首页 > 最新文献

Plant Biotechnology Journal最新文献

英文 中文
Polyamines: pleiotropic molecules regulating plant development and enhancing crop yield and quality 多胺:调节植物发育、提高作物产量和品质的多效性分子。
IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-18 DOI: 10.1111/pbi.14440
Haishan Yang, Yinyin Fang, Zhiman Liang, Tian Qin, Ji-Hong Liu, Taibo Liu

Polyamines (PAs) are pleiotropic bioorganic molecules. Cellular PA contents are determined by a balance between PA synthesis and degradation. PAs have been extensively demonstrated to play vital roles in the modulation of plant developmental processes and adaptation to various environmental stresses. In this review, the latest advances on the diverse roles of PAs in a range of developmental processes, such as morphogenesis, organogenesis, growth and development, and fruit ripening, are summarized and discussed. Besides, the crosstalk between PAs and phytohormones or other signalling molecules, including H2O2 and NO, involved in these processes is dwelled on. In addition, the attempts made to improve the yield and quality of grain and vegetable crops through altering the PA catabolism are enumerated. Finally, several other vital questions that remain unanswered are proposed and discussed. These include the mechanisms underlying the cooperative regulation of developmental processes by PAs and their interplaying partners like phytohormones, H2O2 and NO; PA transport for maintaining homeostasis; and utilization of PA anabolism/catabolism for generating high-yield and good-quality crops. This review aims to gain new insights into the pleiotropic role of PAs in the modulation of plant growth and development, which provides an alternative approach for manipulating and engineering valuable crop varieties that can be used in the future.

多胺(PA)是多效生物有机分子。细胞中的多胺含量取决于多胺合成和降解之间的平衡。大量研究表明,多胺在调节植物发育过程和适应各种环境胁迫方面发挥着重要作用。本综述总结并讨论了 PAs 在形态发生、器官发生、生长发育和果实成熟等一系列发育过程中的不同作用的最新进展。此外,还详细介绍了 PAs 与植物激素或其他信号分子(包括 H2O2 和 NO)在这些过程中的相互影响。此外,还列举了通过改变 PA 分解代谢来提高谷物和蔬菜作物产量和质量的尝试。最后,还提出并讨论了其他几个尚未解答的重要问题。这些问题包括 PA 及其相互作用伙伴(如植物激素、H2O2 和 NO)对发育过程的协同调控机制;维持平衡的 PA 运输;以及利用 PA 合成代谢/代谢产生高产优质作物。本综述旨在对 PA 在调节植物生长和发育过程中的多效性作用获得新的认识,从而为操纵和改造未来可利用的有价值作物品种提供另一种方法。
{"title":"Polyamines: pleiotropic molecules regulating plant development and enhancing crop yield and quality","authors":"Haishan Yang,&nbsp;Yinyin Fang,&nbsp;Zhiman Liang,&nbsp;Tian Qin,&nbsp;Ji-Hong Liu,&nbsp;Taibo Liu","doi":"10.1111/pbi.14440","DOIUrl":"10.1111/pbi.14440","url":null,"abstract":"<p>Polyamines (PAs) are pleiotropic bioorganic molecules. Cellular PA contents are determined by a balance between PA synthesis and degradation. PAs have been extensively demonstrated to play vital roles in the modulation of plant developmental processes and adaptation to various environmental stresses. In this review, the latest advances on the diverse roles of PAs in a range of developmental processes, such as morphogenesis, organogenesis, growth and development, and fruit ripening, are summarized and discussed. Besides, the crosstalk between PAs and phytohormones or other signalling molecules, including H<sub>2</sub>O<sub>2</sub> and NO, involved in these processes is dwelled on. In addition, the attempts made to improve the yield and quality of grain and vegetable crops through altering the PA catabolism are enumerated. Finally, several other vital questions that remain unanswered are proposed and discussed. These include the mechanisms underlying the cooperative regulation of developmental processes by PAs and their interplaying partners like phytohormones, H<sub>2</sub>O<sub>2</sub> and NO; PA transport for maintaining homeostasis; and utilization of PA anabolism/catabolism for generating high-yield and good-quality crops. This review aims to gain new insights into the pleiotropic role of PAs in the modulation of plant growth and development, which provides an alternative approach for manipulating and engineering valuable crop varieties that can be used in the future.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"22 11","pages":"3194-3201"},"PeriodicalIF":10.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pbi.14440","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ectopic enhancer–enhancer interactions as causal forces driving RNA-directed DNA methylation in gene regulatory regions 异位增强子与增强子之间的相互作用是基因调控区中 RNA 引导的 DNA 甲基化的驱动力。
IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-17 DOI: 10.1111/pbi.14435
Yazhou Yang, Jia Liu, Stacy D. Singer, Guohua Yan, Dennis R. Bennet, Yue Liu, Jean-Michel Hily, Weirong Xu, Yingzhen Yang, Xiping Wang, Gan-Yuan Zhong, Zhongchi Liu, Yong-Qiang Charles An, Huawei Liu, Zongrang Liu

Cis-regulatory elements (CREs) are integral to the spatiotemporal and quantitative expression dynamics of target genes, thus directly influencing phenotypic variation and evolution. However, many of these CREs become highly susceptible to transcriptional silencing when in a transgenic state, particularly when organised as tandem repeats. We investigated the mechanism of this phenomenon and found that three of the six selected flower-specific CREs were prone to transcriptional silencing when in a transgenic context. We determined that this silencing was caused by the ectopic expression of non-coding RNAs (ncRNAs), which were processed into 24-nt small interfering RNAs (siRNAs) that drove RNA-directed DNA methylation (RdDM). Detailed analyses revealed that aberrant ncRNA transcription within the AGAMOUS enhancer (AGe) in a transgenic context was significantly enhanced by an adjacent CaMV35S enhancer (35Se). This particular enhancer is known to mis-activate the regulatory activities of various CREs, including the AGe. Furthermore, an insertion of 35Se approximately 3.5 kb upstream of the AGe in its genomic locus also resulted in the ectopic induction of ncRNA/siRNA production and de novo methylation specifically in the AGe, but not other regions, as well as the production of mutant flowers. This confirmed that interactions between the 35Se and AGe can induce RdDM activity in both genomic and transgenic states. These findings highlight a novel epigenetic role for CRE–CRE interactions in plants, shedding light on the underlying forces driving hypermethylation in transgenes, duplicate genes/enhancers, and repetitive transposons, in which interactions between CREs are inevitable.

顺式调节元件(CRE)是目标基因时空和定量表达动态不可或缺的部分,因此直接影响表型变异和进化。然而,许多 CREs 在转基因状态下极易发生转录沉默,尤其是以串联重复形式组织时。我们研究了这一现象的机理,发现在转基因情况下,所选的六个花特异性 CRE 中的三个容易发生转录沉默。我们确定这种沉默是由非编码 RNA(ncRNA)的异位表达引起的,这些非编码 RNA 被加工成 24-nt 的小干扰 RNA(siRNA),驱动 RNA 引导的 DNA 甲基化(RdDM)。详细分析显示,转基因情况下 AGAMOUS 增强子(AGe)内的异常 ncRNA 转录在邻近的 CaMV35S 增强子(35Se)的作用下显著增强。众所周知,这种特殊的增强子会错误激活包括 AGe 在内的各种 CRE 的调控活性。此外,在 AGe 的基因组位点上游约 3.5 kb 处插入 35Se 也会异位诱导 ncRNA/siRNA 的产生,并在 AGe(而非其他区域)产生新的甲基化,以及产生突变花。这证实了 35Se 和 AGe 之间的相互作用可在基因组和转基因状态下诱导 RdDM 活性。这些发现凸显了 CRE-CRE 相互作用在植物中的新表观遗传学作用,揭示了驱动转基因、重复基因/增强子和重复转座子中高甲基化的潜在力量,其中 CRE 之间的相互作用是不可避免的。
{"title":"Ectopic enhancer–enhancer interactions as causal forces driving RNA-directed DNA methylation in gene regulatory regions","authors":"Yazhou Yang,&nbsp;Jia Liu,&nbsp;Stacy D. Singer,&nbsp;Guohua Yan,&nbsp;Dennis R. Bennet,&nbsp;Yue Liu,&nbsp;Jean-Michel Hily,&nbsp;Weirong Xu,&nbsp;Yingzhen Yang,&nbsp;Xiping Wang,&nbsp;Gan-Yuan Zhong,&nbsp;Zhongchi Liu,&nbsp;Yong-Qiang Charles An,&nbsp;Huawei Liu,&nbsp;Zongrang Liu","doi":"10.1111/pbi.14435","DOIUrl":"10.1111/pbi.14435","url":null,"abstract":"<p><i>Cis</i>-regulatory elements (<i>CREs</i>) are integral to the spatiotemporal and quantitative expression dynamics of target genes, thus directly influencing phenotypic variation and evolution. However, many of these <i>CREs</i> become highly susceptible to transcriptional silencing when in a transgenic state, particularly when organised as tandem repeats. We investigated the mechanism of this phenomenon and found that three of the six selected flower-specific <i>CREs</i> were prone to transcriptional silencing when in a transgenic context. We determined that this silencing was caused by the ectopic expression of non-coding RNAs (ncRNAs), which were processed into 24-nt small interfering RNAs (siRNAs) that drove RNA-directed DNA methylation (RdDM). Detailed analyses revealed that aberrant ncRNA transcription within the <i>AGAMOUS</i> enhancer (<i>AGe</i>) in a transgenic context was significantly enhanced by an adjacent <i>CaMV35S</i> enhancer (<i>35Se</i>). This particular enhancer is known to mis-activate the regulatory activities of various <i>CREs,</i> including the <i>AGe</i>. Furthermore, an insertion of <i>35Se</i> approximately 3.5 kb upstream of the <i>AGe</i> in its genomic locus also resulted in the ectopic induction of ncRNA/siRNA production and <i>de novo</i> methylation specifically in the <i>AGe</i>, but not other regions, as well as the production of mutant flowers. This confirmed that interactions between the <i>35Se</i> and <i>AGe</i> can induce RdDM activity in both genomic and transgenic states. These findings highlight a novel epigenetic role for <i>CRE–CRE</i> interactions in plants, shedding light on the underlying forces driving hypermethylation in transgenes, duplicate genes/enhancers, and repetitive transposons, in which interactions between <i>CREs</i> are inevitable.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"22 11","pages":"3121-3134"},"PeriodicalIF":10.1,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pbi.14435","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced efficacy of glycoengineered rice cell-produced trastuzumab 糖工程稻米细胞生产的曲妥珠单抗疗效更佳。
IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-17 DOI: 10.1111/pbi.14429
Jun-Hye Shin, Sera Oh, Mi-Hwa Jang, Seok-Yong Lee, Chanhong Min, Young-Jae Eu, Hilal Begum, Jong-Chan Kim, Gap Ryol Lee, Han-Bin Oh, Matthew J. Paul, Julian K.-C. Ma, Ho-Shin Gwak, Hyewon Youn, Seong-Ryong Kim

For several decades, a plant-based expression system has been proposed as an alternative platform for the production of biopharmaceuticals including therapeutic monoclonal antibodies (mAbs), but the immunogenicity concerns associated with plant-specific N-glycans attached in plant-based biopharmaceuticals has not been completely solved. To eliminate all plant-specific N-glycan structure, eight genes involved in plant-specific N-glycosylation were mutated in rice (Oryza sativa) using the CRISPR/Cas9 system. The glycoengineered cell lines, PhytoRice®, contained a predominant GnGn (G0) glycoform. The gene for codon-optimized trastuzumab (TMab) was then introduced into PhytoRice® through Agrobacterium co-cultivation. Selected cell lines were suspension cultured, and TMab secreted from cells was purified from the cultured media. The amino acid sequence of the TMab produced by PhytoRice® (P-TMab) was identical to that of TMab. The inhibitory effect of P-TMab on the proliferation of the BT-474 cancer cell line was significantly enhanced at concentrations above 1 μg/mL (****P < 0.0001). P-TMab bound to a FcγRIIIa variant, FcγRIIIa-F158, more than 2.7 times more effectively than TMab. The ADCC efficacy of P-TMab against Jurkat cells was 2.6 times higher than that of TMab in an in vitro ADCC assay. Furthermore, P-TMab demonstrated efficient tumour uptake with less liver uptake compared to TMab in a xenograft assay using the BT-474 mouse model. These results suggest that the glycoengineered PhytoRice® could be an alternative platform for mAb production compared to current CHO cells, and P-TMab has a novel and enhanced efficacy compared to TMab.

几十年来,基于植物的表达系统一直被提议作为生产生物制药(包括治疗性单克隆抗体(mAbs))的替代平台,但与植物生物制药中附着的植物特异性 N-糖相关的免疫原性问题尚未完全解决。为了消除所有植物特异性 N-糖结构,利用 CRISPR/Cas9 系统突变了水稻(Oryza sativa)中涉及植物特异性 N-糖基化的八个基因。糖工程细胞系 PhytoRice® 主要含有 GnGn(G0)糖构型。然后通过农杆菌共培养将密码子优化的曲妥珠单抗(TMab)基因导入 PhytoRice®。对选定的细胞系进行悬浮培养,并从培养基中纯化细胞分泌的 TMab。由 PhytoRice® 生产的 TMab(P-TMab)的氨基酸序列与 TMab 相同。当浓度超过 1 μg/mL 时,P-TMab 对 BT-474 癌细胞株增殖的抑制作用明显增强(****P
{"title":"Enhanced efficacy of glycoengineered rice cell-produced trastuzumab","authors":"Jun-Hye Shin,&nbsp;Sera Oh,&nbsp;Mi-Hwa Jang,&nbsp;Seok-Yong Lee,&nbsp;Chanhong Min,&nbsp;Young-Jae Eu,&nbsp;Hilal Begum,&nbsp;Jong-Chan Kim,&nbsp;Gap Ryol Lee,&nbsp;Han-Bin Oh,&nbsp;Matthew J. Paul,&nbsp;Julian K.-C. Ma,&nbsp;Ho-Shin Gwak,&nbsp;Hyewon Youn,&nbsp;Seong-Ryong Kim","doi":"10.1111/pbi.14429","DOIUrl":"10.1111/pbi.14429","url":null,"abstract":"<p>For several decades, a plant-based expression system has been proposed as an alternative platform for the production of biopharmaceuticals including therapeutic monoclonal antibodies (mAbs), but the immunogenicity concerns associated with plant-specific N-glycans attached in plant-based biopharmaceuticals has not been completely solved. To eliminate all plant-specific N-glycan structure, eight genes involved in plant-specific N-glycosylation were mutated in rice (<i>Oryza sativa</i>) using the CRISPR/Cas9 system. The glycoengineered cell lines, PhytoRice®, contained a predominant GnGn (G0) glycoform. The gene for codon-optimized trastuzumab (TMab) was then introduced into PhytoRice® through <i>Agrobacterium</i> co-cultivation. Selected cell lines were suspension cultured, and TMab secreted from cells was purified from the cultured media. The amino acid sequence of the TMab produced by PhytoRice® (P-TMab) was identical to that of TMab. The inhibitory effect of P-TMab on the proliferation of the BT-474 cancer cell line was significantly enhanced at concentrations above 1 μg/mL (****<i>P</i> &lt; 0.0001). P-TMab bound to a FcγRIIIa variant, FcγRIIIa-F158, more than 2.7 times more effectively than TMab. The ADCC efficacy of P-TMab against Jurkat cells was 2.6 times higher than that of TMab in an <i>in vitro</i> ADCC assay. Furthermore, P-TMab demonstrated efficient tumour uptake with less liver uptake compared to TMab in a xenograft assay using the BT-474 mouse model. These results suggest that the glycoengineered PhytoRice® could be an alternative platform for mAb production compared to current CHO cells, and P-TMab has a novel and enhanced efficacy compared to TMab.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"22 11","pages":"3068-3081"},"PeriodicalIF":10.1,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pbi.14429","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Knockout of ZmNST2 promotes bioethanol production from corn stover 敲除 ZmNST2 可促进玉米秸秆生物乙醇的生产。
IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-15 DOI: 10.1111/pbi.14432
Ying Wang, Ye Xing, Xinyu Yang, Yanwen Yu, Jiankun Li, Chenyang Zhao, Mengyu Yuan, Weili Huang, Yue Yin, Guohui Liu, Yuqing Sun, Haochuan Li, Jihua Tang, Qin Zhang, Mingyue Gou
<p>The crude oil crisis causes an increasing demand of renewable energy, among which, bioethanol is considered the cleanest and renewable liquid fuel alternative to fossil fuel (An Tran <i>et al</i>., <span>2019</span>). Bioethanol was mostly produced from sugarcane and corn, which violates vigorously against the world's food security. Alternatively, efforts have been made to produce bioethanol from non-food lignocellulose biomass, for example poplar, switchgrass and crop stover (An Tran <i>et al</i>., <span>2019</span>; Cai <i>et al</i>., <span>2016</span>; Fu <i>et al</i>., <span>2011</span>). Among which, corn stover is the most prevalent carbon-neutral lignocellulosic feedstock for the production of bioethanol although it is far from well utilized in bioethanol industry (Torres <i>et al</i>., <span>2014</span>). Lignocellulose is mainly composed of lignin, cellulose and hemicellulose. As lignin can reduce the availability of cellulose, pretreatment of corn stover by chemical reagents like diluted acids (4% H<sub>2</sub>SO<sub>4</sub>) to degrade lignin is a critical step prior to cellulose hydrolysis and fermentation (Figure 1a). However, the residual acids and the released phenolics and furfural compounds during pretreatment could inhibit the growth of microorganism in fermentation process thus decrease the bioethanol production efficiency and increase the processing cost (Rosales-Calderon and Arantes, <span>2019</span>; Zhao <i>et al</i>., <span>2013</span>). Therefore, lignin becomes the main barrier of ethanol production from lignocellulose, and searching for the lignin-reduced maize genetic materials is critical for the utilization of lignocellulosic biomass of corn stover in the production of bioethanol (Figure 1a).</p><p>Here, we screened a series of maize mutants potentially defective in lignin biosynthesis. Since <i>NST1</i> and <i>NST2</i> are key transcriptional regulators of secondary cell wall biogenesis in Arabidopsis (Mitsuda <i>et al</i>., <span>2005</span>), we obtained the mutants of their maize homologue genes (Figure S1) and evaluated their potential utilization in bioethanol production. Among them, <i>ZmNST2</i> express in all tissues including leaf, internode, root and shoot, with the highest expression detected in immature leaves (Figure S2). There were two G-to-A mutations that produce the premature stop codon in the second exon of <i>ZmNST2</i> in <i>zmnst2-1</i> and <i>zmnst2-2</i> mutant, respectively (Figure 1b). Both mutants are not morphologically different with the wild-type (WT) B73 except that the mutant leaves are softer and the mutants are slightly (4.86–6.63%) shorter (Figure S3a). The stem thickness, stem strength and dry biomass weight of the two mutants are not significantly different from the WT B73 (Figure S3b–e). We performed allelic test by crossing the two mutants to generate <i>zmnst2-1</i>/<i>zmnst2-2</i> F<sub>1</sub> plants, and the same soft-leaf phenotype was observed for the single mutants an
原油危机导致对可再生能源的需求与日俱增,其中生物乙醇被认为是化石燃料最清洁和可再生的液体燃料替代品(An Tran 等人,2019 年)。生物乙醇主要由甘蔗和玉米生产,这严重影响了世界粮食安全。另外,人们也在努力利用非粮食木质纤维素生物质生产生物乙醇,例如杨树、开关草和农作物秸秆(An Tran 等人,2019 年;Cai 等人,2016 年;Fu 等人,2011 年)。其中,玉米秸秆是生产生物乙醇最普遍的碳中性木质纤维素原料,但在生物乙醇工业中还远未得到充分利用(Torres 等人,2014 年)。木质纤维素主要由木质素、纤维素和半纤维素组成。由于木质素会降低纤维素的可用性,因此在纤维素水解和发酵之前,使用稀酸(4% H2SO4)等化学试剂对玉米秸秆进行预处理以降解木质素是一个关键步骤(图 1a)。然而,预处理过程中残留的酸和释放的酚类及糠醛化合物会抑制发酵过程中微生物的生长,从而降低生物乙醇的生产效率并增加加工成本(Rosales-Calderon 和 Arantes,2019 年;Zhao 等人,2013 年)。因此,木质素成为利用木质纤维素生产乙醇的主要障碍,寻找降低木质素的玉米遗传物质对于利用玉米秸秆中的木质纤维素生物质生产生物乙醇至关重要(图 1a)。由于 NST1 和 NST2 是拟南芥次生细胞壁生物合成的关键转录调控因子(Mitsuda 等,2005 年),我们获得了它们的玉米同源基因的突变体(图 S1),并评估了它们在生物乙醇生产中的潜在利用率。其中,ZmNST2 在叶、节间、根和芽等所有组织中均有表达,在未成熟叶中的表达量最高(图 S2)。zmnst2-1和zmnst2-2突变体的ZmNST2第二外显子上有两个G-to-A突变,分别产生了过早终止密码子(图1b)。这两个突变体与野生型(WT)B73 在形态上没有差异,只是突变体的叶片较软,突变体的叶片稍短(4.86-6.63%)(图 S3a)。两个突变体的茎粗、茎强度和干生物量重量与 WT B73 没有显著差异(图 S3b-e)。我们通过将两个突变体杂交产生 zmnst2-1/zmnst2-2 F1 株进行等位基因测试,观察到单个突变体和 zmnst2-1/zmnst2-2 F1 株具有相同的软叶表型(图 1c),表明 ZmNST2 是控制该表型的致病基因。根据 RT-qPCR 数据,大多数木质素生物合成基因(图 1d)在 zmnst2-1 突变体中下调,但纤维素生物合成基因(图 S4)没有下调,这意味着 ZmNST2 控制着玉米的木质素生物合成。与 WT B73 相比,在 zmnst2-1、zmnst2-2 和 zmnst2-1/zmnst2-2 中观察到较弱的染色强度和蓝色紫外自发荧光(图 1e)。同样,通过硫代酸分解和气相色谱-质谱测定,zmnst2-1、zmnst2-2 和 zmnst2-1/zmnst2-2 突变体节间(图 1f)和叶片(图 1g)中 G 和 S 木质素单体的含量比 WT B73 降低了 24.62% ~ 49.43%,S/G 比值没有显著变化。这些数据进一步证明 ZmNST2 控制着玉米木质素的生物合成。我们还按照 NREL 的标准生物质分析方法,使用克拉森法测量了 WT B73、zmnst2-1 和 zmnst2-2 突变体中木质素、纤维素和半纤维素的含量。与 WT B73 相比,zmnst2-1 和 zmnst2-2 的酸不溶性木质素和酸溶性木质素含量都明显降低,但纤维素(葡聚糖)含量相似(图 1h),zmnst2-1 的半纤维素(木聚糖)似乎也略有减少(图 1h)。为了检测糖化和发酵效率,用 4% H2SO4 水解玉米秸秆以释放葡萄糖和木糖,它们是发酵的主要物质(图 1a)。经高效液相色谱检测,与 WT B73 相比,zmnst2-1 突变体水解液中的葡萄糖含量似乎轻度减少,木糖含量没有变化(图 1i)。与 WT B73 相比,zmnst2-1 和 zmnst2-2 突变体中抑制发酵的总酚和糠醛含量显著降低(图 1j)。当含有葡萄糖和木糖的水解物发酵时,产生的乙醇(乙醇 1)增加了 91%。 与 WT B73 相比,zmnst2-1 的抑制率为 89%(图 1k)。然后将纤维素残留物进一步中和并用水洗涤以去除抑制性化合物,接着进行纤维素水解(图 1a)。纤维素水解物发酵后,zmnst2-1 产生的乙醇(乙醇 2)比 WT B73 增加了 13.82%(图 1k)。相应地,zmnst2-1 的纤维素水解率提高了 25.34%(图 1l)。总之,我们发现敲除 ZmNST2 会导致玉米秸秆中木质素含量大幅降低,并提高生物乙醇产量。综上所述,我们发现 ZmNST2 基因敲除可大幅降低玉米秸秆中的木质素含量,提高生物乙醇产量。这项研究为今后利用玉米秸秆提高生物乙醇产量的遗传操作和分子育种提供了一个有价值的目标基因。此外,考虑到木质素减少对生物质消化率的影响,操纵 ZmNST2 可能也是提高饲草质量的一个好策略。YW、YX、XY、YY、JL、CZ、MY、WH、YY、GL 和 YS 进行了实验。MG 和 YW 撰写了手稿。QZ、HL 和 JT 修改了手稿。所有作者阅读并批准了手稿。
{"title":"Knockout of ZmNST2 promotes bioethanol production from corn stover","authors":"Ying Wang,&nbsp;Ye Xing,&nbsp;Xinyu Yang,&nbsp;Yanwen Yu,&nbsp;Jiankun Li,&nbsp;Chenyang Zhao,&nbsp;Mengyu Yuan,&nbsp;Weili Huang,&nbsp;Yue Yin,&nbsp;Guohui Liu,&nbsp;Yuqing Sun,&nbsp;Haochuan Li,&nbsp;Jihua Tang,&nbsp;Qin Zhang,&nbsp;Mingyue Gou","doi":"10.1111/pbi.14432","DOIUrl":"10.1111/pbi.14432","url":null,"abstract":"&lt;p&gt;The crude oil crisis causes an increasing demand of renewable energy, among which, bioethanol is considered the cleanest and renewable liquid fuel alternative to fossil fuel (An Tran &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2019&lt;/span&gt;). Bioethanol was mostly produced from sugarcane and corn, which violates vigorously against the world's food security. Alternatively, efforts have been made to produce bioethanol from non-food lignocellulose biomass, for example poplar, switchgrass and crop stover (An Tran &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2019&lt;/span&gt;; Cai &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2016&lt;/span&gt;; Fu &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2011&lt;/span&gt;). Among which, corn stover is the most prevalent carbon-neutral lignocellulosic feedstock for the production of bioethanol although it is far from well utilized in bioethanol industry (Torres &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2014&lt;/span&gt;). Lignocellulose is mainly composed of lignin, cellulose and hemicellulose. As lignin can reduce the availability of cellulose, pretreatment of corn stover by chemical reagents like diluted acids (4% H&lt;sub&gt;2&lt;/sub&gt;SO&lt;sub&gt;4&lt;/sub&gt;) to degrade lignin is a critical step prior to cellulose hydrolysis and fermentation (Figure 1a). However, the residual acids and the released phenolics and furfural compounds during pretreatment could inhibit the growth of microorganism in fermentation process thus decrease the bioethanol production efficiency and increase the processing cost (Rosales-Calderon and Arantes, &lt;span&gt;2019&lt;/span&gt;; Zhao &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2013&lt;/span&gt;). Therefore, lignin becomes the main barrier of ethanol production from lignocellulose, and searching for the lignin-reduced maize genetic materials is critical for the utilization of lignocellulosic biomass of corn stover in the production of bioethanol (Figure 1a).&lt;/p&gt;&lt;p&gt;Here, we screened a series of maize mutants potentially defective in lignin biosynthesis. Since &lt;i&gt;NST1&lt;/i&gt; and &lt;i&gt;NST2&lt;/i&gt; are key transcriptional regulators of secondary cell wall biogenesis in Arabidopsis (Mitsuda &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2005&lt;/span&gt;), we obtained the mutants of their maize homologue genes (Figure S1) and evaluated their potential utilization in bioethanol production. Among them, &lt;i&gt;ZmNST2&lt;/i&gt; express in all tissues including leaf, internode, root and shoot, with the highest expression detected in immature leaves (Figure S2). There were two G-to-A mutations that produce the premature stop codon in the second exon of &lt;i&gt;ZmNST2&lt;/i&gt; in &lt;i&gt;zmnst2-1&lt;/i&gt; and &lt;i&gt;zmnst2-2&lt;/i&gt; mutant, respectively (Figure 1b). Both mutants are not morphologically different with the wild-type (WT) B73 except that the mutant leaves are softer and the mutants are slightly (4.86–6.63%) shorter (Figure S3a). The stem thickness, stem strength and dry biomass weight of the two mutants are not significantly different from the WT B73 (Figure S3b–e). We performed allelic test by crossing the two mutants to generate &lt;i&gt;zmnst2-1&lt;/i&gt;/&lt;i&gt;zmnst2-2&lt;/i&gt; F&lt;sub&gt;1&lt;/sub&gt; plants, and the same soft-leaf phenotype was observed for the single mutants an","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"22 11","pages":"3099-3101"},"PeriodicalIF":10.1,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pbi.14432","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141615444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cotton BOP1 mediates SUMOylation of GhBES1 to regulate fibre development and plant architecture 棉花 BOP1 介导 GhBES1 的 SUMOylation,以调节纤维发育和植物结构。
IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-14 DOI: 10.1111/pbi.14428
Bingting Wang, Zhian Wang, Ye Tang, Naiqin Zhong, Jiahe Wu

The Arabidopsis BLADE-ON-PETIOLE (BOP) genes are primarily known for their roles in regulating leaf and floral patterning. However, the broader functions of BOPs in regulating plant traits remain largely unexplored. In this study, we investigated the role of the Gossypium hirsutum BOP1 gene in the regulation of fibre length and plant height through the brassinosteroid (BR) signalling pathway. Transgenic cotton plants overexpressing GhBOP1 display shorter fibre lengths and reduced plant height compared to the wild type. Conversely, GhBOP1 knockdown led to increased plant height and longer fibre, indicating a connection with phenotypes influenced by the BR pathway. Our genetic evidence supports the notion that GhBOP1 regulates fibre length and plant height in a GhBES1-dependent manner, with GhBES1 being a major transcription factor in the BR signalling pathway. Yeast two-hybrid, luciferase complementation assay and pull-down assay results demonstrated a direct interaction between GhBOP1 and GhSUMO1, potentially forming protein complexes with GhBES1. In vitro and in vivo SUMOylation analyses revealed that GhBOP1 functions in an E3 ligase-like manner to mediate GhBES1 SUMOylation and subsequent degradation. Therefore, our study not only uncovers a novel mechanism of GhBES1 SUMOylation but also provides significant insights into how GhBOP1 regulates fibre length and plant height by controlling GhBES1 accumulation.

拟南芥叶片上的叶片(BOP)基因主要因其调控叶片和花的形态而为人所知。然而,BOP 在调控植物性状方面的更广泛功能在很大程度上仍未得到探索。在这项研究中,我们研究了棉花 BOP1 基因在通过黄铜类固醇(BR)信号通路调控纤维长度和植株高度中的作用。与野生型相比,过表达 GhBOP1 的转基因棉花植株纤维长度较短,植株高度降低。相反,基因敲除 GhBOP1 会导致植株高度增加、纤维变长,这表明与受 BR 途径影响的表型有关。我们的遗传证据支持 GhBOP1 以依赖 GhBES1 的方式调节纤维长度和植株高度的观点,GhBES1 是 BR 信号通路中的一个主要转录因子。酵母双杂交、荧光素酶互补试验和下拉试验结果表明,GhBOP1 和 GhSUMO1 之间存在直接相互作用,可能与 GhBES1 形成蛋白复合物。体外和体内 SUMO 化分析表明,GhBOP1 以类似 E3 连接酶的方式介导 GhBES1 SUMO 化和随后的降解。因此,我们的研究不仅揭示了 GhBES1 SUMOylation 的新机制,而且为了解 GhBOP1 如何通过控制 GhBES1 的积累来调节纤维长度和植株高度提供了重要启示。
{"title":"Cotton BOP1 mediates SUMOylation of GhBES1 to regulate fibre development and plant architecture","authors":"Bingting Wang,&nbsp;Zhian Wang,&nbsp;Ye Tang,&nbsp;Naiqin Zhong,&nbsp;Jiahe Wu","doi":"10.1111/pbi.14428","DOIUrl":"10.1111/pbi.14428","url":null,"abstract":"<p>The Arabidopsis <i>BLADE-ON-PETIOLE</i> (<i>BOP</i>) genes are primarily known for their roles in regulating leaf and floral patterning. However, the broader functions of <i>BOPs</i> in regulating plant traits remain largely unexplored. In this study, we investigated the role of the <i>Gossypium hirsutum BOP1</i> gene in the regulation of fibre length and plant height through the brassinosteroid (BR) signalling pathway. Transgenic cotton plants overexpressing <i>GhBOP1</i> display shorter fibre lengths and reduced plant height compared to the wild type. Conversely, GhBOP1 knockdown led to increased plant height and longer fibre, indicating a connection with phenotypes influenced by the BR pathway. Our genetic evidence supports the notion that GhBOP1 regulates fibre length and plant height in a GhBES1-dependent manner, with GhBES1 being a major transcription factor in the BR signalling pathway. Yeast two-hybrid, luciferase complementation assay and pull-down assay results demonstrated a direct interaction between GhBOP1 and GhSUMO1, potentially forming protein complexes with GhBES1. <i>In vitro</i> and <i>in vivo</i> SUMOylation analyses revealed that GhBOP1 functions in an E3 ligase-like manner to mediate GhBES1 SUMOylation and subsequent degradation. Therefore, our study not only uncovers a novel mechanism of GhBES1 SUMOylation but also provides significant insights into how GhBOP1 regulates fibre length and plant height by controlling GhBES1 accumulation.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"22 11","pages":"3054-3067"},"PeriodicalIF":10.1,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pbi.14428","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a multi-resistance and high-yield rice variety using multigene transformation and gene editing 利用多基因转化和基因编辑技术开发多抗高产水稻品种。
IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-14 DOI: 10.1111/pbi.14434
Changyan Li, Zaihui Zhou, Xinzhu Xiong, Chuanxu Li, Chuanhong Li, Enlong Shen, Jianyu Wang, Wenjun Zha, Bian Wu, Hao Chen, Lei Zhou, Yongjun Lin, Aiqing You
<p>Approximately one-third of the total annual food production in the world is lost owing to pests, diseases and weeds. Therefore, the challenges posed by crop losses and population growth have emphasized the need for better breeding techniques (FAO <i>et al</i>., <span>2023</span>). Practical experience has demonstrated that the utilization of existing resistance genes to breed and cultivate herbicide- and pest-resistant rice cultivars is the most economical, safe and effective method for preventing and controlling weeds and pests (Zhang, <span>2007</span>).</p><p>The incorporation of a single or few resistance genes during rice breeding is no longer adequate for in-demand production. In addition, hybridization and backcrossing involve a long breeding cycle, and the issue of linkage drag may occur. The multi-gene transformation strategy can be utilized for the rapid and accurate incorporation of multiple resistance genes into rice (Zhu <i>et al</i>., <span>2017</span>). The fact that a trade-off between growth and defence generally exists in crops is universally accepted. Therefore, the overexpression of multi-resistance genes in rice causes considerable changes to the agronomic traits of crops, especially yield. The crop yield is positively correlated with the flowering stage within a certain range. For example, editing <i>Ehd1</i> or overexpressing <i>Ghd7</i> to appropriately extend the basic vegetative growth period of rice may be possible, and ultimately promote rice yield and quality (Eshed and Lippman, <span>2019</span>; Zhou <i>et al</i>., <span>2023</span>). This strategy is more effective for rice varieties with shorter growth periods. For some rice varieties with longer growth periods, we can use editing other yield related genes (grain type or grain weight), such as GS3 and GS5 (Ren <i>et al</i>., <span>2023</span>).</p><p>The herbicide resistance gene <i>I. variabilis-EPSPS*</i>, brown planthopper resistance genes <i>Bph14*</i> and <i>OsLecRK1*</i>, borer resistance gene <i>Cry1C*</i>, bacterial blight resistance gene <i>Xa23*</i> and blast resistance gene <i>Pi9*</i> are resistance gene resources in rice that have been extensively validated for use in rice breeding (Appendix S1). In our work, a highly efficient transgene system was used to construct an assembly of six resistance genes (about 26 Kb) mentioned earlier (380-6G) and <i>Ehd1</i> CRISPR/Cas9 editing vector (Cas9-<i>Ehd1</i>) (Figure 1a; Appendix S2 and S3). We expect to extend the basic vegetative growth period of multi-resistance gene transgenic rice by editing <i>Ehd1</i> to improve the agronomic traits (especially yield) and obtain a new multi-resistance and high-yield rice germplasm resource, termed MR&HY rice. We transformed two vectors, 380-6G and Cas9-<i>Ehd1</i>, into ZH11 rice varieties using <i>Agrobacterium</i>-mediated dual-strain transformation and screened using <i>glyphosate</i> and <i>hygromycin</i> simultaneously. When T<sub>0</sub> transgenic plants
所培育水稻种质的多重抗性减少了农药的使用,从而降低了水稻生产成本,减少了环境污染,提高了稻米品质,使稻米可安全食用。该研究得到了生物育种重大专项(2023ZD04074)、湖北省杰出青年项目(2024AFA088)和湖北省科技重大专项(2022ABA001和2021ABA011)的资助、Y.J.L.、L.Z.和C.Y.L.设计研究;C.Y.L.、Z.H.Z.、X.Z.X.、C.X.L.、C.H.L.、E.-L.和J.Y.W.执行研究;C.Y.L.、H.C.、W.Z.和B.W.分析数据;C.Y.L.、L.Z.、Y.J.L.和A.Q.Y.撰写论文。
{"title":"Development of a multi-resistance and high-yield rice variety using multigene transformation and gene editing","authors":"Changyan Li,&nbsp;Zaihui Zhou,&nbsp;Xinzhu Xiong,&nbsp;Chuanxu Li,&nbsp;Chuanhong Li,&nbsp;Enlong Shen,&nbsp;Jianyu Wang,&nbsp;Wenjun Zha,&nbsp;Bian Wu,&nbsp;Hao Chen,&nbsp;Lei Zhou,&nbsp;Yongjun Lin,&nbsp;Aiqing You","doi":"10.1111/pbi.14434","DOIUrl":"10.1111/pbi.14434","url":null,"abstract":"&lt;p&gt;Approximately one-third of the total annual food production in the world is lost owing to pests, diseases and weeds. Therefore, the challenges posed by crop losses and population growth have emphasized the need for better breeding techniques (FAO &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;). Practical experience has demonstrated that the utilization of existing resistance genes to breed and cultivate herbicide- and pest-resistant rice cultivars is the most economical, safe and effective method for preventing and controlling weeds and pests (Zhang, &lt;span&gt;2007&lt;/span&gt;).&lt;/p&gt;&lt;p&gt;The incorporation of a single or few resistance genes during rice breeding is no longer adequate for in-demand production. In addition, hybridization and backcrossing involve a long breeding cycle, and the issue of linkage drag may occur. The multi-gene transformation strategy can be utilized for the rapid and accurate incorporation of multiple resistance genes into rice (Zhu &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2017&lt;/span&gt;). The fact that a trade-off between growth and defence generally exists in crops is universally accepted. Therefore, the overexpression of multi-resistance genes in rice causes considerable changes to the agronomic traits of crops, especially yield. The crop yield is positively correlated with the flowering stage within a certain range. For example, editing &lt;i&gt;Ehd1&lt;/i&gt; or overexpressing &lt;i&gt;Ghd7&lt;/i&gt; to appropriately extend the basic vegetative growth period of rice may be possible, and ultimately promote rice yield and quality (Eshed and Lippman, &lt;span&gt;2019&lt;/span&gt;; Zhou &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;). This strategy is more effective for rice varieties with shorter growth periods. For some rice varieties with longer growth periods, we can use editing other yield related genes (grain type or grain weight), such as GS3 and GS5 (Ren &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;).&lt;/p&gt;&lt;p&gt;The herbicide resistance gene &lt;i&gt;I. variabilis-EPSPS*&lt;/i&gt;, brown planthopper resistance genes &lt;i&gt;Bph14*&lt;/i&gt; and &lt;i&gt;OsLecRK1*&lt;/i&gt;, borer resistance gene &lt;i&gt;Cry1C*&lt;/i&gt;, bacterial blight resistance gene &lt;i&gt;Xa23*&lt;/i&gt; and blast resistance gene &lt;i&gt;Pi9*&lt;/i&gt; are resistance gene resources in rice that have been extensively validated for use in rice breeding (Appendix S1). In our work, a highly efficient transgene system was used to construct an assembly of six resistance genes (about 26 Kb) mentioned earlier (380-6G) and &lt;i&gt;Ehd1&lt;/i&gt; CRISPR/Cas9 editing vector (Cas9-&lt;i&gt;Ehd1&lt;/i&gt;) (Figure 1a; Appendix S2 and S3). We expect to extend the basic vegetative growth period of multi-resistance gene transgenic rice by editing &lt;i&gt;Ehd1&lt;/i&gt; to improve the agronomic traits (especially yield) and obtain a new multi-resistance and high-yield rice germplasm resource, termed MR&amp;HY rice. We transformed two vectors, 380-6G and Cas9-&lt;i&gt;Ehd1&lt;/i&gt;, into ZH11 rice varieties using &lt;i&gt;Agrobacterium&lt;/i&gt;-mediated dual-strain transformation and screened using &lt;i&gt;glyphosate&lt;/i&gt; and &lt;i&gt;hygromycin&lt;/i&gt; simultaneously. When T&lt;sub&gt;0&lt;/sub&gt; transgenic plants","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"22 11","pages":"3118-3120"},"PeriodicalIF":10.1,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pbi.14434","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precision editing of a susceptibility gene promoter to alter its methylation modification for engineering rice resilience to biotic and abiotic stresses 精确编辑易感基因启动子以改变其甲基化修饰,从而提高水稻对生物和非生物胁迫的抗逆性。
IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-14 DOI: 10.1111/pbi.14430
Jingjing Tian, Hang Zhang, Shuxin Li, Yongjun Lin, Lizhong Xiong, Meng Yuan
<p>Rice is a primary food crop, and its yield is threatened by biotic and abiotic stresses. <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> (<i>Xoo</i>) causes bacterial blight, a chief bacterial disease of rice. <i>Xoo</i> infects rice depending on its transcriptional activation-like effectors (TALEs), which specifically target effector binding elements (EBEs) in the promoter of host susceptibility (<i>S</i>) genes and regulate <i>S</i> genes' expression for disease development. Editing <i>S</i> gene EBEs is an efficient approach for engineering disease-resistant rice (Oliva <i>et al</i>., <span>2019</span>; Xu <i>et al</i>., <span>2019</span>). Cold stress is a major abiotic factor that limits rice growth and productivity (Liu <i>et al</i>., <span>2019</span>). Therefore, engineering rice resilience to biotic and abiotic stresses is a powerful strategy to enhance rice yield. Here, we precisely edited an <i>S</i> gene EBE to engineer an elite rice variety exhibiting broad-spectrum resistance to <i>Xoo</i> and to enhanced cold tolerance.</p><p><i>OsTFX1</i> is an <i>S</i> gene targeted by the major <i>Xoo</i> TALE (Römer <i>et al</i>., <span>2010</span>; Sugio <i>et al</i>., <span>2007</span>). Analysing TALEs of <i>Xoo</i> whose genomic sequences are available, it was found that all <i>Xoo</i> strains contain a TALE that targets <i>OsTFX1</i> EBE (Figure S1) and activates <i>OsTFX1</i> expression (Yuan <i>et al</i>., <span>2016</span>), suggesting that <i>OsTFX1</i> is a <i>Xoo</i>-dependent major <i>S</i> gene. Comparing <i>OsTFX1</i> sequence in 3339 rice accessions from the RiceVarMap database, its EBE was found to have a unique sequence (Figure S2), indicating that there were no natural resistant alleles of <i>OsTFX1</i> for breeding. Therefore, we designed sgRNA specifically targeting <i>OsTFX1</i> EBE and generated the <i>OsTFX1</i><sup><i>ebe</i></sup> mutants via CRISPR/Cas9-mediated mutagenesis. By screening 34 hygromycin-resistant independent lines by Sanger sequencing, we identified five types of <i>OsTFX1</i><sup><i>ebe</i></sup> mutants (Figure 1A). These <i>OsTFX1</i><sup><i>ebe</i></sup> mutants harbouring none off-target events were backcrossed with wild type (WT) and transgene-free plants were generated for analysis (Figure S3). The <i>OsTFX1</i><sup><i>ebe</i></sup> mutants exhibited enhanced resistance to a set of <i>Xoo</i> than WT (Figure 1B,C; Figure S4). <i>OsTFX1</i> did not respond to <i>Xoo</i> infection in the <i>OsTFX1</i><sup><i>ebe</i></sup> mutants (Figure 1D), suggesting that EBE-edited <i>OsTFX1</i> had attenuated induction to <i>Xoo</i>, causing the <i>OsTFX1</i><sup><i>ebe</i></sup> mutants to exhibit broad-spectrum resistance.</p><p>Interestingly, <i>OsTFX1</i> has significantly higher expression in <i>OsTFX1</i><sup><i>ebe</i></sup> mutants than in WT (Figure 1E). Diversification of transcription factor-targeted regulatory elements and modification of DNA methylation at the promoter can alter gene expression (Zhu
水稻是一种主要的粮食作物,其产量受到生物和非生物胁迫的威胁。黄单胞菌(Xanthomonas oryzae pv. oryzae,Xoo)会引起水稻的主要细菌性病害--细菌性枯萎病。Xoo 依靠其转录激活样效应子(TALEs)感染水稻,这些效应子特异性地靶向宿主易感基因(S)启动子中的效应子结合元件(EBEs),并调控 S 基因的表达以促进病害发展。编辑 S 基因 EBE 是工程化抗病水稻的一种有效方法(Oliva 等人,2019 年;Xu 等人,2019 年)。冷胁迫是限制水稻生长和产量的主要非生物因素(Liu 等人,2019 年)。因此,改造水稻对生物和非生物胁迫的抗逆性是提高水稻产量的有力策略。OsTFX1是主要Xoo TALE(Römer等人,2010年;Sugio等人,2007年)靶向的S基因。通过分析可获得基因组序列的 Xoo 的 TALE,发现所有 Xoo 株系都含有靶向 OsTFX1 EBE 的 TALE(图 S1),并能激活 OsTFX1 的表达(Yuan 等,2016),这表明 OsTFX1 是一个依赖 Xoo 的主要 S 基因。对比RiceVarMap数据库中3339个水稻入选品种的OsTFX1序列,发现其EBE具有独特的序列(图S2),表明没有天然抗性等位基因可用于育种。因此,我们设计了特异性靶向 OsTFX1 EBE 的 sgRNA,并通过 CRISPR/Cas9 介导的诱变产生了 OsTFX1ebe 突变体。通过桑格测序筛选 34 个耐百菌素的独立品系,我们发现了五种 OsTFX1ebe 突变体(图 1A)。将这些没有脱靶事件的 OsTFX1ebe 突变体与野生型(WT)回交,生成无转基因植株进行分析(图 S3)。与 WT 相比,OsTFX1ebe 突变体对一组 Xoo 的抗性增强(图 1B、C;图 S4)。在OsTFX1ebe突变体中,OsTFX1对Xoo感染没有反应(图1D),这表明EBE编辑的OsTFX1对Xoo的诱导作用减弱,导致OsTFX1ebe突变体表现出广谱抗性。转录因子靶向调控元件的多样化和启动子 DNA 甲基化的改变会改变基因的表达(Zhu 等,2016 年)。在分析 OsTFX1 启动子时,EBE 中既没有检测到可能靶向 EBE 的推定转录因子,也没有检测到新的潜在转录因子靶向调控元件(图 S5)。然而,对 RiceENCODE 甲基化数据的分析(图 S6)显示,OsTFX1 EBE 包含三个 CHH 型甲基化位点。我们的亚硫酸氢盐测序分析验证了 OsTFX1 EBE 的三个甲基化位点在 WT 中发生了甲基化,而在 OsTFX1ebe 突变体中没有发生甲基化(图 1F)。启动子中的 DNA 甲基化对启动子活性具有抑制作用(Schmitz et al.)因此,EBE编辑的OsTFX1缺乏甲基化位点,导致OsTFX1ebe突变体中OsTFX1表达量增加。OsTFX1和OsbZIP71的共重表达可提高水稻在苗期和生育期对冷胁迫的耐受性(Liu等,2019)。为了评估OsTFX1ebe等位基因与OsbZIP71过表达结合后是否具有与OsTFX1过表达相似的效果,我们产生了OsbZIP71过表达转基因株系(OsbZIP71-OE)(图S7),然后将两个表现出表达增加的代表性OsbZIP71-OE株系与两个OsTFX1ebe突变体杂交,产生了OsTFX1ebe/OsbZIP71-OE株系。在 OsTFX1ebe/OsbZIP71-OE 株系的 T2 同源幼苗中,OsTFX1 和 OsbZIP71 的表达量都显著增加(图 S8)。为了评估 OsTFX1ebe/OsbZIP71-OE 株系在幼苗期对冷胁迫的响应,将三周龄幼苗与 OsTFX1ebe 突变体、OsbZIP71-OE 和 WT 株系一起进行冷处理。与 OsTFX1ebe 突变体、OsbZIP71-OE 或 WT 相比,OsTFX1ebe/OsbZIP71-OE 株系的存活率提高了两倍,离子泄漏率降低了 1.8 倍(图 1G,H)。水稻的冷胁迫在很大程度上会导致花粉不育,从而导致生殖期产量下降(Liu 等人,2019 年)。在培育至抽穗期期间,一半的 OsTFX1ebe/OsbZIP71-OE、OsTFX1ebe、OsbZIP71-OE 和 WT 在 16°C 下冷冻处理 9 天,然后恢复到正常温度,而另一半一直在正常温度下种植。 在正常温度下,所有植株都具有相似的表型,包括超过 92% 的花粉活力(图 S9)、86% 的结实率(图 1J,K)和大约 22 g 的单株产量(图 S10),表明 EBE 修饰的 OsTFX1 对产量没有负面影响。虽然冷胁迫会影响花粉活力,但在冷胁迫下,OsTFX1ebe/OsbZIP71-OE 株系的花粉活力、结实率和单株产量仍分别比 OsTFX1ebe 突变体、OsbZIP71-OE 或 WT 高 1.5 倍、1.8 倍和 1.7 倍(图 1J,K;图 S8)。总之,EBE编辑的OsTFX1与过表达的OsbZIP71相结合,可提高水稻在无性和生殖阶段对冷胁迫的耐受性。此外,OsTFX1ebe/OsbZIP71-OE 株系还表现出对 Xoo 的广谱抗性(图 1L,M)。总之,我们在此提出了一种可行的表观遗传编辑方法,通过改变易感基因的甲基化修饰来工程化抗细菌性枯萎病和耐寒的水稻,而无需权衡防御-生长。J.T.、H.Z.、Y.L.、L.X.和M.Y.进行了研究并分析了数据。J.T.和M.Y.撰写了手稿。
{"title":"Precision editing of a susceptibility gene promoter to alter its methylation modification for engineering rice resilience to biotic and abiotic stresses","authors":"Jingjing Tian,&nbsp;Hang Zhang,&nbsp;Shuxin Li,&nbsp;Yongjun Lin,&nbsp;Lizhong Xiong,&nbsp;Meng Yuan","doi":"10.1111/pbi.14430","DOIUrl":"10.1111/pbi.14430","url":null,"abstract":"&lt;p&gt;Rice is a primary food crop, and its yield is threatened by biotic and abiotic stresses. &lt;i&gt;Xanthomonas oryzae&lt;/i&gt; pv. &lt;i&gt;oryzae&lt;/i&gt; (&lt;i&gt;Xoo&lt;/i&gt;) causes bacterial blight, a chief bacterial disease of rice. &lt;i&gt;Xoo&lt;/i&gt; infects rice depending on its transcriptional activation-like effectors (TALEs), which specifically target effector binding elements (EBEs) in the promoter of host susceptibility (&lt;i&gt;S&lt;/i&gt;) genes and regulate &lt;i&gt;S&lt;/i&gt; genes' expression for disease development. Editing &lt;i&gt;S&lt;/i&gt; gene EBEs is an efficient approach for engineering disease-resistant rice (Oliva &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2019&lt;/span&gt;; Xu &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2019&lt;/span&gt;). Cold stress is a major abiotic factor that limits rice growth and productivity (Liu &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2019&lt;/span&gt;). Therefore, engineering rice resilience to biotic and abiotic stresses is a powerful strategy to enhance rice yield. Here, we precisely edited an &lt;i&gt;S&lt;/i&gt; gene EBE to engineer an elite rice variety exhibiting broad-spectrum resistance to &lt;i&gt;Xoo&lt;/i&gt; and to enhanced cold tolerance.&lt;/p&gt;&lt;p&gt;&lt;i&gt;OsTFX1&lt;/i&gt; is an &lt;i&gt;S&lt;/i&gt; gene targeted by the major &lt;i&gt;Xoo&lt;/i&gt; TALE (Römer &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2010&lt;/span&gt;; Sugio &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2007&lt;/span&gt;). Analysing TALEs of &lt;i&gt;Xoo&lt;/i&gt; whose genomic sequences are available, it was found that all &lt;i&gt;Xoo&lt;/i&gt; strains contain a TALE that targets &lt;i&gt;OsTFX1&lt;/i&gt; EBE (Figure S1) and activates &lt;i&gt;OsTFX1&lt;/i&gt; expression (Yuan &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2016&lt;/span&gt;), suggesting that &lt;i&gt;OsTFX1&lt;/i&gt; is a &lt;i&gt;Xoo&lt;/i&gt;-dependent major &lt;i&gt;S&lt;/i&gt; gene. Comparing &lt;i&gt;OsTFX1&lt;/i&gt; sequence in 3339 rice accessions from the RiceVarMap database, its EBE was found to have a unique sequence (Figure S2), indicating that there were no natural resistant alleles of &lt;i&gt;OsTFX1&lt;/i&gt; for breeding. Therefore, we designed sgRNA specifically targeting &lt;i&gt;OsTFX1&lt;/i&gt; EBE and generated the &lt;i&gt;OsTFX1&lt;/i&gt;&lt;sup&gt;&lt;i&gt;ebe&lt;/i&gt;&lt;/sup&gt; mutants via CRISPR/Cas9-mediated mutagenesis. By screening 34 hygromycin-resistant independent lines by Sanger sequencing, we identified five types of &lt;i&gt;OsTFX1&lt;/i&gt;&lt;sup&gt;&lt;i&gt;ebe&lt;/i&gt;&lt;/sup&gt; mutants (Figure 1A). These &lt;i&gt;OsTFX1&lt;/i&gt;&lt;sup&gt;&lt;i&gt;ebe&lt;/i&gt;&lt;/sup&gt; mutants harbouring none off-target events were backcrossed with wild type (WT) and transgene-free plants were generated for analysis (Figure S3). The &lt;i&gt;OsTFX1&lt;/i&gt;&lt;sup&gt;&lt;i&gt;ebe&lt;/i&gt;&lt;/sup&gt; mutants exhibited enhanced resistance to a set of &lt;i&gt;Xoo&lt;/i&gt; than WT (Figure 1B,C; Figure S4). &lt;i&gt;OsTFX1&lt;/i&gt; did not respond to &lt;i&gt;Xoo&lt;/i&gt; infection in the &lt;i&gt;OsTFX1&lt;/i&gt;&lt;sup&gt;&lt;i&gt;ebe&lt;/i&gt;&lt;/sup&gt; mutants (Figure 1D), suggesting that EBE-edited &lt;i&gt;OsTFX1&lt;/i&gt; had attenuated induction to &lt;i&gt;Xoo&lt;/i&gt;, causing the &lt;i&gt;OsTFX1&lt;/i&gt;&lt;sup&gt;&lt;i&gt;ebe&lt;/i&gt;&lt;/sup&gt; mutants to exhibit broad-spectrum resistance.&lt;/p&gt;&lt;p&gt;Interestingly, &lt;i&gt;OsTFX1&lt;/i&gt; has significantly higher expression in &lt;i&gt;OsTFX1&lt;/i&gt;&lt;sup&gt;&lt;i&gt;ebe&lt;/i&gt;&lt;/sup&gt; mutants than in WT (Figure 1E). Diversification of transcription factor-targeted regulatory elements and modification of DNA methylation at the promoter can alter gene expression (Zhu","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"22 11","pages":"3082-3084"},"PeriodicalIF":10.1,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pbi.14430","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPR/Cas9-mediated editing of Bs5 and Bs5L in tomato leads to resistance against Xanthomonas CRISPR/Cas9 介导的番茄 Bs5 和 Bs5L 编辑可提高对黄单胞菌的抗性。
IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-12 DOI: 10.1111/pbi.14404
Arturo Ortega, Kyungyong Seong, Alex Schultink, Daniela Paula de Toledo Thomazella, Eunyoung Seo, Elaine Zhang, Julie Pham, Myeong-Je Cho, Douglas Dahlbeck, Jacqueline Warren, Gerald V. Minsavage, Jeffrey B. Jones, Edgar Sierra-Orozco, Samuel F. Hutton, Brian Staskawicz
<p>Bacterial spot, caused by <i>Xanthomonas</i> species, is a devastating disease of tomato (<i>Solanum lycopersicum</i>) and pepper (<i>Capsicum annuum</i>) (Schwartz <i>et al</i>., <span>2015</span>). The recessively inherited resistance, <i>bacterial spot 5</i> (<i>bs5</i>), in pepper (hereafter referred to as <i>Cabs5</i>) can confer resistance against different <i>Xanthomonas</i> strains (Jones <i>et al</i>., <span>2002</span>). The <i>Cabs5</i> resistance is characterized by the absence of disease symptoms, faint chlorosis at the site of infection, and reduced bacterial growth. Remarkably, commercial pepper varieties containing the <i>bs5</i> allele show durable resistance, effectively impeding hypervirulent strain emergence in agricultural fields (Vallejos <i>et al</i>., <span>2010</span>).</p><p>The <i>CaBs5</i> gene, together with its paralog <i>CaBs5-like</i> (<i>CaBs5L</i>), has recently been cloned (Sharma <i>et al</i>., <span>2023</span>; Szabó <i>et al</i>., <span>2023</span>). <i>CaBs5</i> encodes a 92 amino acid long protein possessing a cysteine-rich transmembrane (CYSTM) domain, which is implicated in various biotic and abiotic responses. Typically, the CYSTM domain contains conserved residues composed of four consecutive cysteines, followed by two hydrophobic amino acids. A recent study suggested that Cabs5 mediating the resistance against bacterial spot lacks these two conserved leucine residues within the CYSTM domain (Szabó <i>et al</i>., <span>2023</span>).</p><p>Tomatoes and peppers are close relatives in the Solanaceae family and commonly susceptible to <i>Xanthomonas</i> infection. Based on the current findings in pepper, we hypothesized that modifying the ortholog of <i>CaBs5</i> in tomato could confer resistance against <i>Xanthomonas</i>. Consequently, putative <i>Bs5</i> (<i>SlBs5</i>) and <i>Bs5L</i> (<i>SlBs5L</i>) were identified in tomato based on homology to <i>CaBs5</i>. Both <i>SlBs5</i> and <i>SlBs5L</i> were located on chromosome 9 with the same head-to-head orientation as their pepper homologues on chromosome 3 (Figure 1a). Despite short and highly similar amino acid sequences of SlBs5 and SlBs5L (Figure 1b), the conserved synteny and gene order in pepper and tomato genomes allowed the assignment of orthology for <i>Bs5</i> and <i>Bs5L</i>.</p><p>The mechanism by which the double leucine deletion in <i>Cabs5</i> leads to resistance against <i>Xanthomonas</i> remains elusive (Figure 1b). Yet, this deletion in the conserved CYSTM domain could potentially impair CaBs5's native functionality (Abell and Mullen, <span>2011</span>). Following this assumption, we postulated that knocking out <i>SlBs5</i> would produce similar outcomes to <i>Cabs5</i>. We aimed to disrupt both SlBs5 and SlBs5L to prevent possible functional complementation by SlBs5L, given their greater amino acid sequence similarity compared to CaBs5 and CaBs5L (Figure 1b).</p><p>We constructed a binary vector for Cas9 and a single-guide RNA (sgRNA
植物在生长过程中使用了推荐的肥料和病虫害防治方案,不使用任何杀菌剂或系统获得性抗性激活剂。尽管存在季节性变化,Slbs5 突变株系始终保持着较轻的病害症状(图 1g)。此外,在这些突变体中没有观察到发育缺陷,如发育不良(图 1h)。根据植物叶片表面黄单胞菌感染引起的可见症状对病害严重程度进行量化,结果显示,在所有测试季节,病害症状减轻的 Slbs5-2 叶片的百分比均高于野生型叶片(图 1i;图 S4)。值得注意的是,Slbs5-2突变体在2018年春季、2019年秋季和2023年秋季这三个病害压力升高的时期表现出了有效的抗性。除了受飓风(2022 年秋季)和极端干旱天气(2023 年春季)影响的两个季节外,我们对五个季节试验的总可销售产量进行了量化。在所有季节中,Slbs5-2 和野生型植株的可上市果实产量在统计学上没有显著差异(图 1j;图 S5)。然而,在 2018 年春季、2019 年秋季和 2023 年秋季这三个病害流行加剧的时期(图 1i),突变体始终表现出生产更多可上市番茄的趋势(图 1j)。总之,本研究表明,在番茄中敲除 SlbBs5 和 SlBs5L 是实现细菌性斑点病广谱抗性的一种有前途的策略。与更强的抗性来源相比,Slbs5 和 Slbs5L 介导的抗性可能被认为是微弱的。然而,在实验室和田间条件下,我们的突变品系持续导致黄单胞菌数量减少。病原体数量的减少可能会降低高病毒菌株出现的可能性。此外,当这些突变体与其他来源的下游抗性基因结合时,它们可以作为一个先期防御层。这种初始保护有可能降低病原体效应物直接与抗性基因相互作用并克服抗性基因的概率,从而有可能延长持久抗性在农田中的效力。B.J.S. 监督该项目。A.O.、D.D. 和 B.J.S. 设计实验并帮助分析数据。K.S. 和 E.S. 进行生物信息学分析。K.S. 主持统计分析并设计图表。A.S.帮助规划了项目,设计和测试了引导 RNA,并进行了初步的基因分型和细菌疾病检测。A.O. 做了进一步的基因分型、引导 RNA 测试,并对后代进行了疾病和表型检测。D.P.T.T.、J.V.W.、J.B.J、G.M.、E.S.O.和 D.D. 进行了补充性细菌生长试验。E.S. 和 S.H. 进行了实地试验。M.J.C.负责监督番茄突变品系的产生。E.Z. 和 J.P. 进行番茄转化。A.O.、K.S.和D.P.T.T.分析数据并撰写手稿。
{"title":"CRISPR/Cas9-mediated editing of Bs5 and Bs5L in tomato leads to resistance against Xanthomonas","authors":"Arturo Ortega,&nbsp;Kyungyong Seong,&nbsp;Alex Schultink,&nbsp;Daniela Paula de Toledo Thomazella,&nbsp;Eunyoung Seo,&nbsp;Elaine Zhang,&nbsp;Julie Pham,&nbsp;Myeong-Je Cho,&nbsp;Douglas Dahlbeck,&nbsp;Jacqueline Warren,&nbsp;Gerald V. Minsavage,&nbsp;Jeffrey B. Jones,&nbsp;Edgar Sierra-Orozco,&nbsp;Samuel F. Hutton,&nbsp;Brian Staskawicz","doi":"10.1111/pbi.14404","DOIUrl":"10.1111/pbi.14404","url":null,"abstract":"&lt;p&gt;Bacterial spot, caused by &lt;i&gt;Xanthomonas&lt;/i&gt; species, is a devastating disease of tomato (&lt;i&gt;Solanum lycopersicum&lt;/i&gt;) and pepper (&lt;i&gt;Capsicum annuum&lt;/i&gt;) (Schwartz &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2015&lt;/span&gt;). The recessively inherited resistance, &lt;i&gt;bacterial spot 5&lt;/i&gt; (&lt;i&gt;bs5&lt;/i&gt;), in pepper (hereafter referred to as &lt;i&gt;Cabs5&lt;/i&gt;) can confer resistance against different &lt;i&gt;Xanthomonas&lt;/i&gt; strains (Jones &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2002&lt;/span&gt;). The &lt;i&gt;Cabs5&lt;/i&gt; resistance is characterized by the absence of disease symptoms, faint chlorosis at the site of infection, and reduced bacterial growth. Remarkably, commercial pepper varieties containing the &lt;i&gt;bs5&lt;/i&gt; allele show durable resistance, effectively impeding hypervirulent strain emergence in agricultural fields (Vallejos &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2010&lt;/span&gt;).&lt;/p&gt;&lt;p&gt;The &lt;i&gt;CaBs5&lt;/i&gt; gene, together with its paralog &lt;i&gt;CaBs5-like&lt;/i&gt; (&lt;i&gt;CaBs5L&lt;/i&gt;), has recently been cloned (Sharma &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;; Szabó &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;). &lt;i&gt;CaBs5&lt;/i&gt; encodes a 92 amino acid long protein possessing a cysteine-rich transmembrane (CYSTM) domain, which is implicated in various biotic and abiotic responses. Typically, the CYSTM domain contains conserved residues composed of four consecutive cysteines, followed by two hydrophobic amino acids. A recent study suggested that Cabs5 mediating the resistance against bacterial spot lacks these two conserved leucine residues within the CYSTM domain (Szabó &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;).&lt;/p&gt;&lt;p&gt;Tomatoes and peppers are close relatives in the Solanaceae family and commonly susceptible to &lt;i&gt;Xanthomonas&lt;/i&gt; infection. Based on the current findings in pepper, we hypothesized that modifying the ortholog of &lt;i&gt;CaBs5&lt;/i&gt; in tomato could confer resistance against &lt;i&gt;Xanthomonas&lt;/i&gt;. Consequently, putative &lt;i&gt;Bs5&lt;/i&gt; (&lt;i&gt;SlBs5&lt;/i&gt;) and &lt;i&gt;Bs5L&lt;/i&gt; (&lt;i&gt;SlBs5L&lt;/i&gt;) were identified in tomato based on homology to &lt;i&gt;CaBs5&lt;/i&gt;. Both &lt;i&gt;SlBs5&lt;/i&gt; and &lt;i&gt;SlBs5L&lt;/i&gt; were located on chromosome 9 with the same head-to-head orientation as their pepper homologues on chromosome 3 (Figure 1a). Despite short and highly similar amino acid sequences of SlBs5 and SlBs5L (Figure 1b), the conserved synteny and gene order in pepper and tomato genomes allowed the assignment of orthology for &lt;i&gt;Bs5&lt;/i&gt; and &lt;i&gt;Bs5L&lt;/i&gt;.&lt;/p&gt;&lt;p&gt;The mechanism by which the double leucine deletion in &lt;i&gt;Cabs5&lt;/i&gt; leads to resistance against &lt;i&gt;Xanthomonas&lt;/i&gt; remains elusive (Figure 1b). Yet, this deletion in the conserved CYSTM domain could potentially impair CaBs5's native functionality (Abell and Mullen, &lt;span&gt;2011&lt;/span&gt;). Following this assumption, we postulated that knocking out &lt;i&gt;SlBs5&lt;/i&gt; would produce similar outcomes to &lt;i&gt;Cabs5&lt;/i&gt;. We aimed to disrupt both SlBs5 and SlBs5L to prevent possible functional complementation by SlBs5L, given their greater amino acid sequence similarity compared to CaBs5 and CaBs5L (Figure 1b).&lt;/p&gt;&lt;p&gt;We constructed a binary vector for Cas9 and a single-guide RNA (sgRNA","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"22 10","pages":"2785-2787"},"PeriodicalIF":10.1,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pbi.14404","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141597981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Just FIND-IT: Harnessing the true power of induced mutagenesis 只需 FIND-IT:利用诱导突变的真正力量。
IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-09 DOI: 10.1111/pbi.14427
Christoph Dockter, Søren Knudsen, Magnus Wohlfahrt Rasmussen, Birgitte Skadhauge, Birger Lindberg Møller
<p>In nature, genetic variation occurs in every population and results in the evolution of a diversity of new properties, some of which promote the survival of the species. To accelerate nature's evolution based on genetic diversity, plant breeders may induce additional mutations to raise the number of genetic variations increasing the chances to obtain varieties with new desired traits like improved nutritive quality, yields and resilience to biotic and abiotic stress factors. Induced mutagenesis based on chemical mutagens is considered non-GM and has been used in barley (<i>Hordeum vulgare</i>) for decades (Hansson <i>et al</i>., <span>2024</span>). Reverse genetic techniques including TILLING (Targeting Induced Local Lesions in Genomes) screening methodology and more recently TILLING-by-sequencing spinoffs are tools used to identify individual plant variants with the desired valuable genomic alterations. However, these tools are hampered by low mutation capacity.</p><p>TILLING is a PCR-based technique designed to detect mismatched single nucleotides in a target gene. In 2023, Szarejko and her research group in Poland published a thorough overview of the TILLING success stories within the last 20 years (Szurman-Zubrzycka <i>et al</i>., <span>2023</span>) including a description of the TILLING populations in different barley cultivars and landraces obtained following chemical mutagenesis (Figure 1a). The TILLING population sizes range between 1372 and 9600 individual plant variants. The mutation frequencies are individually chosen and dose-dependent (1/154–1/2500 Kbp). When multiplied (# of individuals × mutations per individual), the total number of mutations present in barley TILLING populations ranges between 10 and 100 million (Figure 1a). This may sound like a lot, but with a barley genome size of around 4300 Mbp (here, RGT Planet; Jayakodi <i>et al</i>., <span>2020</span>), less than 2% of the nucleotides in the entire population are mutated. This severely reduces the possibility to find a desired mutation in TILLING populations. The FIND-IT technology is a new approach overriding these constraints.</p><p>The FIND-IT technology was published in Science Advances in 2022 (Figure 1b) (Knudsen <i>et al</i>., <span>2022</span>) and provides an agile and high-throughput approach to screen unprecedented large size chemically induced variant populations. FIND-IT combines systematic sample pooling and splitting with high-sensitivity, droplet digital PCR (ddPCR)–based genotyping for targeted identification of desired traits at single-nucleotide resolution. The ddPCR technology is 1000-fold more sensitive than conventional PCR. The FIND-IT approach is applicable to any living organism that can be grown in the field or in culture. The experimental approach is outlined in detail in Knudsen <i>et al</i>., <span>2022</span> and illustrated schematically in Figure 1b. In total, more than 500 000 FIND-IT barley variant plants are today available for screen
在自然界中,每个种群都会发生基因变异,并进化出多种新特性,其中一些特性会促进物种的生存。为了在遗传多样性的基础上加速自然进化,植物育种者可能会诱导更多的变异,以增加遗传变异的数量,从而增加获得具有新的理想性状的品种的机会,如提高营养质量、产量和对生物和非生物压力因素的抗逆性。基于化学诱变剂的诱导诱变被认为是非转基因的,在大麦(Hordeum vulgare)中已经使用了几十年(Hansson 等人,2024 年)。反向遗传技术,包括 TILLING(基因组局部病变靶向诱导)筛选方法和最近的 TILLING-by-测序衍生技术,都是用于鉴定具有所需宝贵基因组改变的单个植物变体的工具。TILLING 是一种基于 PCR 的技术,旨在检测目标基因中不匹配的单核苷酸。2023 年,波兰的 Szarejko 和她的研究小组发表了一篇关于过去 20 年中 TILLING 成功案例的详尽综述(Szurman-Zubrzycka et al.TILLING 群体的规模在 1372 到 9600 个单株变异之间。突变频率是单独选择的,并与剂量有关(1/154-1/2500 Kbp)。两者相乘(个体数×每个个体的突变数),大麦 TILLING 群体中存在的突变总数在 1 千万到 1 亿之间(图 1a)。这听起来似乎很多,但大麦基因组大小约为 4300 Mbp(此处为 RGT Planet;Jayakodi 等人,2020 年),整个群体中只有不到 2% 的核苷酸发生了突变。这大大降低了在 TILLING 群体中找到所需突变的可能性。FIND-IT 技术是一种克服这些限制的新方法。FIND-IT 技术于 2022 年发表在《科学进展》(Science Advances)上(图 1b)(Knudsen 等人,2022 年),它提供了一种敏捷的高通量方法,用于筛选前所未有的大规模化学诱导变异群体。FIND-IT 将系统样本池和分割与基于液滴数字 PCR(ddPCR)的高灵敏度基因分型相结合,以单核苷酸分辨率对所需性状进行定向鉴定。ddPCR 技术的灵敏度是传统 PCR 技术的 1000 倍。FIND-IT 方法适用于任何可在野外或培养基中生长的活生物体。Knudsen 等人在 2022 年对实验方法进行了详细介绍,图 1b 是实验方法的示意图。目前,共有超过 500 000 株 FIND-IT 大麦变异株可供筛选。此外,还利用叠氮化钠或甲磺酸乙酯(EMS)作为诱变剂,在其他作物和微生物中开发了 FIND-IT 群体。因此,FIND-IT 已成为获得白羽扇豆甜种子(Mancinotti 等人,2023 年)、消除藜麦种子中抗营养皂苷(Trinh 等人,2024 年)、提高大麦谷物中磷酸盐生物利用率(Madsen 等人,2024 年)、避免威士忌生产中羟基腈葡糖苷形成致癌物质氨基甲酸乙酯(图 S1;Jørgensen 等人,2024 年)以及改变风味的关键技术、FIND-IT 技术流水线的设计基于对使用不同剂量叠氮化钠的大麦中突变载量和谱系的了解,并通过全基因组测序进行监测(图 1b;Knudsen 等人,2022 年)。研究发现,引入的突变平均分布在大麦的七条染色体上,诱变剂剂量越大,突变数量越多。因此,FIND-IT 文库可用于不同目的:中等突变负荷(如 1.7 毫米叠氮化钠处理,平均每株植物 14 770 个 SNPs)用于基因功能分析,低突变负荷(如 0.3 毫米叠氮化钠处理,平均每株植物 5565 个 SNPs)用于大麦育种(Knudsen 等人,2022 年)。全基因组测序结果表明,15% 的大麦叠氮化钠突变是转座突变,85% 是转座突变,偏好 C &gt; T 和 G &gt; A(图 1c)。在 RGT Planet 大麦基因组中,1900 Mb 是 C 和 G。使用平均剂量的叠氮化钠诱变后,每株大麦中会引入 10 000 个随机定位的 SNPs,其中约 8000 个是 C &gt; T 和 G &gt; A 转换。利用 FIND-IT 技术,现在可以分析 350 000 株植物的文库集合,其中包含约 350 000 × 8000 = 2 800 000 000 个随机分布的 C &gt; T 和 G &gt; A 转换(图 1b)。
{"title":"Just FIND-IT: Harnessing the true power of induced mutagenesis","authors":"Christoph Dockter,&nbsp;Søren Knudsen,&nbsp;Magnus Wohlfahrt Rasmussen,&nbsp;Birgitte Skadhauge,&nbsp;Birger Lindberg Møller","doi":"10.1111/pbi.14427","DOIUrl":"10.1111/pbi.14427","url":null,"abstract":"&lt;p&gt;In nature, genetic variation occurs in every population and results in the evolution of a diversity of new properties, some of which promote the survival of the species. To accelerate nature's evolution based on genetic diversity, plant breeders may induce additional mutations to raise the number of genetic variations increasing the chances to obtain varieties with new desired traits like improved nutritive quality, yields and resilience to biotic and abiotic stress factors. Induced mutagenesis based on chemical mutagens is considered non-GM and has been used in barley (&lt;i&gt;Hordeum vulgare&lt;/i&gt;) for decades (Hansson &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2024&lt;/span&gt;). Reverse genetic techniques including TILLING (Targeting Induced Local Lesions in Genomes) screening methodology and more recently TILLING-by-sequencing spinoffs are tools used to identify individual plant variants with the desired valuable genomic alterations. However, these tools are hampered by low mutation capacity.&lt;/p&gt;&lt;p&gt;TILLING is a PCR-based technique designed to detect mismatched single nucleotides in a target gene. In 2023, Szarejko and her research group in Poland published a thorough overview of the TILLING success stories within the last 20 years (Szurman-Zubrzycka &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;) including a description of the TILLING populations in different barley cultivars and landraces obtained following chemical mutagenesis (Figure 1a). The TILLING population sizes range between 1372 and 9600 individual plant variants. The mutation frequencies are individually chosen and dose-dependent (1/154–1/2500 Kbp). When multiplied (# of individuals × mutations per individual), the total number of mutations present in barley TILLING populations ranges between 10 and 100 million (Figure 1a). This may sound like a lot, but with a barley genome size of around 4300 Mbp (here, RGT Planet; Jayakodi &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2020&lt;/span&gt;), less than 2% of the nucleotides in the entire population are mutated. This severely reduces the possibility to find a desired mutation in TILLING populations. The FIND-IT technology is a new approach overriding these constraints.&lt;/p&gt;&lt;p&gt;The FIND-IT technology was published in Science Advances in 2022 (Figure 1b) (Knudsen &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022&lt;/span&gt;) and provides an agile and high-throughput approach to screen unprecedented large size chemically induced variant populations. FIND-IT combines systematic sample pooling and splitting with high-sensitivity, droplet digital PCR (ddPCR)–based genotyping for targeted identification of desired traits at single-nucleotide resolution. The ddPCR technology is 1000-fold more sensitive than conventional PCR. The FIND-IT approach is applicable to any living organism that can be grown in the field or in culture. The experimental approach is outlined in detail in Knudsen &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022&lt;/span&gt; and illustrated schematically in Figure 1b. In total, more than 500 000 FIND-IT barley variant plants are today available for screen","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"22 11","pages":"3051-3053"},"PeriodicalIF":10.1,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pbi.14427","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bt corn and cotton planting may benefit peanut growers by reducing aflatoxin risk 种植 Bt 玉米和棉花可降低黄曲霉毒素风险,从而使花生种植者受益。
IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-08 DOI: 10.1111/pbi.14425
Jina Yu, David A. Hennessy, Felicia Wu

Decades of studies have shown that Bt corn, by reducing insect damage, has lower levels of mycotoxins (fungal toxins), such as aflatoxin and fumonisin, than conventional corn. We used crop insurance data to infer that this benefit from Bt crops extends to reducing aflatoxin risk in peanuts: a non-Bt crop. In consequence, we suggest that any benefit–cost assessment of how transgenic Bt crops affect food safety should not be limited to assessing those crops alone; because the insect pest control offered by Bt crops affects the food safety profile of other crops grown nearby. Specifically, we found that higher Bt corn and Bt cotton planting rates in peanut-growing areas of the United States were associated with lower aflatoxin risk in peanuts as measured by aflatoxin-related insurance claims filed by peanut growers. Drought-related insurance claims were also lower: possibly due to Bt crops' suppression of insects that would otherwise feed on roots, rendering peanut plants more vulnerable to drought. These findings have implications for countries worldwide where policies allow Bt cotton but not Bt food crops to be grown: simply planting a Bt crop may reduce aflatoxin and drought stress in nearby food crops, resulting in a safer food supply through an inter-crop “halo effect.”

几十年的研究表明,Bt 玉米通过减少昆虫危害,其霉菌毒素(真菌毒素)(如黄曲霉毒素和伏马菌素)的含量低于传统玉米。我们利用农作物保险数据推断,Bt 作物的这一益处还能降低花生(一种非 Bt 作物)中黄曲霉毒素的风险。因此,我们建议,对转基因 Bt 作物如何影响食品安全进行效益成本评估时,不应仅限于评估这些作物;因为 Bt 作物提供的害虫控制会影响附近种植的其他作物的食品安全状况。具体而言,我们发现,在美国花生种植区,Bt 玉米和 Bt 棉花的种植率越高,花生中黄曲霉毒素的风险就越低。与干旱相关的保险索赔也较低:这可能是由于 Bt 作物抑制了本来会以根部为食的昆虫,使花生植株更容易受到干旱的影响。这些发现对世界上那些政策允许种植 Bt 棉花而不允许种植 Bt 粮食作物的国家具有启示意义:只需种植一种 Bt 作物,就可能减少附近粮食作物的黄曲霉毒素和干旱压力,从而通过作物间的 "晕轮效应 "实现更安全的粮食供应。
{"title":"Bt corn and cotton planting may benefit peanut growers by reducing aflatoxin risk","authors":"Jina Yu,&nbsp;David A. Hennessy,&nbsp;Felicia Wu","doi":"10.1111/pbi.14425","DOIUrl":"10.1111/pbi.14425","url":null,"abstract":"<p>Decades of studies have shown that Bt corn, by reducing insect damage, has lower levels of mycotoxins (fungal toxins), such as aflatoxin and fumonisin, than conventional corn. We used crop insurance data to infer that this benefit from Bt crops extends to reducing aflatoxin risk in peanuts: a non-Bt crop. In consequence, we suggest that any benefit–cost assessment of how transgenic Bt crops affect food safety should not be limited to assessing those crops alone; because the insect pest control offered by Bt crops affects the food safety profile of other crops grown nearby. Specifically, we found that higher Bt corn and Bt cotton planting rates in peanut-growing areas of the United States were associated with lower aflatoxin risk in peanuts as measured by aflatoxin-related insurance claims filed by peanut growers. Drought-related insurance claims were also lower: possibly due to Bt crops' suppression of insects that would otherwise feed on roots, rendering peanut plants more vulnerable to drought. These findings have implications for countries worldwide where policies allow Bt cotton but not Bt food crops to be grown: simply planting a Bt crop may reduce aflatoxin and drought stress in nearby food crops, resulting in a safer food supply through an inter-crop “halo effect.”</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"22 11","pages":"3028-3036"},"PeriodicalIF":10.1,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pbi.14425","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Biotechnology Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1