discuss the methodology of CEA22 with particular attention to how their perfunctory reanalysis of ZEA obfuscates rather than illuminates beetle phylogeny. Similar to published rebuttals of an earlier study of theirs, we specifically find that many of their claims are misleading, unsupported, or false. Critically, CEA22 fail to establish the stated premise for their reanalysis. They fail to demonstrate how composition or rate heterogeneity supposedly impacted the phylogeny estimate of ZEA, let alone the results of other recent studies. Moreover, despite their claim of comprehensive sampling of Coleoptera, their dataset is neither the most diverse with respect to species and higher taxa included, nor anywhere near the largest in terms of sequence data and sampled loci. Although CEA22 does contribute additional fossils for calibration, those seeking the best available estimate for Coleoptera phylogeny and evolution based on molecular data are advised to look elsewhere.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"48 2","pages":"223-232"},"PeriodicalIF":4.8,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44026410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Systematics and evolution of predatory flower flies (Diptera: Syrphidae) based on exon-capture sequencing 基于外显子捕获测序的掠食性花蝇(双翅目:蚜蝇科)的系统学和进化
IF 4.8 1区 农林科学 Q1 ENTOMOLOGY Pub Date : 2022-10-17 DOI: 10.1111/syen.12573
Ximo Mengual, Christoph Mayer, Trevor O. Burt, Kevin M. Moran, Lars Dietz, Gaby Nottebrock, Thomas Pauli, Andrew D. Young, Marie V. Brasseur, Sandra Kukowka, Scott Kelso, Claudia Etzbauer, Sander Bot, Martin Hauser, Kurt Jordaens, Gil F. G. Miranda, Gunilla Ståhls, Wouter van Steenis, Ralph S. Peters, Jeffrey H. Skevington

Flower flies (Diptera: Syrphidae) are one of the most species-rich dipteran families and provide important ecosystem services such as pollination, biological control of pests, recycling of organic matter and redistributions of essential nutrients. Flower fly adults generally feed on pollen and nectar, but their larval feeding habits are strikingly diverse. In the present study, high-throughput sequencing was used to capture and enrich phylogenetically and evolutionary informative exonic regions. With the help of the baitfisher software, we developed a new bait kit (SYRPHIDAE1.0) to target 1945 CDS regions belonging to 1312 orthologous genes. This new bait kit was successfully used to exon capture the targeted loci in 121 flower fly species across the different subfamilies of Syrphidae. We analysed different amino acid and nucleotide data sets (1302 loci and 154 loci) with maximum likelihood and multispecies coalescent models. Our analyses yielded highly supported similar topologies, although the degree of the SRH (global stationarity, reversibility and homogeneity) conditions varied greatly between amino acid and nucleotide data sets. The sisterhood of subfamilies Pipizinae and Syrphinae is supported in all our analyses, confirming a common origin of taxa feeding on soft-bodied arthropods. Based on our results, we define Syrphini stat.rev. to include the genera Toxomerus and Paragus. Our divergence estimate analyses with beast inferred the origin of the Syrphidae in the Lower Cretaceous (125.5–98.5 Ma) and the diversification of predatory flower flies around the K–Pg boundary (70.61–54.4 Ma), coinciding with the rise and diversification of their prey.

花蝇(Diptera:Syrphidae)是种类最丰富的双翅目昆虫科之一,提供重要的生态系统服务,如授粉、害虫的生物控制、有机物的回收和基本营养物质的重新分配。花蝇成虫通常以花粉和花蜜为食,但它们的幼虫食性却截然不同。在本研究中,高通量测序用于捕获和丰富系统发育和进化信息外显子区域。在baitfisher软件的帮助下,我们开发了一种新的诱饵试剂盒(SYRPHIDAE1.0),靶向属于1312个同源基因的1945个CDS区域。这种新的诱饵试剂盒成功地用于外显子捕获雪蝇科不同亚科121种花蝇的靶基因座。我们用最大似然和多谱合并模型分析了不同的氨基酸和核苷酸数据集(1302个基因座和154个基因座)。我们的分析产生了高度支持的相似拓扑结构,尽管SRH(全局平稳性、可逆性和同质性)条件的程度在氨基酸和核苷酸数据集之间变化很大。我们所有的分析都支持琵琶亚科和水燕亚科的姐妹关系,证实了以软体节肢动物为食的分类群的共同起源。根据我们的研究结果,我们将Syrphini stat.rev定义为包括Toxomerus属和Paragus属。我们对野兽的差异估计分析推断了Syrphidae的起源于下白垩纪(125.5–98.5 Ma),以及K–Pg边界(70.61–54.4 Ma)附近捕食性花蝇的多样化,这与它们的猎物的增加和多样化相吻合。
{"title":"Systematics and evolution of predatory flower flies (Diptera: Syrphidae) based on exon-capture sequencing","authors":"Ximo Mengual,&nbsp;Christoph Mayer,&nbsp;Trevor O. Burt,&nbsp;Kevin M. Moran,&nbsp;Lars Dietz,&nbsp;Gaby Nottebrock,&nbsp;Thomas Pauli,&nbsp;Andrew D. Young,&nbsp;Marie V. Brasseur,&nbsp;Sandra Kukowka,&nbsp;Scott Kelso,&nbsp;Claudia Etzbauer,&nbsp;Sander Bot,&nbsp;Martin Hauser,&nbsp;Kurt Jordaens,&nbsp;Gil F. G. Miranda,&nbsp;Gunilla Ståhls,&nbsp;Wouter van Steenis,&nbsp;Ralph S. Peters,&nbsp;Jeffrey H. Skevington","doi":"10.1111/syen.12573","DOIUrl":"10.1111/syen.12573","url":null,"abstract":"<p>Flower flies (Diptera: Syrphidae) are one of the most species-rich dipteran families and provide important ecosystem services such as pollination, biological control of pests, recycling of organic matter and redistributions of essential nutrients. Flower fly adults generally feed on pollen and nectar, but their larval feeding habits are strikingly diverse. In the present study, high-throughput sequencing was used to capture and enrich phylogenetically and evolutionary informative exonic regions. With the help of the <span>baitfisher</span> software, we developed a new bait kit (SYRPHIDAE1.0) to target 1945 CDS regions belonging to 1312 orthologous genes. This new bait kit was successfully used to exon capture the targeted loci in 121 flower fly species across the different subfamilies of Syrphidae. We analysed different amino acid and nucleotide data sets (1302 loci and 154 loci) with maximum likelihood and multispecies coalescent models. Our analyses yielded highly supported similar topologies, although the degree of the SRH (global stationarity, reversibility and homogeneity) conditions varied greatly between amino acid and nucleotide data sets. The sisterhood of subfamilies Pipizinae and Syrphinae is supported in all our analyses, confirming a common origin of taxa feeding on soft-bodied arthropods. Based on our results, we define Syrphini <b>stat.rev.</b> to include the genera <i>Toxomerus</i> and <i>Paragus</i>. Our divergence estimate analyses with <span>beast</span> inferred the origin of the Syrphidae in the Lower Cretaceous (125.5–98.5 Ma) and the diversification of predatory flower flies around the K–Pg boundary (70.61–54.4 Ma), coinciding with the rise and diversification of their prey.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"48 2","pages":"250-277"},"PeriodicalIF":4.8,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/syen.12573","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47821569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Kobayashi, T., Hayashi, M., Kamite, Y. & Sota, T. (2021) Molecular phylogeny of Elmidae (Coleoptera: Byrrhoidea) with a focus on Japanese species: Implications for intrafamilial classification. Systematic Entomology, 46, 870–886. Kobayashi, T., Hayashi, M., Kamite, Y.和Sota, T. (2021) Elmidae(鞘翅目:byrrho总科)的分子系统发育及其对日本物种的影响。昆虫学报,26(4):870-886。
IF 4.8 1区 农林科学 Q1 ENTOMOLOGY Pub Date : 2022-10-01 DOI: 10.1111/syen.12549
Takuya Kobayashi, M. Hayashi, Y. Kamite, T. Sota
The genus Nomuraelmis Satô, 1964 was synonymized with the genus Stenelmis Dufour, 1835 in the article. As a result, the monotypic species Nomuraelmis amamiensis Satô, 1964 was transferred to the genus Stenelmis and the combination Stenelmis amamiensis (Satô, 1964) was made. However, this name was preoccupied by Stenelmis amamiensis Nomura, 1957 (now Ordobrevia amamiensis). After the publication of the article, the displacement name Stenelmis amami Yoshitomi et Hayashi, 2021 was proposed by Yoshitomi & Hayashi (2021) for the secondary junior homonym Stenelmis amamiensis (Satô, 1964).
Nomuraelmis属Satô, 1964与Stenelmis Dufour属同义,1835在文章中。因此,将单型种amamiensis Satô, 1964转移到Stenelmis属,并组合成Stenelmis amamiensis (Satô, 1964)。然而,这个名字被Stenelmis amamiensis Nomura, 1957(现在的Ordobrevia amamiensis)所占据。文章发表后,由Yoshitomi & Hayashi(2021)为次初级谐音Stenelmis amamiensis (Satô, 1964)提出了移位名称Stenelmis amami Yoshitomi et Hayashi, 2021。
{"title":"Kobayashi, T., Hayashi, M., Kamite, Y. & Sota, T. (2021) Molecular phylogeny of Elmidae (Coleoptera: Byrrhoidea) with a focus on Japanese species: Implications for intrafamilial classification. Systematic Entomology, 46, 870–886.","authors":"Takuya Kobayashi, M. Hayashi, Y. Kamite, T. Sota","doi":"10.1111/syen.12549","DOIUrl":"https://doi.org/10.1111/syen.12549","url":null,"abstract":"The genus Nomuraelmis Satô, 1964 was synonymized with the genus Stenelmis Dufour, 1835 in the article. As a result, the monotypic species Nomuraelmis amamiensis Satô, 1964 was transferred to the genus Stenelmis and the combination Stenelmis amamiensis (Satô, 1964) was made. However, this name was preoccupied by Stenelmis amamiensis Nomura, 1957 (now Ordobrevia amamiensis). After the publication of the article, the displacement name Stenelmis amami Yoshitomi et Hayashi, 2021 was proposed by Yoshitomi & Hayashi (2021) for the secondary junior homonym Stenelmis amamiensis (Satô, 1964).","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":" ","pages":""},"PeriodicalIF":4.8,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42170383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new genus in the diverse Andean Pedaliodes complex uncovered using target enrichment (Lepidoptera, Nymphalidae) 利用靶标富集发现的安第斯踏板蝶复合体中的一个新属(鳞翅目,睡蝶科)
IF 4.8 1区 农林科学 Q1 ENTOMOLOGY Pub Date : 2022-09-27 DOI: 10.1111/syen.12568
Tomasz Wilhelm Pyrcz, Dorota Lachowska-Cierlik, Keith Richard Willmott, Artur Mrozek, Oscar Mahecha-Jiménez, Christer Fåhraeus, Pierre Boyer, Sebastián Martín, Marianne Espeland

A new genus of Neotropical Satyrinae butterflies, Viloriodes Pyrcz & Espeland gen. n. is described in the Pedaliodes Butler complex comprising 11–13 genera and more than 400 species. Support for the new genus is provided by a phylogenetic analysis based on target enrichment (TE) data including 618 nuclear loci with a total of 248,940 nucleotides, and the mitochondrial gene cytochrome oxidase subunit 1 (COI). Five species, whose DNA sequences were obtained by TE during this study, form a strongly supported clade sister to the large clade comprising Pedaliodes and four other genera. Complementary COI analysis confirms the monophyly of Viloriodes gen. n., with the above five plus eight other species clustering in highly supported clades in both Bayesian Inference and Maximum Likelihood analyses, and a TE + COI concatenated tree. Based on molecular and morphological data, 30 species are assigned to Viloriodes gen. n. The new genus can be recognized by a set of subtle morphological characteristics of colour patterns and male and female genitalia. An analysis of divergence times indicates that Viloriodes gen. n. and Steromapedaliodes Forster separated around 5.9 Mya. Viloriodes gen. n. has a wider geographic distribution than any other genus of the Pedaliodes complex, being found from central Mexico to northern Argentina and to the Guyana Shield, typically occurring at lower elevations than Pedaliodes.

在Pedaliodes Butler复合体中,描述了一个新的热带Satyrinae蝴蝶属,Vilorides Pyrcz&Espeland gen.n,包括11-13属和400多个物种。基于靶富集(TE)数据的系统发育分析为新属提供了支持,该数据包括618个共248940个核苷酸的核基因座和线粒体基因细胞色素氧化酶亚基1(COI)。在这项研究中,TE获得了五个物种的DNA序列,它们形成了一个强大的分支姐妹,该分支是由Pedioides和其他四个属组成的大型分支。互补COI分析证实了Viloroides gen.n的单系性,在贝叶斯推断和最大似然分析中,上述五个加上八个其他物种都聚集在高度支持的分支中,并且TE + COI连接树。根据分子和形态学数据,将30个物种归入Vilorides gen.n。这个新属可以通过一组细微的颜色模式和雄性和雌性生殖器的形态学特征来识别。对分歧时间的分析表明,Vilorides gen.n和Steromapedaliodes Forster分离约5.9 Mya。Vilorides gen.n的地理分布比Pedaliodes复合体的任何其他属都要广泛,分布于墨西哥中部、阿根廷北部和圭亚那地盾,通常分布在比Pedaleodes更低的海拔地区。
{"title":"A new genus in the diverse Andean Pedaliodes complex uncovered using target enrichment (Lepidoptera, Nymphalidae)","authors":"Tomasz Wilhelm Pyrcz,&nbsp;Dorota Lachowska-Cierlik,&nbsp;Keith Richard Willmott,&nbsp;Artur Mrozek,&nbsp;Oscar Mahecha-Jiménez,&nbsp;Christer Fåhraeus,&nbsp;Pierre Boyer,&nbsp;Sebastián Martín,&nbsp;Marianne Espeland","doi":"10.1111/syen.12568","DOIUrl":"10.1111/syen.12568","url":null,"abstract":"<p>A new genus of Neotropical Satyrinae butterflies, <i>Viloriodes</i> Pyrcz &amp; Espeland gen. n. is described in the <i>Pedaliodes</i> Butler complex comprising 11–13 genera and more than 400 species. Support for the new genus is provided by a phylogenetic analysis based on target enrichment (TE) data including 618 nuclear loci with a total of 248,940 nucleotides, and the mitochondrial gene cytochrome oxidase subunit 1 (COI). Five species, whose DNA sequences were obtained by TE during this study, form a strongly supported clade sister to the large clade comprising <i>Pedaliodes</i> and four other genera. Complementary COI analysis confirms the monophyly of <i>Viloriodes</i> gen. n., with the above five plus eight other species clustering in highly supported clades in both Bayesian Inference and Maximum Likelihood analyses, and a TE + COI concatenated tree. Based on molecular and morphological data, 30 species are assigned to <i>Viloriodes</i> gen. n. The new genus can be recognized by a set of subtle morphological characteristics of colour patterns and male and female genitalia. An analysis of divergence times indicates that <i>Viloriodes</i> gen. n. and <i>Steromapedaliodes</i> Forster separated around 5.9 Mya. <i>Viloriodes</i> gen. n. has a wider geographic distribution than any other genus of the <i>Pedaliodes</i> complex, being found from central Mexico to northern Argentina and to the Guyana Shield, typically occurring at lower elevations than <i>Pedaliodes</i>.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"48 1","pages":"163-177"},"PeriodicalIF":4.8,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46916103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A genome-wide phylogeny and the diversification of genus Liriomyza (Diptera: Agromyzidae) inferred from anchored phylogenomics 从锚定系统基因组学推断出的全基因组系统发育及其多样性(双翅目:稻蝇科)
IF 4.8 1区 农林科学 Q1 ENTOMOLOGY Pub Date : 2022-09-15 DOI: 10.1111/syen.12569
Jing-Li Xuan, Sonja J. Scheffer, Owen Lonsdale, Brian K. Cassel, Matthew L. Lewis, Charles S. Eiseman, Wan-Xue Liu, Brian M. Wiegmann

The genus Liriomyza Mik (Diptera: Agromyzidae) is a diverse and globally distributed group of acalyptrate flies. Phylogenetic relationships among Liriomyza species have remained incompletely investigated and have never been fully addressed using molecular data. Here, we reconstruct the phylogeny of the genus Liriomyza using various phylogenetic methods (maximum likelihood, Bayesian inference, and gene tree coalescence) on target-capture-based phylogenomic datasets (nucleotides and amino acids) obtained from anchored hybrid enrichment (AHE). We have recovered tree topologies that are nearly congruent across all data types and methods, and individual clade support is strong across all phylogenetic analyses. Moreover, defined morphological species groups and clades are well-supported in our best estimates of the molecular phylogeny. Liriomyza violivora (Spencer) is a sister group to all remaining sampled Liriomyza species, and the well-known polyphagous vegetable pests [L. huidobrensis (Blanchard), L. langei Frick, L. bryoniae. (Kaltenbach), L. trifolii (Burgess), L. sativae Blanchard, and L. brassicae (Riley)]. belong to multiple clades that are not particularly closely related on the trees. Often, closely related Liriomyza species feed on distantly related host plants. We reject the hypothesis that cophylogenetic processes between Liriomyza species and their host plants drive diversification in this genus. Instead, Liriomyza exhibits a widespread pattern of major host shifts across plant taxa. Our new phylogenetic estimate for Liriomyza species provides considerable new information on the evolution of host-use patterns in this genus. In addition, it provides a framework for further study of the morphology, ecology, and diversification of these important flies.

密蝇属(双翅目:密蝇科)是一种分布于世界各地的蝇类。Liriomyza物种之间的系统发育关系尚未完全研究,并且从未使用分子数据完全解决。在这里,我们使用各种系统发育方法(最大似然、贝叶斯推理和基因树聚结)对锚定杂交富集(AHE)获得的基于目标捕获的系统发育数据集(核苷酸和氨基酸)重建了Liriomyza属的系统发育。我们已经恢复了在所有数据类型和方法中几乎一致的树拓扑结构,并且在所有系统发育分析中对单个分支的支持都很强。此外,在我们对分子系统发育的最佳估计中,已定义的形态学物种群和分支得到了很好的支持。Liriomyza violivora (Spencer)是所有剩余Liriomyza物种的姐妹群,以及众所周知的多食蔬菜害虫[L。布兰查德(Blanchard), L. langei Frick, L. bryoniae。(Kaltenbach)、L. trifolii (Burgess)、L. sativae Blanchard和L. brassicae (Riley)]。属于多个分支,在树上不是特别密切相关。通常,近亲Liriomyza物种以远亲寄主植物为食。我们拒绝了Liriomyza物种和它们的寄主植物之间的共同发育过程驱动该属多样化的假设。相反,Liriomyza在植物分类群中表现出广泛的主要寄主转移模式。我们对Liriomyza物种的新系统发育估计为该属宿主利用模式的进化提供了相当多的新信息。此外,它还为进一步研究这些重要蝇类的形态、生态学和多样性提供了一个框架。
{"title":"A genome-wide phylogeny and the diversification of genus Liriomyza (Diptera: Agromyzidae) inferred from anchored phylogenomics","authors":"Jing-Li Xuan,&nbsp;Sonja J. Scheffer,&nbsp;Owen Lonsdale,&nbsp;Brian K. Cassel,&nbsp;Matthew L. Lewis,&nbsp;Charles S. Eiseman,&nbsp;Wan-Xue Liu,&nbsp;Brian M. Wiegmann","doi":"10.1111/syen.12569","DOIUrl":"10.1111/syen.12569","url":null,"abstract":"<p>The genus <i>Liriomyza</i> Mik (Diptera: Agromyzidae) is a diverse and globally distributed group of acalyptrate flies. Phylogenetic relationships among <i>Liriomyza</i> species have remained incompletely investigated and have never been fully addressed using molecular data. Here, we reconstruct the phylogeny of the genus <i>Liriomyza</i> using various phylogenetic methods (maximum likelihood, Bayesian inference, and gene tree coalescence) on target-capture-based phylogenomic datasets (nucleotides and amino acids) obtained from anchored hybrid enrichment (AHE). We have recovered tree topologies that are nearly congruent across all data types and methods, and individual clade support is strong across all phylogenetic analyses. Moreover, defined morphological species groups and clades are well-supported in our best estimates of the molecular phylogeny. <i>Liriomyza violivora</i> (Spencer) is a sister group to all remaining sampled <i>Liriomyza</i> species, and the well-known polyphagous vegetable pests [<i>L. huidobrensis</i> (Blanchard), <i>L. langei</i> Frick, <i>L. bryoniae.</i> (Kaltenbach), <i>L. trifolii</i> (Burgess), <i>L. sativae</i> Blanchard, and <i>L. brassicae</i> (Riley)]. belong to multiple clades that are not particularly closely related on the trees. Often, closely related <i>Liriomyza</i> species feed on distantly related host plants. We reject the hypothesis that cophylogenetic processes between <i>Liriomyza</i> species and their host plants drive diversification in this genus. Instead, <i>Liriomyza</i> exhibits a widespread pattern of major host shifts across plant taxa. Our new phylogenetic estimate for <i>Liriomyza</i> species provides considerable new information on the evolution of host-use patterns in this genus. In addition, it provides a framework for further study of the morphology, ecology, and diversification of these important flies.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"48 1","pages":"178-197"},"PeriodicalIF":4.8,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/syen.12569","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46348039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Paleogene forest fragmentation and out‐of‐Africa dispersal explain radiation of the Paleotropical dung beetle tribe Epactoidini trib. nov. (Coleoptera: Scarabaeinae) 古近系森林破碎化和走出非洲的扩散解释了古热带蜣螂部落Epactoidini部落的辐射。11 .(鞘翅目:金龟甲科)
IF 4.8 1区 农林科学 Q1 ENTOMOLOGY Pub Date : 2022-09-12 DOI: 10.1111/syen.12564
M. Rossini, V. Grebennikov, Thomas Merrien, Andreia Miraldo, Heidi Viljanen, S. Tarasov
Paleotropical clades with largely disjunct distributions are ideal models for biogeographic reconstructions. The dung beetle genera Grebennikovius Mlambo, Scholtz & Deschodt, Epactoides Olsouffief and Ochicanthon Vaz‐de‐Mello are distributed in Tanzania, Madagascar and Réunion, and the Oriental region, respectively. We combine morphology and molecular dataset to reconstruct the phylogenetic relationships between these taxa. Our analyses corroborate previous hypotheses of monophyly of the group, which is here described as new tribe Epactoidini trib. nov. Grebennikovius is recovered as sister to Epactoides, while Ochicanthon emerges as sister to them both. The disjunct distribution of our focal clade is unusual within the subfamily Scarabaeinae. Bayesian divergence time estimates and ancestral range reconstructions indicate an African origin of the crown group of the tribe Epactoidini trib. nov. in the early mid Eocene, ca. 46 Ma. The divergence between Epactoides and its sister is dated to 32.3 Ma, while the crown age for the genus Ochicanthon is dated to 27 Ma. We investigate the factors that may have shaped the current distribution of the tribe Epactoidini trib. nov. The formation of the Gomphotherium landbridge, along with favourable environmental conditions would have allowed dry‐intolerant organisms, such as Ochicanthon, to disperse out of Africa. Remarkable climatic stability of the Eastern Arc Mountains was critical for the retention of the monotypic genus Grebennikovius. We suggest two subsequent overwater dispersal events: the migration of the most recent common ancestor (MRCA) of Epactoides from Africa to Madagascar (32.3–29.5 Ma); the lately dispersal of the MRCA of the today's extinct Epactoides giganteus Rossini, Vaz‐de‐Mello & Montreuil to Réunion island from Madagascar (3.4 Ma). We suggest that the high potential of dispersal of Epactoidini trib. nov. dung beetles and the strict association to forest habitat might have triggered two major radiations, one in Madagascar and one in the Oriental Region.
具有大量不相交分布的古热带枝是生物地理重建的理想模型。粪甲虫属Grebennikovius Mlambo、Scholtz & Deschodt、Epactoides Olsouffief和Ochicanthon Vaz‐de‐Mello分别分布在坦桑尼亚、马达加斯加和卢旺达以及东方地区。我们结合形态学和分子数据来重建这些分类群之间的系统发育关系。我们的分析证实了先前关于该群体单一性的假设,这里将其描述为新部落Epactoidini部落。11 . Grebennikovius被发现是Epactoides的姐妹,而Ochicanthon则是它们的姐妹。我们的焦点分支的间断分布在金龟子亚科中是不寻常的。贝叶斯分化时间估计和祖先范围重建表明Epactoidini部落的冠群起源于非洲。11月始新世早期中期,约46 Ma。Epactoides及其姊妹属的分化时间为32.3 Ma,而Ochicanthon属的冠年龄为27 Ma。我们调查的因素,可能已经形成了部落Epactoidini部落目前的分布。11 . Gomphotherium陆桥的形成,以及有利的环境条件,将允许不耐干燥的生物,如Ochicanthon,扩散出非洲。东弧山脉显著的气候稳定性对单型属的保留至关重要。我们提出了两个后续的水上扩散事件:Epactoides最近的共同祖先(MRCA)从非洲迁移到马达加斯加(32.3-29.5 Ma);今天已经灭绝的巨猴Epactoides giganteus Rossini、Vaz - de - Mello和Montreuil的MRCA最近从马达加斯加向r union岛扩散(3.4 Ma)。我们认为Epactoidini部落具有很高的传播潜力。11月11日,屎壳郎和与森林栖息地的紧密联系可能引发了两次主要的辐射,一次在马达加斯加,一次在东方地区。
{"title":"Paleogene forest fragmentation and out‐of‐Africa dispersal explain radiation of the Paleotropical dung beetle tribe Epactoidini trib. nov. (Coleoptera: Scarabaeinae)","authors":"M. Rossini, V. Grebennikov, Thomas Merrien, Andreia Miraldo, Heidi Viljanen, S. Tarasov","doi":"10.1111/syen.12564","DOIUrl":"https://doi.org/10.1111/syen.12564","url":null,"abstract":"Paleotropical clades with largely disjunct distributions are ideal models for biogeographic reconstructions. The dung beetle genera Grebennikovius Mlambo, Scholtz & Deschodt, Epactoides Olsouffief and Ochicanthon Vaz‐de‐Mello are distributed in Tanzania, Madagascar and Réunion, and the Oriental region, respectively. We combine morphology and molecular dataset to reconstruct the phylogenetic relationships between these taxa. Our analyses corroborate previous hypotheses of monophyly of the group, which is here described as new tribe Epactoidini trib. nov. Grebennikovius is recovered as sister to Epactoides, while Ochicanthon emerges as sister to them both. The disjunct distribution of our focal clade is unusual within the subfamily Scarabaeinae. Bayesian divergence time estimates and ancestral range reconstructions indicate an African origin of the crown group of the tribe Epactoidini trib. nov. in the early mid Eocene, ca. 46 Ma. The divergence between Epactoides and its sister is dated to 32.3 Ma, while the crown age for the genus Ochicanthon is dated to 27 Ma. We investigate the factors that may have shaped the current distribution of the tribe Epactoidini trib. nov. The formation of the Gomphotherium landbridge, along with favourable environmental conditions would have allowed dry‐intolerant organisms, such as Ochicanthon, to disperse out of Africa. Remarkable climatic stability of the Eastern Arc Mountains was critical for the retention of the monotypic genus Grebennikovius. We suggest two subsequent overwater dispersal events: the migration of the most recent common ancestor (MRCA) of Epactoides from Africa to Madagascar (32.3–29.5 Ma); the lately dispersal of the MRCA of the today's extinct Epactoides giganteus Rossini, Vaz‐de‐Mello & Montreuil to Réunion island from Madagascar (3.4 Ma). We suggest that the high potential of dispersal of Epactoidini trib. nov. dung beetles and the strict association to forest habitat might have triggered two major radiations, one in Madagascar and one in the Oriental Region.","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"47 1","pages":"655 - 667"},"PeriodicalIF":4.8,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46907123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Diversification in Caucasian Epeorus (Caucasiron) mayflies (Ephemeroptera: Heptageniidae) follows topographic deformation along the Greater Caucasus range 高加索Epeorus(Caucasiron)mayflies(蜉蝣目:七叶树科)的多样性遵循大高加索山脉的地形变形
IF 4.8 1区 农林科学 Q1 ENTOMOLOGY Pub Date : 2022-09-12 DOI: 10.1111/syen.12551
Ľuboš Hrivniak, P. Sroka, R. Godunko, P. Manko, J. Bojková
The evolution and distribution of mountain biota are closely linked with mountain formation and topographic complexity. Here we explore the diversification of cold‐tolerant mayflies of the subgenus Epeorus (Caucasiron) in the south‐eastern Greater Caucasus, an area of dynamic changes in topography since the Miocene, driven by the convergence of the Greater and Lesser Caucasus. We hypothesized that orogenic processes promoted the diversification of E. (Caucasiron) and that the resultant diversification pattern followed the timing and progress of mountain formation along the range. A new evolutionary lineage of E. (Caucasiron) distributed in the central‐eastern Greater Caucasus was found and described as Epeorus (Caucasiron) tripertitus sp.n. It consists of three clades clearly differentiated based on mitochondrial sequence data, but indistinguishable by morphological traits. Based on a time‐calibrated phylogeny using mitochondrial (COI, 16S) and nuclear (EF, wg, 28S) markers, we found that a gradual allopatric diversification of the ancestral population of E. (C.) tripertitus sp.n. dated to a period lasting from the late Miocene to the Pleistocene spread eastward along the range. This pattern corresponded with the process of topographic deformation which started in the central part of the range in the Miocene and progressed to the east during the Pliocene/Pleistocene. The results implied the dominant role of mountain building on the biotic diversification of this region and continuing recent speciation in the south‐eastern part of the mountains.
山地生物群的演化和分布与山地的形成和地形的复杂性密切相关。在这里,我们探索了大高加索东南部Epeorus亚属(Caucasiron)耐冷果蝇的多样性,这是一个自中新世以来地形动态变化的地区,受大高加索和小高加索交汇的驱动。我们假设造山过程促进了E.(Caucasiron)的多样化,并且由此产生的多样化模式遵循了山脉沿线山脉形成的时间和进程。分布在大高加索中东部的E.(Caucasiron)的一个新进化谱系被发现并描述为Epeorus(Caucisiron)tripertitus sp.n。它由三个分支组成,根据线粒体序列数据可以清楚地区分,但无法通过形态特征区分。基于使用线粒体(COI,16S)和细胞核(EF,wg,28S)标记进行的时间校准系统发育,我们发现,从中新世晚期到更新世,三足目E.(C.)tripertitus sp.n祖先种群的逐渐异地多样化沿该范围向东扩散。这种模式与地形变形过程相对应,地形变形过程始于中新世山脉中部,并在上新世/更新世向东发展。研究结果表明,造山运动在该地区的生物多样性中发挥了主导作用,并在山脉东南部持续了最近的物种形成。
{"title":"Diversification in Caucasian Epeorus (Caucasiron) mayflies (Ephemeroptera: Heptageniidae) follows topographic deformation along the Greater Caucasus range","authors":"Ľuboš Hrivniak, P. Sroka, R. Godunko, P. Manko, J. Bojková","doi":"10.1111/syen.12551","DOIUrl":"https://doi.org/10.1111/syen.12551","url":null,"abstract":"The evolution and distribution of mountain biota are closely linked with mountain formation and topographic complexity. Here we explore the diversification of cold‐tolerant mayflies of the subgenus Epeorus (Caucasiron) in the south‐eastern Greater Caucasus, an area of dynamic changes in topography since the Miocene, driven by the convergence of the Greater and Lesser Caucasus. We hypothesized that orogenic processes promoted the diversification of E. (Caucasiron) and that the resultant diversification pattern followed the timing and progress of mountain formation along the range. A new evolutionary lineage of E. (Caucasiron) distributed in the central‐eastern Greater Caucasus was found and described as Epeorus (Caucasiron) tripertitus sp.n. It consists of three clades clearly differentiated based on mitochondrial sequence data, but indistinguishable by morphological traits. Based on a time‐calibrated phylogeny using mitochondrial (COI, 16S) and nuclear (EF, wg, 28S) markers, we found that a gradual allopatric diversification of the ancestral population of E. (C.) tripertitus sp.n. dated to a period lasting from the late Miocene to the Pleistocene spread eastward along the range. This pattern corresponded with the process of topographic deformation which started in the central part of the range in the Miocene and progressed to the east during the Pliocene/Pleistocene. The results implied the dominant role of mountain building on the biotic diversification of this region and continuing recent speciation in the south‐eastern part of the mountains.","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"47 1","pages":"603 - 617"},"PeriodicalIF":4.8,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42654083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Issue Information 问题信息
IF 4.8 1区 农林科学 Q1 ENTOMOLOGY Pub Date : 2022-09-12 DOI: 10.1111/syen.12498
{"title":"Issue Information","authors":"","doi":"10.1111/syen.12498","DOIUrl":"https://doi.org/10.1111/syen.12498","url":null,"abstract":"","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":" ","pages":""},"PeriodicalIF":4.8,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48439957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maritime midge radiations in the Pacific Ocean (Diptera: Chironomidae) 太平洋海域蠓辐射(双翅目:蠓科)
IF 4.8 1区 农林科学 Q1 ENTOMOLOGY Pub Date : 2022-08-17 DOI: 10.1111/syen.12565
Hongqu Tang, Qingqing Cheng, Matt N. Krosch, Peter S. Cranston

Maritime chironomid midges (Diptera) are diverse, yet these ‘pearls of the ocean’ are little known. Emphasizing Pacific Ocean taxa, we used six genetic markers (18S, 28S, CAD1, CAD4, FolCOI and COI) and fossil calibrations to produce Bayesian time-calibrated phylogenies to date eight independent marine transitions in three subfamilies. Deep nodes involve subfamily Telmatogetoninae (originating mid-Cretaceous, 101128, 114 Ma), with sister genera Telmatogeton Schiner and Thalassomya Schiner splitting later in the Cretaceous (56–82, 69 Ma). Two transitions in Orthocladiinae involve Clunio Haliday and Pseudosmittia Edwards, dating from the upper Cretaceous, both with Eocene crown groups. In subfamily Chironominae, transitions to marine occur in two tribes. Four transitions occur within the otherwise nonmarine crown groups Kiefferulus Goetghebuer, Dicrotendipes Kieffer, Polypedilum Kieffer and Ainuyusurika Sasa & Shirasaka. Two separate robust clades in tribe Tanytarsini involve: (1) a minor radiation within Paratanytarsus dated to the mid-Eocene around 43 Ma; and (2) an unexpected but fully supported diversification in Pontomyia Edwards plus Yaetanytarsus Sasa dated to around 47 Ma, with separation of Pontomyia from Yaetanytarsus around 40 Ma. Crown Pontomyia, represented by three species, was estimated to have diverged around 19 Ma, whereas the crown radiation of Yaetanytarsus, with 12 sampled species, dates to the mid-Eocene. In a comprehensive global review we concisely document new synonymies and new combinations revealed by the study. The evolutionary timing estimate provides insights into the frequency of marine transitions and diversifications in the Chironomidae in association with dynamic oceanic changes during the Oligocene and Miocene.

海洋摇蚊种类繁多,但这些“海洋之珠”却鲜为人知。强调太平洋分类群,我们使用了六个遗传标记(18S、28S、CAD1、CAD4、FolCOI和COI)和化石校准来产生贝叶斯时间校准的系统发育,以确定三个亚科中八个独立的海洋转变的日期。深层节点涉及Telmatogetoninae亚科(起源于白垩纪中期,101–128,114 Ma),姐妹属Telmatogeton Schiner和Thalassomya Schiner在白垩纪后期分裂(56-82,69 马)。Orthocladiinae的两个转变涉及Clunio Haliday和Pseudosmittia Edwards,可追溯到上白垩纪,均具有始新世的冠群。在摇蚊亚科中,向海洋的过渡发生在两个部落中。在其他非海洋冠群Kieferrulus Goetghebuer、Dicrotendipes Kieffer、Polypedium Kieffer和Ainuyusurika Sasa&Shirasaka中发生了四个转变。Tanytarsini部落中两个独立的强大分支涉及:(1)Paratanytarsus内部的一个小辐射,可追溯到43年左右的始新世中期 马;和(2)Pontomyia Edwards和Yaetanytarsus Sasa的意外但完全支持的多元化可追溯到47年左右 马,40岁左右从亚坦跗关节分离出Pontomyia 马。Crown Pontomyia由三个物种代表,估计在19年左右分化 Ma,而Yaetanytarsus的冠辐射,有12个采样物种,可以追溯到始新世中期。在一篇全面的全球综述中,我们简要地记录了该研究揭示的新同义词和新组合。进化时间估计提供了对摇蚊科海洋转变和多样化频率的深入了解,以及渐新世和中新世期间海洋的动态变化。
{"title":"Maritime midge radiations in the Pacific Ocean (Diptera: Chironomidae)","authors":"Hongqu Tang,&nbsp;Qingqing Cheng,&nbsp;Matt N. Krosch,&nbsp;Peter S. Cranston","doi":"10.1111/syen.12565","DOIUrl":"10.1111/syen.12565","url":null,"abstract":"<p>Maritime chironomid midges (Diptera) are diverse, yet these ‘pearls of the ocean’ are little known. Emphasizing Pacific Ocean taxa, we used six genetic markers (<i>18S</i>, <i>28S</i>, <i>CAD1</i>, <i>CAD4</i>, <i>FolCOI</i> and <i>COI</i>) and fossil calibrations to produce Bayesian time-calibrated phylogenies to date eight independent marine transitions in three subfamilies. Deep nodes involve subfamily Telmatogetoninae (originating mid-Cretaceous, 101<i>–</i>128, 114 Ma), with sister genera <i>Telmatogeton</i> Schiner and <i>Thalassomya</i> Schiner splitting later in the Cretaceous (56–82, 69 Ma). Two transitions in Orthocladiinae involve <i>Clunio</i> Haliday and <i>Pseudosmittia</i> Edwards, dating from the upper Cretaceous, both with Eocene crown groups. In subfamily Chironominae, transitions to marine occur in two tribes. Four transitions occur within the otherwise nonmarine crown groups <i>Kiefferulus</i> Goetghebuer, <i>Dicrotendipes</i> Kieffer, <i>Polypedilum</i> Kieffer and <i>Ainuyusurika</i> Sasa &amp; Shirasaka. Two separate robust clades in tribe Tanytarsini involve: (1) a minor radiation within <i>Paratanytarsus</i> dated to the mid-Eocene around 43 Ma; and (2) an unexpected but fully supported diversification in <i>Pontomyia</i> Edwards plus <i>Yaetanytarsus</i> Sasa dated to around 47 Ma, with separation of <i>Pontomyia</i> from <i>Yaetanytarsus</i> around 40 Ma. Crown <i>Pontomyia</i>, represented by three species, was estimated to have diverged around 19 Ma, whereas the crown radiation of <i>Yaetanytarsus</i>, with 12 sampled species, dates to the mid-Eocene. In a comprehensive global review we concisely document new synonymies and new combinations revealed by the study. The evolutionary timing estimate provides insights into the frequency of marine transitions and diversifications in the Chironomidae in association with dynamic oceanic changes during the Oligocene and Miocene.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"48 1","pages":"111-126"},"PeriodicalIF":4.8,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/syen.12565","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41275627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phylogeny of Membracoidea (Hemiptera: Auchenorrhyncha) based on transcriptome data 基于转录组数据的膜总科系统发育(半翅目:膜总科)
IF 4.8 1区 农林科学 Q1 ENTOMOLOGY Pub Date : 2022-08-11 DOI: 10.1111/syen.12563
Yanhua Hu, Christopher H. Dietrich, Rachel K. Skinner, Yalin Zhang

The suborder Auchenorrhyncha (“true hoppers”) comprises nearly half of known Hemiptera, with >43,000 known species of sap-sucking herbivores distributed worldwide, including many important agricultural pests and vectors of plant disease. More than half of the known Auchenorrhyncha belong to superfamily Membracoidea (leaf- and treehoppers), which has been a source of phylogenetic contention for many years. To construct an improved backbone phylogeny of this superfamily, we obtained transcriptome data for multiple representatives of all 5 previously established extant families and nearly all subfamilies to test their monophyly and relationships. 138 taxa (132 Membracoidea and 6 outgroups) were sampled with an emphasis on families Cicadellidae and Membracidae, which were paraphyletic as previously defined by most authors, several problematic subfamilies (Aphrodinae, Eurymelinae, Ledrinae, Nicomiinae, Stegaspidinae and Tartessinae). We analysed different combinations of data sets (amino acid, complete nucleotide and degeneracy-coded nucleotide) using different modelling schemes. The resultant trees based on different analyses are congruent in most nodes. Discordant nodes mainly pertain to relationships among cicadellid subfamilies and tribal relationships within Aphrodinae and Eurymelinae. Analyses of gene- and site concordance factors and quartet scores indicate that this instability is largely attributable to an overall lack of informative characters across genes and sites rather than strongly supported conflict among genes. According to the congruent nodes, we make the following revisions: combine Stegaspidinae and Centrotinae into a single subfamily, Centrotinae sensu lato; restore Stenocotini from Tartessinae to its original position in the Ledrinae; and transform Holdgatiella Evans from Nicomiinae to Melizoderinae. In addition, to solve the paraphyly of both Cicadellidae and Membracidae, a preferred option would be to combine all five previously recognized families into a single family, Membracidae sensu lato; the other option could be to render Cicadellidae monophyletic by excluding Megophthalminae and Ulopinae from Cicadellidae and elevating them to status as separate families.

在已知的半翅目中,有近一半的半翅目是“真跳虫”亚目,大约有43,000种已知的吸液食草动物分布在世界各地,包括许多重要的农业害虫和植物病害媒介。超过一半的已知Auchenorrhyncha属于超家族膜总科(叶蝉和树蝉),多年来一直是系统发育争论的来源。为了构建这个超家族的改进的骨干系统发育,我们获得了所有5个先前建立的现存家族和几乎所有亚家族的多个代表的转录组数据,以测试它们的单一性和关系。样本共138个分类群(膜总科132个,外群6个),重点研究了大部分作者所定义的泛颖花科(Cicadellidae)和膜总科(Membracidae),以及几个问题亚科(Aphrodinae、Eurymelinae、Ledrinae、Nicomiinae、Stegaspidinae和Tartessinae)。我们使用不同的建模方案分析了数据集(氨基酸、完整核苷酸和简并编码核苷酸)的不同组合。基于不同分析的结果树在大多数节点上是一致的。不协调节点主要涉及菊科亚科之间的关系,以及阿芙罗丁科和Eurymelinae之间的部落关系。对基因和位点一致性因子和四重奏评分的分析表明,这种不稳定性主要归因于基因和位点间信息特征的总体缺乏,而不是基因之间强烈支持的冲突。根据全等节点,将Stegaspidinae和Centrotinae合并为一个亚科Centrotinae sensu lato;从Tartessinae恢复Stenocotini到Ledrinae的原始位置;并将Holdgatiella Evans从Nicomiinae转化为Melizoderinae。此外,为了解决蝉科和膜科的分类学问题,一个更好的选择是将之前确认的五个科合并为一个科,即膜科;另一种选择是将巨眼科和乌洛皮亚科从蝉科中排除,使其成为独立的科,从而使蝉科成为单系。
{"title":"Phylogeny of Membracoidea (Hemiptera: Auchenorrhyncha) based on transcriptome data","authors":"Yanhua Hu,&nbsp;Christopher H. Dietrich,&nbsp;Rachel K. Skinner,&nbsp;Yalin Zhang","doi":"10.1111/syen.12563","DOIUrl":"10.1111/syen.12563","url":null,"abstract":"<p>The suborder Auchenorrhyncha (“true hoppers”) comprises nearly half of known Hemiptera, with &gt;43,000 known species of sap-sucking herbivores distributed worldwide, including many important agricultural pests and vectors of plant disease. More than half of the known Auchenorrhyncha belong to superfamily Membracoidea (leaf- and treehoppers), which has been a source of phylogenetic contention for many years. To construct an improved backbone phylogeny of this superfamily, we obtained transcriptome data for multiple representatives of all 5 previously established extant families and nearly all subfamilies to test their monophyly and relationships. 138 taxa (132 Membracoidea and 6 outgroups) were sampled with an emphasis on families Cicadellidae and Membracidae, which were paraphyletic as previously defined by most authors, several problematic subfamilies (Aphrodinae, Eurymelinae, Ledrinae, Nicomiinae, Stegaspidinae and Tartessinae). We analysed different combinations of data sets (amino acid, complete nucleotide and degeneracy-coded nucleotide) using different modelling schemes. The resultant trees based on different analyses are congruent in most nodes. Discordant nodes mainly pertain to relationships among cicadellid subfamilies and tribal relationships within Aphrodinae and Eurymelinae. Analyses of gene- and site concordance factors and quartet scores indicate that this instability is largely attributable to an overall lack of informative characters across genes and sites rather than strongly supported conflict among genes. According to the congruent nodes, we make the following revisions: combine Stegaspidinae and Centrotinae into a single subfamily, Centrotinae sensu lato; restore Stenocotini from Tartessinae to its original position in the Ledrinae; and transform <i>Holdgatiella</i> Evans from Nicomiinae to Melizoderinae. In addition, to solve the paraphyly of both Cicadellidae and Membracidae, a preferred option would be to combine all five previously recognized families into a single family, Membracidae sensu lato; the other option could be to render Cicadellidae monophyletic by excluding Megophthalminae and Ulopinae from Cicadellidae and elevating them to status as separate families.</p>","PeriodicalId":22126,"journal":{"name":"Systematic Entomology","volume":"48 1","pages":"97-110"},"PeriodicalIF":4.8,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48692972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
Systematic Entomology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1