Jennifer Selinski, Stephanie Frings, Romy Schmidt-Schippers
In the course of their life, plants continuously experience a wide range of unfavourable environmental conditions in the form of biotic and abiotic stress factors. The perception of stress via various organelles and rapid, tailored cellular responses are essential for the establishment of plant stress resilience. Mitochondria as the biosynthetic sites of energy equivalents in the form of ATP-provided in order to enable a multitude of biological processes in the cell-are often directly impacted by external stress factors. At the same time, mitochondrial function may fluctuate to a tolerable extent without the need to activate downstream retrograde signalling cascades for stress adaptation. In this Focus Review, we summarise the current state of knowledge on the perception and processing of stress signals by mitochondria and show which layers of retrograde signalling, that is, those involving transcription factors, metabolites, but also enzymes with moonlighting functions, enable communication with the nucleus. Also, light is shed on signal integration between mitochondria and chloroplasts as part of retrograde signalling. With this Focus Review, we aim to show ways in which organelle-specific communication can be further researched and the collected data used in the long-term to strengthen plant resilience in the context of climate change.
植物在其生命过程中会不断经历以生物和非生物胁迫因子形式出现的各种不利环境条件。通过各种细胞器感知胁迫以及快速、有针对性的细胞反应对于植物建立抗胁迫能力至关重要。线粒体作为以 ATP 形式提供能量等价物的生物合成场所,往往直接受到外部胁迫因素的影响,从而使细胞内的多种生物过程得以进行。与此同时,线粒体功能可能会在可承受的范围内波动,而无需激活下游逆行信号级联来适应应激。在这篇焦点综述中,我们总结了线粒体感知和处理应激信号的知识现状,并展示了逆行信号的哪些层次(即涉及转录因子、代谢产物以及具有月光功能的酶的层次)能够实现与细胞核的通信。此外,还阐明了线粒体和叶绿体之间的信号整合是逆行信号的一部分。通过本期焦点综述,我们旨在说明如何进一步研究细胞器特异性通讯,并将收集到的数据长期用于加强植物在气候变化背景下的恢复能力。
{"title":"Perception and processing of stress signals by plant mitochondria.","authors":"Jennifer Selinski, Stephanie Frings, Romy Schmidt-Schippers","doi":"10.1111/tpj.17133","DOIUrl":"https://doi.org/10.1111/tpj.17133","url":null,"abstract":"<p><p>In the course of their life, plants continuously experience a wide range of unfavourable environmental conditions in the form of biotic and abiotic stress factors. The perception of stress via various organelles and rapid, tailored cellular responses are essential for the establishment of plant stress resilience. Mitochondria as the biosynthetic sites of energy equivalents in the form of ATP-provided in order to enable a multitude of biological processes in the cell-are often directly impacted by external stress factors. At the same time, mitochondrial function may fluctuate to a tolerable extent without the need to activate downstream retrograde signalling cascades for stress adaptation. In this Focus Review, we summarise the current state of knowledge on the perception and processing of stress signals by mitochondria and show which layers of retrograde signalling, that is, those involving transcription factors, metabolites, but also enzymes with moonlighting functions, enable communication with the nucleus. Also, light is shed on signal integration between mitochondria and chloroplasts as part of retrograde signalling. With this Focus Review, we aim to show ways in which organelle-specific communication can be further researched and the collected data used in the long-term to strengthen plant resilience in the context of climate change.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siddhartha Dutta, Riya Basu, Abhideep Pal, M H Kunalika, Sudip Chattopadhyay
Calmodulin7 (CAM7) is a key transcription factor of Arabidopsis seedling development. CAM7 works together with HY5 bZIP protein to promote photomorphogenesis at various wavelengths of light. In this study, we show that AtMYB4, identified from a yeast two-hybrid screen, physically interacts with CAM7 and works as a positive regulator of photomorphogenesis at various wavelengths of light. CAM7 and HY5 directly bind to the promoter of AtMYB4 to promote its expression for photomorphogenic growth. On the other hand, ARA4, identified from the same yeast two-hybrid screen, works as a negative regulator of photomorphogenic growth specifically in white light. The double mutant analysis reveals that the altered hypocotyl elongation of atmyb4 and ara4 is either partly or completely suppressed by additional loss of function of CAM7. Furthermore, ARA4 genetically interacts with AtMYB4 in an antagonistic manner to suppress the elongated hypocotyl phenotype of atmyb4. The transactivation studies reveal that while CAM7 activates the promoter of AtMYB4 in association with HY5, ARA4 negatively regulates AtMYB4 expression. Taken together, these results demonstrate that working as a negative regulator of photomorphogenesis, ARA4 plays a balancing act on CAM7 and HY5-mediated regulation of AtMYB4.
{"title":"The homeostasis of AtMYB4 is maintained by ARA4, HY5, and CAM7 during Arabidopsis seedling development.","authors":"Siddhartha Dutta, Riya Basu, Abhideep Pal, M H Kunalika, Sudip Chattopadhyay","doi":"10.1111/tpj.17126","DOIUrl":"https://doi.org/10.1111/tpj.17126","url":null,"abstract":"<p><p>Calmodulin7 (CAM7) is a key transcription factor of Arabidopsis seedling development. CAM7 works together with HY5 bZIP protein to promote photomorphogenesis at various wavelengths of light. In this study, we show that AtMYB4, identified from a yeast two-hybrid screen, physically interacts with CAM7 and works as a positive regulator of photomorphogenesis at various wavelengths of light. CAM7 and HY5 directly bind to the promoter of AtMYB4 to promote its expression for photomorphogenic growth. On the other hand, ARA4, identified from the same yeast two-hybrid screen, works as a negative regulator of photomorphogenic growth specifically in white light. The double mutant analysis reveals that the altered hypocotyl elongation of atmyb4 and ara4 is either partly or completely suppressed by additional loss of function of CAM7. Furthermore, ARA4 genetically interacts with AtMYB4 in an antagonistic manner to suppress the elongated hypocotyl phenotype of atmyb4. The transactivation studies reveal that while CAM7 activates the promoter of AtMYB4 in association with HY5, ARA4 negatively regulates AtMYB4 expression. Taken together, these results demonstrate that working as a negative regulator of photomorphogenesis, ARA4 plays a balancing act on CAM7 and HY5-mediated regulation of AtMYB4.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xia Li, Guijun Su, Chunliu Pan, Jie Zhan, Aiqin Wang, Zhuqiang Han, Dong Xiao, Longfei He
ROS/redox signaling plays an important role in the regulation of signal transduction and acclimation pathways activated by multiple abiotic stresses and leaf senescence. However, the regulatory events that produce ROS under different stimuli are far from clear. Here, we report the elucidation of the molecular mechanism of an h type thioredoxin, AhTRX h2, positively regulates Al sensitivity and leaf senescence by promoting ROS. AhTRX h2 transcript levels increased greatly during both natural senescence and Al stress condition in peanut. Ectopic expression of AhTRX h2 in Arabidopsis conferred Al sensitivity as well as premature leaf senescence, manifested by multiple indices, including inhibiting root elongation, severe cell death, and accelerated expression of MC1 and CEX17. AhTRX h2 exhibited similar functions to AtTRX h2, as AhTRX h2 was able to restore the phenotypes of the AtTRX h2 defective mutant (trxh2-4) which showed Al tolerant and late senescence phenotypes. The knock down of AhTRX h2 markedly suppressed Al- and senescence-induced cell death in peanut. AhTRX h2 could recruit catalytic subunit of protein phosphatase 2A (PP2AC2) to form a stable complex. The interaction between AhTRX h2 and AtPP2AC2, as well as AhPP2AC2 and AtTRX h2 was also proved. Overexpression of AhPP2AC2 significantly enhanced Al sensitivity and leaf senescence in Arabidopsis. Protein stability assay revealed that AhTRX h2 was more stable during aging or aluminum stress. Moreover, PP2AC2 could greatly enhance the stability of AhTRX h2 in vivo. Consistent with these observations, overexpression of AhPP2AC2 effectively enhanced AhTRX h2-induced Al sensitivity and precocious leaf senescence. AhTRX h2 and AhPP2AC2 required ABA and ROS in response to cell death under Al stress and senescence, and it was evidence to suggest that ABA acted upstream of ROS in this process. Together, AhTRX h2 and AhPP2AC2 constitute a stable complex that promotes the accumulation of ABA and ROS, effectively regulate cell death. These findings suggest that TRX h2-PP2AC2-mediated pathway may be a widespread mechanism in regulating Al stress and leaf senescence.
{"title":"TRX h2-PP2AC2 module serves as a convergence node for aluminum stress and leaf senescence signals, regulating cell death via ABA-mediated ROS pathway.","authors":"Xia Li, Guijun Su, Chunliu Pan, Jie Zhan, Aiqin Wang, Zhuqiang Han, Dong Xiao, Longfei He","doi":"10.1111/tpj.17131","DOIUrl":"https://doi.org/10.1111/tpj.17131","url":null,"abstract":"<p><p>ROS/redox signaling plays an important role in the regulation of signal transduction and acclimation pathways activated by multiple abiotic stresses and leaf senescence. However, the regulatory events that produce ROS under different stimuli are far from clear. Here, we report the elucidation of the molecular mechanism of an h type thioredoxin, AhTRX h2, positively regulates Al sensitivity and leaf senescence by promoting ROS. AhTRX h2 transcript levels increased greatly during both natural senescence and Al stress condition in peanut. Ectopic expression of AhTRX h2 in Arabidopsis conferred Al sensitivity as well as premature leaf senescence, manifested by multiple indices, including inhibiting root elongation, severe cell death, and accelerated expression of MC1 and CEX17. AhTRX h2 exhibited similar functions to AtTRX h2, as AhTRX h2 was able to restore the phenotypes of the AtTRX h2 defective mutant (trxh2-4) which showed Al tolerant and late senescence phenotypes. The knock down of AhTRX h2 markedly suppressed Al- and senescence-induced cell death in peanut. AhTRX h2 could recruit catalytic subunit of protein phosphatase 2A (PP2AC2) to form a stable complex. The interaction between AhTRX h2 and AtPP2AC2, as well as AhPP2AC2 and AtTRX h2 was also proved. Overexpression of AhPP2AC2 significantly enhanced Al sensitivity and leaf senescence in Arabidopsis. Protein stability assay revealed that AhTRX h2 was more stable during aging or aluminum stress. Moreover, PP2AC2 could greatly enhance the stability of AhTRX h2 in vivo. Consistent with these observations, overexpression of AhPP2AC2 effectively enhanced AhTRX h2-induced Al sensitivity and precocious leaf senescence. AhTRX h2 and AhPP2AC2 required ABA and ROS in response to cell death under Al stress and senescence, and it was evidence to suggest that ABA acted upstream of ROS in this process. Together, AhTRX h2 and AhPP2AC2 constitute a stable complex that promotes the accumulation of ABA and ROS, effectively regulate cell death. These findings suggest that TRX h2-PP2AC2-mediated pathway may be a widespread mechanism in regulating Al stress and leaf senescence.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan B Fontanet-Manzaneque, Jari Haeghebaert, Stijn Aesaert, Griet Coussens, Laurens Pauwels, Ana I Caño-Delgado
Sorghum bicolor (sorghum) is a vital C4 monocotyledon crop cultivated in arid regions worldwide, valued for its significance in both human and animal nutrition. Despite its agricultural prominence, sorghum research has been hindered by low transformation frequency. In this study, we examined sorghum transformation using the pVS1-VIR2 ternary vector system for Agrobacterium, combined with the morphogenic genes BABY BOOM and WUSCHEL2 and selection using G418. We optimized Agrobacterium-mediated infection, targeting key parameters such as bacterial optical density, co-cultivation time, and temperature. Additionally, an excision-based transformation system enabled us to generate transgenic plants free of morphogenic regulators. The method yielded remarkable transformation frequencies, reaching up to 164.8% based on total isolated plantlets. The same combination of ternary vector, morphogenic genes and geneticin-based selection also resulted in a marked increase in transformation efficiency of the Zea mays (maize) inbred line B104. The potential for genomic editing using this approach positions it as a valuable tool for the development of sorghum and maize varieties that comply with evolving European regulations. Our work marks a significant stride in sorghum biotechnology and holds promise for addressing global food security challenges in a changing climate.
{"title":"Efficient sorghum and maize transformation using a ternary vector system combined with morphogenic regulators.","authors":"Juan B Fontanet-Manzaneque, Jari Haeghebaert, Stijn Aesaert, Griet Coussens, Laurens Pauwels, Ana I Caño-Delgado","doi":"10.1111/tpj.17101","DOIUrl":"https://doi.org/10.1111/tpj.17101","url":null,"abstract":"<p><p>Sorghum bicolor (sorghum) is a vital C4 monocotyledon crop cultivated in arid regions worldwide, valued for its significance in both human and animal nutrition. Despite its agricultural prominence, sorghum research has been hindered by low transformation frequency. In this study, we examined sorghum transformation using the pVS1-VIR2 ternary vector system for Agrobacterium, combined with the morphogenic genes BABY BOOM and WUSCHEL2 and selection using G418. We optimized Agrobacterium-mediated infection, targeting key parameters such as bacterial optical density, co-cultivation time, and temperature. Additionally, an excision-based transformation system enabled us to generate transgenic plants free of morphogenic regulators. The method yielded remarkable transformation frequencies, reaching up to 164.8% based on total isolated plantlets. The same combination of ternary vector, morphogenic genes and geneticin-based selection also resulted in a marked increase in transformation efficiency of the Zea mays (maize) inbred line B104. The potential for genomic editing using this approach positions it as a valuable tool for the development of sorghum and maize varieties that comply with evolving European regulations. Our work marks a significant stride in sorghum biotechnology and holds promise for addressing global food security challenges in a changing climate.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meng Xie, Dimiru Tadesse, Jin Zhang, Tao Yao, Li Zhang, Sara S Jawdy, Amith Devireddy, Kaijie Zheng, Emily B Smith, Jennifer Morrell-Falvey, Chongle Pan, Feng Chen, Gerald A Tuskan, Wellington Muchero, Jin-Gui Chen
In plants, pre-mRNA alternative splicing has been demonstrated to be a crucial tier that regulates gene expression in response to salt stress. However, the underlying mechanisms remain elusive. Here, we studied the roles of DIGEORGE-SYNDROME CRITICAL REGION 14-like (AtDGCR14L) in regulating pre-mRNA splicing and salt stress tolerance. We discovered that Arabidopsis AtDGCR14L is required for maintaining plant salt stress tolerance and the constitutively spliced and active isoforms of important stress- and/or abscisic acid (ABA)-responsive genes. We also identified the interaction between AtDGCR14L and splicing factor U1-70k, which needs a highly conserved three amino acid (TWG) motif in DGCR14. Different from wild-type AtDGCR14L, the overexpression of the TWG-substituted AtDGCR14L mutant did not change salt stress tolerance or pre-mRNA splicing of stress/ABA-responsive genes. Additionally, SWITCH3A (SWI3A) is a core subunit of the SWI/SUCROSE NONFERMENTING (SWI/SNF) chromatin-remodeling complexes. We found that SWI3A, whose splicing depends on AtDGCR14L, actively enhances salt stress tolerance. These results revealed that AtDGCR14L may play an essential role in crosstalk between plant salt-stress response and pre-mRNA splicing mechanisms. We also unveiled the potential role of SWI3A in controlling salt stress tolerance. The TWG motif in the intrinsically disordered region of AtDGCR14L is highly conserved and crucial for DGCR14 functions.
{"title":"AtDGCR14L contributes to salt-stress tolerance via regulating pre-mRNA splicing in Arabidopsis.","authors":"Meng Xie, Dimiru Tadesse, Jin Zhang, Tao Yao, Li Zhang, Sara S Jawdy, Amith Devireddy, Kaijie Zheng, Emily B Smith, Jennifer Morrell-Falvey, Chongle Pan, Feng Chen, Gerald A Tuskan, Wellington Muchero, Jin-Gui Chen","doi":"10.1111/tpj.17136","DOIUrl":"https://doi.org/10.1111/tpj.17136","url":null,"abstract":"<p><p>In plants, pre-mRNA alternative splicing has been demonstrated to be a crucial tier that regulates gene expression in response to salt stress. However, the underlying mechanisms remain elusive. Here, we studied the roles of DIGEORGE-SYNDROME CRITICAL REGION 14-like (AtDGCR14L) in regulating pre-mRNA splicing and salt stress tolerance. We discovered that Arabidopsis AtDGCR14L is required for maintaining plant salt stress tolerance and the constitutively spliced and active isoforms of important stress- and/or abscisic acid (ABA)-responsive genes. We also identified the interaction between AtDGCR14L and splicing factor U1-70k, which needs a highly conserved three amino acid (TWG) motif in DGCR14. Different from wild-type AtDGCR14L, the overexpression of the TWG-substituted AtDGCR14L mutant did not change salt stress tolerance or pre-mRNA splicing of stress/ABA-responsive genes. Additionally, SWITCH3A (SWI3A) is a core subunit of the SWI/SUCROSE NONFERMENTING (SWI/SNF) chromatin-remodeling complexes. We found that SWI3A, whose splicing depends on AtDGCR14L, actively enhances salt stress tolerance. These results revealed that AtDGCR14L may play an essential role in crosstalk between plant salt-stress response and pre-mRNA splicing mechanisms. We also unveiled the potential role of SWI3A in controlling salt stress tolerance. The TWG motif in the intrinsically disordered region of AtDGCR14L is highly conserved and crucial for DGCR14 functions.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qianwen Zhang, Yue Liu, Chunli Zhang, Dawei Xu, Ana L Medina-Fraga, Baoguo Wu, Chenyang Guo, MeLongying Wangzha, Guoqian Yang, Danmeng Zhu, David Weiss, Carlos L Ballaré, Li Lin, Ruohe Yin
Tomato (Solanum lycopersicum L.) is an important model plant species in photomorphogenesis research. Ultraviolet B (UV-B) induces the dissociation of homodimers of the photoreceptor UV RESISTANCE LOCUS8 (UVR8) into monomers, which translocate into the nucleus. Nuclear accumulation of UVR8 is a prerequisite for its signaling function. Previous studies have reported that SUPPRESSOR OF PHYTOCHROME A-105 (SPA) family members may regulate UV-B signaling in Arabidopsis (Arabidopsis thaliana); however, the underlying mechanism is unknown. Here, we show that the tomato genome encodes four SPA (SlSPA) orthologs. Genome-edited Slspa3 mutants exhibited enhanced photomorphogenic responses in white light, suggesting that SlSPA3 inhibits general photomorphogenesis. By contrast, UVR8-mediated gene expression in response to UV-B was compromised in Slspa3 mutants, suggesting that SlSPA3 promotes UV-B signaling. UV-B-induced nuclear accumulation of UVR8, which is essential for UV-B signaling, was reduced in the Slspa3 mutants. Moreover, UV-B-induced nuclear accumulation of UVR8 was also reduced in the Arabidopsis spa1 spa2 spa3 and spa1 spa2 spa4 triple mutants, indicating a conserved mechanism in these two species. Notably, spa1 spa2 spa4 exhibited normal UV-B-induced interaction between UVR8 and the plant morphogenesis repressor CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1). This suggests that the well-established mechanisms of UVR8 nuclear retention remained unaffected in spa1 spa2 spa4. Thus, our work uncovered a potentially unrecognized mechanism by which SPA proteins regulate UV-B signaling through the promotion of UVR8 nuclear abundance in land plants.
{"title":"SlSPA3 regulates the nuclear abundance of SlUVR8 in tomato.","authors":"Qianwen Zhang, Yue Liu, Chunli Zhang, Dawei Xu, Ana L Medina-Fraga, Baoguo Wu, Chenyang Guo, MeLongying Wangzha, Guoqian Yang, Danmeng Zhu, David Weiss, Carlos L Ballaré, Li Lin, Ruohe Yin","doi":"10.1111/tpj.17135","DOIUrl":"https://doi.org/10.1111/tpj.17135","url":null,"abstract":"<p><p>Tomato (Solanum lycopersicum L.) is an important model plant species in photomorphogenesis research. Ultraviolet B (UV-B) induces the dissociation of homodimers of the photoreceptor UV RESISTANCE LOCUS8 (UVR8) into monomers, which translocate into the nucleus. Nuclear accumulation of UVR8 is a prerequisite for its signaling function. Previous studies have reported that SUPPRESSOR OF PHYTOCHROME A-105 (SPA) family members may regulate UV-B signaling in Arabidopsis (Arabidopsis thaliana); however, the underlying mechanism is unknown. Here, we show that the tomato genome encodes four SPA (SlSPA) orthologs. Genome-edited Slspa3 mutants exhibited enhanced photomorphogenic responses in white light, suggesting that SlSPA3 inhibits general photomorphogenesis. By contrast, UVR8-mediated gene expression in response to UV-B was compromised in Slspa3 mutants, suggesting that SlSPA3 promotes UV-B signaling. UV-B-induced nuclear accumulation of UVR8, which is essential for UV-B signaling, was reduced in the Slspa3 mutants. Moreover, UV-B-induced nuclear accumulation of UVR8 was also reduced in the Arabidopsis spa1 spa2 spa3 and spa1 spa2 spa4 triple mutants, indicating a conserved mechanism in these two species. Notably, spa1 spa2 spa4 exhibited normal UV-B-induced interaction between UVR8 and the plant morphogenesis repressor CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1). This suggests that the well-established mechanisms of UVR8 nuclear retention remained unaffected in spa1 spa2 spa4. Thus, our work uncovered a potentially unrecognized mechanism by which SPA proteins regulate UV-B signaling through the promotion of UVR8 nuclear abundance in land plants.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chuanhui Du, Wenjie Sun, Qingwei Song, Kaijing Zuo
Cotton seed development and fiber elongation are the inseparable and overlapped development processes requiring the continuous supply of sucrose as the direct carbon source. However, little is known about the molecular mechanism of how sucrose is transported from the source tissues (leaves) into growing cotton seeds. Here, we identify the function of a sucrose transporter gene, Sugars Will Eventually be Exported Transporter 10, GhSWEET10 in cotton seed development. GhSWEET10 encodes a functional sucrose transporter, predominantly expressing in the funiculus, inner seedcoat, and endosperm during fiber elongation. GhSWEET10 RNAi plants (GhSWEET10i) accumulated less sucrose and glucose in growing seeds and that led to shorter fibers and smaller seeds, whereas GhSWEET10 overexpressed plants (GhSWEET10OE) had bigger seeds and longer fibers with more sugar accumulation during fiber elongation. GhSWEET10 gene is transcriptionally controlled by the transcription factor GhDOFD45. GhDOFD45 knockout plants (GhDOFD45-KO) possessed the phenotypes of smaller seeds and shorter fibers like those of GhSWEET10i plants. Furthermore, GhSWEET10 mainly exports the sucrose from the funiculus into developing seeds according to the mimic-analysis of sucrose transporting. Collectively, all these findings show that GhDOFD45 positively regulates GhSWEET10 expression to mainly transport sucrose from leaves into developing cotton seeds. Our findings also imply that the sucrose transport into enlarging seeds benefits fiber development, and thus GhSWEET10 can be selected as a target of breeding novel cotton varieties with larger and more vigorous seeds.
棉花种子的发育和纤维的伸长是不可分割的重叠发育过程,需要持续供应蔗糖作为直接碳源。然而,人们对蔗糖如何从源组织(叶片)运输到生长中的棉花种子的分子机制知之甚少。在这里,我们确定了蔗糖转运体基因 Sugars Will eventually be Exported Transporter 10(GhSWEET10)在棉花种子发育过程中的功能。GhSWEET10 编码一个功能性蔗糖转运体,在纤维伸长过程中主要在真核、内种皮和胚乳中表达。GhSWEET10 RNAi 植株(GhSWEET10i)在种子生长过程中积累的蔗糖和葡萄糖较少,导致纤维较短,种子较小;而 GhSWEET10 过表达植株(GhSWEET10OE)在纤维伸长过程中积累的糖较多,种子较大,纤维较长。GhSWEET10 基因受转录因子 GhDOFD45 的转录控制。GhDOFD45 基因敲除植株(GhDOFD45-KO)与 GhSWEET10i 植株一样,具有种子更小、纤维更短的表型。此外,根据蔗糖转运的模拟分析,GhSWEET10 主要将蔗糖从漏斗中输出到发育中的种子中。所有这些研究结果表明,GhDOFD45能正向调节GhSWEET10的表达,使其主要将蔗糖从叶片运输到发育中的棉花种子中。我们的研究结果还表明,蔗糖转运到增大的种子中有利于纤维的发育,因此 GhSWEET10 可被选作培育种子更大、更有活力的棉花新品种的目标。
{"title":"GhDOFD45 promotes sucrose accumulation in cotton seeds by transcriptionally activating GhSWEET10 expression.","authors":"Chuanhui Du, Wenjie Sun, Qingwei Song, Kaijing Zuo","doi":"10.1111/tpj.17123","DOIUrl":"https://doi.org/10.1111/tpj.17123","url":null,"abstract":"<p><p>Cotton seed development and fiber elongation are the inseparable and overlapped development processes requiring the continuous supply of sucrose as the direct carbon source. However, little is known about the molecular mechanism of how sucrose is transported from the source tissues (leaves) into growing cotton seeds. Here, we identify the function of a sucrose transporter gene, Sugars Will Eventually be Exported Transporter 10, GhSWEET10 in cotton seed development. GhSWEET10 encodes a functional sucrose transporter, predominantly expressing in the funiculus, inner seedcoat, and endosperm during fiber elongation. GhSWEET10 RNAi plants (GhSWEET10i) accumulated less sucrose and glucose in growing seeds and that led to shorter fibers and smaller seeds, whereas GhSWEET10 overexpressed plants (GhSWEET10OE) had bigger seeds and longer fibers with more sugar accumulation during fiber elongation. GhSWEET10 gene is transcriptionally controlled by the transcription factor GhDOFD45. GhDOFD45 knockout plants (GhDOFD45-KO) possessed the phenotypes of smaller seeds and shorter fibers like those of GhSWEET10i plants. Furthermore, GhSWEET10 mainly exports the sucrose from the funiculus into developing seeds according to the mimic-analysis of sucrose transporting. Collectively, all these findings show that GhDOFD45 positively regulates GhSWEET10 expression to mainly transport sucrose from leaves into developing cotton seeds. Our findings also imply that the sucrose transport into enlarging seeds benefits fiber development, and thus GhSWEET10 can be selected as a target of breeding novel cotton varieties with larger and more vigorous seeds.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Menghan Huang, Yang Liu, Qianwen Bian, Wenjing Zhao, Juan Zhao, Qingpo Liu
Arsenic (As) is extremely toxic to plants, posing a serious concern for food safety. Identification of genes responsive to As is significative for figuring out this issue. Here, we identified a bHLH transcription factor OsbHLH6 that was involved in mediating the processes of As tolerance, uptake, and root-to-shoot translocation in rice. The expression of OsbHLH6 gene was strongly induced after 3 and 48 h of arsenite [As(III)] treatment. The OsbHLH6-overexpressed transgenic rice (OE-OsbHLH6) was sensitive to, while the knockout mutant of OsbHLH6 gene (Osbhlh6) was tolerant to As(III) stress by affecting the contents of reactive oxygen species (ROS) and non-protein thiols (NPT), etc. Knockout of OsbHLH6 gene increased significantly the As concentration in roots, but decreased extensively As accumulation in shoots, compared to that in OE-OsbHLH6 and WT plants. The transcripts of phytochelatins (PCs) synthetase encoding genes OsPCS1 and OsPCS2, as well as As(III) transporter encoding genes OsLsi1 and OsABCC1 were greatly abundant in Osbhlh6 mutants than in OE-OsbHLH6 and WT plants under As(III) stress. In contrast, the expression of OsLsi2 gene was extensively suppressed by As(III) in Osbhlh6 mutants. OsbHLH6 acted as a transcriptional activator to bind directly to the promoter and regulate the expression of OsPrx2 gene that encodes a peroxidase precursor. Moreover, overexpression of OsbHLH6 gene resulted in significant change of expression of amounts of abiotic stress-related genes, which might partially contribute to the As sensitivity of OE-OsbHLH6 plants. These findings may broaden our understanding of the molecular mechanism of OsbHLH6-mediated As response in rice and provide novel useful genes for rice As stress-resistant breeding.
{"title":"OsbHLH6, a basic helix-loop-helix transcription factor, confers arsenic tolerance and root-to-shoot translocation in rice.","authors":"Menghan Huang, Yang Liu, Qianwen Bian, Wenjing Zhao, Juan Zhao, Qingpo Liu","doi":"10.1111/tpj.17124","DOIUrl":"10.1111/tpj.17124","url":null,"abstract":"<p><p>Arsenic (As) is extremely toxic to plants, posing a serious concern for food safety. Identification of genes responsive to As is significative for figuring out this issue. Here, we identified a bHLH transcription factor OsbHLH6 that was involved in mediating the processes of As tolerance, uptake, and root-to-shoot translocation in rice. The expression of OsbHLH6 gene was strongly induced after 3 and 48 h of arsenite [As(III)] treatment. The OsbHLH6-overexpressed transgenic rice (OE-OsbHLH6) was sensitive to, while the knockout mutant of OsbHLH6 gene (Osbhlh6) was tolerant to As(III) stress by affecting the contents of reactive oxygen species (ROS) and non-protein thiols (NPT), etc. Knockout of OsbHLH6 gene increased significantly the As concentration in roots, but decreased extensively As accumulation in shoots, compared to that in OE-OsbHLH6 and WT plants. The transcripts of phytochelatins (PCs) synthetase encoding genes OsPCS1 and OsPCS2, as well as As(III) transporter encoding genes OsLsi1 and OsABCC1 were greatly abundant in Osbhlh6 mutants than in OE-OsbHLH6 and WT plants under As(III) stress. In contrast, the expression of OsLsi2 gene was extensively suppressed by As(III) in Osbhlh6 mutants. OsbHLH6 acted as a transcriptional activator to bind directly to the promoter and regulate the expression of OsPrx2 gene that encodes a peroxidase precursor. Moreover, overexpression of OsbHLH6 gene resulted in significant change of expression of amounts of abiotic stress-related genes, which might partially contribute to the As sensitivity of OE-OsbHLH6 plants. These findings may broaden our understanding of the molecular mechanism of OsbHLH6-mediated As response in rice and provide novel useful genes for rice As stress-resistant breeding.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maïté Leschevin, Brigitte Ksas, Raymonde Baltenweck, Philippe Hugueney, Stefano Caffarri, Michel Havaux
Arabidopsis plants were grown in white light (400-700 nm) or in white light supplemented with far-red (FR) light peaking at 730 nm. FR-enriched light induced the typical shade avoidance syndrome characterized by enhanced length of seedling hypocotyl and leaf petiole. FR supplementation also caused a noticeable decrease in the carotenoid and chlorophyll content that was attributable to a block of pigment accumulation during plant development. The carotenoid decrease resulted from a downregulation of their biosynthesis pathway rather than carotenoid degradation. The losses of photosynthetic pigments are part of structural and functional rearrangements of the photosynthetic apparatus. The plastoquinone pool was chronically more oxidized in plants acclimated to white + FR light compared to white light-grown plants. Growth in FR-enriched light was associated with a higher photochemical efficiency of PSII compared to growth in white light and with a substantial increase in root and shoot biomass production. Light distribution between the photosystems was modified in favor of PSII by an increase in the PSII/PSI ratio and an inhibition of state transitions. Neither LHCII abundance nor nonphotochemical energy dissipation in the PSII chlorophyll antennae were modified significantly by the addition of FR light. A PSI supercomplex, not previously observed in Arabidopsis, was specifically found in plants grown in FR-enriched light. This large PSI complex contains a supplementary Lhca1-4 dimer, leading to a total of 6 LHCI antennae instead of 4 in the canonical PSI. Through those photosystem rearrangements and the synergistic interaction with white light, FR light is photosynthetically active and can boost photosynthesis and plant growth.
{"title":"Photosystem rearrangements, photosynthetic efficiency, and plant growth in far red-enriched light.","authors":"Maïté Leschevin, Brigitte Ksas, Raymonde Baltenweck, Philippe Hugueney, Stefano Caffarri, Michel Havaux","doi":"10.1111/tpj.17127","DOIUrl":"10.1111/tpj.17127","url":null,"abstract":"<p><p>Arabidopsis plants were grown in white light (400-700 nm) or in white light supplemented with far-red (FR) light peaking at 730 nm. FR-enriched light induced the typical shade avoidance syndrome characterized by enhanced length of seedling hypocotyl and leaf petiole. FR supplementation also caused a noticeable decrease in the carotenoid and chlorophyll content that was attributable to a block of pigment accumulation during plant development. The carotenoid decrease resulted from a downregulation of their biosynthesis pathway rather than carotenoid degradation. The losses of photosynthetic pigments are part of structural and functional rearrangements of the photosynthetic apparatus. The plastoquinone pool was chronically more oxidized in plants acclimated to white + FR light compared to white light-grown plants. Growth in FR-enriched light was associated with a higher photochemical efficiency of PSII compared to growth in white light and with a substantial increase in root and shoot biomass production. Light distribution between the photosystems was modified in favor of PSII by an increase in the PSII/PSI ratio and an inhibition of state transitions. Neither LHCII abundance nor nonphotochemical energy dissipation in the PSII chlorophyll antennae were modified significantly by the addition of FR light. A PSI supercomplex, not previously observed in Arabidopsis, was specifically found in plants grown in FR-enriched light. This large PSI complex contains a supplementary Lhca1-4 dimer, leading to a total of 6 LHCI antennae instead of 4 in the canonical PSI. Through those photosystem rearrangements and the synergistic interaction with white light, FR light is photosynthetically active and can boost photosynthesis and plant growth.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A well-known defense-associated steroidal glycoalkaloid (SGA) metabolic shift eliminates the bitterness and toxicity of ripe tomato fruits. This study was conducted to clarify the effects of MADS-RIN (RIN) and its cofactors on SGA metabolism in tomato fruits. Using a CRISPR/Cas9-based gene-editing system, we mutated RIN and two cofactor genes (FUL1 and FUL2). The observed changes to fruit color and size in the mutants reflected the overlapping and distinct effects of RIN, FUL1, and FUL2 on fruit ripening. According to a UPLC-MS/MS analysis, the RIN and cofactor mutants had decreased levels of the relatively non-toxic metabolite esculeoside A, but they accumulated toxic SGA pathway intermediates, suggesting RIN and its cofactors are directly involved in esculeoside A biosynthesis. Transcriptome and qPCR analyses detected the downregulated expression of GAME5, which encodes a key enzyme mediating esculeoside A biosynthesis. ChIP-seq and ChIP-qPCR analyses confirmed GAME5 is targeted by RIN. RIN was observed to activate GAME5 transcription by binding to two non-canonical CArG-boxes in the GAME5 promoter. Additionally, RIN promotes SGA metabolism independently of ethylene. Collectively, these findings enhance our understanding of the molecular mechanism governing tomato fruit ripening and SGA biosynthesis. Furthermore, they may be useful for improving tomato fruit quality and safety.
众所周知,与防御相关的类固醇糖醛酸(SGA)代谢转变可消除成熟番茄果实的苦味和毒性。本研究旨在阐明 MADS-RIN(RIN)及其辅助因子对番茄果实中 SGA 代谢的影响。利用基于 CRISPR/Cas9 的基因编辑系统,我们突变了 RIN 和两个辅助因子基因(FUL1 和 FUL2)。在突变体中观察到的果实颜色和大小的变化反映了 RIN、FUL1 和 FUL2 对果实成熟的重叠和不同影响。根据 UPLC-MS/MS 分析,RIN 和辅助因子突变体中相对无毒的代谢物 esculeoside A 水平降低,但它们积累了有毒的 SGA 途径中间产物,这表明 RIN 及其辅助因子直接参与了 esculeoside A 的生物合成。转录组和 qPCR 分析检测到 GAME5 的表达下调,GAME5 编码介导 esculeoside A 生物合成的关键酶。ChIP-seq 和 ChIP-qPCR 分析证实 GAME5 是 RIN 的靶标。据观察,RIN 通过与 GAME5 启动子中的两个非经典 CArG-box 结合来激活 GAME5 的转录。此外,RIN 促进 SGA 的代谢与乙烯无关。总之,这些发现加深了我们对番茄果实成熟和 SGA 生物合成分子机制的理解。此外,这些发现可能有助于提高番茄果实的质量和安全性。
{"title":"Tomato MADS-RIN regulates GAME5 expression to promote non-bitter glycoalkaloid biosynthesis in fruit.","authors":"Yinhuan Xie, Yaping Xu, Huimin Jia, Ke Wang, Siyu Chen, Ting Ma, Yuanwei Deng, Zhaobo Lang, Qingfeng Niu","doi":"10.1111/tpj.17125","DOIUrl":"https://doi.org/10.1111/tpj.17125","url":null,"abstract":"<p><p>A well-known defense-associated steroidal glycoalkaloid (SGA) metabolic shift eliminates the bitterness and toxicity of ripe tomato fruits. This study was conducted to clarify the effects of MADS-RIN (RIN) and its cofactors on SGA metabolism in tomato fruits. Using a CRISPR/Cas9-based gene-editing system, we mutated RIN and two cofactor genes (FUL1 and FUL2). The observed changes to fruit color and size in the mutants reflected the overlapping and distinct effects of RIN, FUL1, and FUL2 on fruit ripening. According to a UPLC-MS/MS analysis, the RIN and cofactor mutants had decreased levels of the relatively non-toxic metabolite esculeoside A, but they accumulated toxic SGA pathway intermediates, suggesting RIN and its cofactors are directly involved in esculeoside A biosynthesis. Transcriptome and qPCR analyses detected the downregulated expression of GAME5, which encodes a key enzyme mediating esculeoside A biosynthesis. ChIP-seq and ChIP-qPCR analyses confirmed GAME5 is targeted by RIN. RIN was observed to activate GAME5 transcription by binding to two non-canonical CArG-boxes in the GAME5 promoter. Additionally, RIN promotes SGA metabolism independently of ethylene. Collectively, these findings enhance our understanding of the molecular mechanism governing tomato fruit ripening and SGA biosynthesis. Furthermore, they may be useful for improving tomato fruit quality and safety.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}