首页 > 最新文献

Ultramicroscopy最新文献

英文 中文
EBSD and TKD analyses using inverted contrast Kikuchi diffraction patterns and alternative measurement geometries 使用倒置对比菊地衍射图样和替代测量几何图形进行 EBSD 和 TKD 分析
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-09-21 DOI: 10.1016/j.ultramic.2024.114055
Grzegorz Cios , Aimo Winkelmann , Gert Nolze , Tomasz Tokarski , Benedykt R. Jany , Piotr Bała
Electron backscatter diffraction (EBSD) patterns can exhibit Kikuchi bands with inverted contrast due to anomalous absorption. This can be observed, for example, on samples with nanoscale topography, in case of a low tilt backscattering geometry, or for transmission Kikuchi diffraction (TKD) on thicker samples. Three examples are discussed where contrast-inverted physics-based simulated master patterns have been applied to find the correct crystal orientation. As first EBSD example, self-assembled gold nanostructures made of Au fcc and Au hcp phases on single-crystal germanium were investigated. Gold covered about 12% of the mapped area, with only two thirds being successfully interpreted using standard Hough-based indexing. The remaining third was solved by brute force indexing using a contrast-inverted master pattern. The second EBSD example deals with maps collected at a non-tilted surface instead of the commonly used 70° tilted one. As TKD example, a jet-polished foil made of duplex stainless steel 2205 was examined. The thin part close to the hole edge producing normal-contrast patterns were standard indexed. The areas of the foil that become thicker with increasing distance from the edge of the hole produce contrast-inverted patterns. They covered three times the evaluable area and were successfully processed using the contrast-inverted master pattern. In the last example, inverted patterns collected at a non-tiled sample were mathematically inverted to normal contrast, and Hough/Radon-based indexing was successfully applied.
电子反向散射衍射 (EBSD) 图样会因反常吸收而出现反向对比的菊池带。例如,在具有低倾斜反向散射几何形状的纳米级形貌样品上,或者在较厚样品上的透射菊池衍射(TKD)中,都可以观察到这种情况。本文讨论了三个应用对比反转物理模拟母图来找到正确晶体取向的例子。作为第一个 EBSD 例子,研究了单晶锗上由 Au fcc 和 Au hcp 相组成的自组装金纳米结构。金覆盖了大约 12% 的映射区域,只有三分之二的区域可以使用标准的基于 Hough 的索引法成功解释。剩下的三分之一则通过使用对比度反转的主图案进行强制索引来解决。第二个 EBSD 例子涉及在非倾斜表面而不是常用的 70° 倾斜表面采集的地图。以 TKD 为例,研究了由双相不锈钢 2205 制成的喷射抛光箔。对靠近孔边缘的薄部分进行了标准分度,以产生正常对比图案。随着与孔边缘距离的增加,箔片变厚的部分会产生对比度反转的图案。它们覆盖了三倍的可评估区域,并成功地使用对比度反转的母图案进行了处理。在最后一个例子中,在非平铺样品上采集的反差图案通过数学方法反转为正常反差,并成功应用了基于 Hough/Radon 的索引。
{"title":"EBSD and TKD analyses using inverted contrast Kikuchi diffraction patterns and alternative measurement geometries","authors":"Grzegorz Cios ,&nbsp;Aimo Winkelmann ,&nbsp;Gert Nolze ,&nbsp;Tomasz Tokarski ,&nbsp;Benedykt R. Jany ,&nbsp;Piotr Bała","doi":"10.1016/j.ultramic.2024.114055","DOIUrl":"10.1016/j.ultramic.2024.114055","url":null,"abstract":"<div><div>Electron backscatter diffraction (EBSD) patterns can exhibit Kikuchi bands with inverted contrast due to anomalous absorption. This can be observed, for example, on samples with nanoscale topography, in case of a low tilt backscattering geometry, or for transmission Kikuchi diffraction (TKD) on thicker samples. Three examples are discussed where contrast-inverted physics-based simulated master patterns have been applied to find the correct crystal orientation. As first EBSD example, self-assembled gold nanostructures made of Au fcc and Au hcp phases on single-crystal germanium were investigated. Gold covered about 12% of the mapped area, with only two thirds being successfully interpreted using standard Hough-based indexing. The remaining third was solved by brute force indexing using a contrast-inverted master pattern. The second EBSD example deals with maps collected at a non-tilted surface instead of the commonly used 70° tilted one. As TKD example, a jet-polished foil made of duplex stainless steel 2205 was examined. The thin part close to the hole edge producing normal-contrast patterns were standard indexed. The areas of the foil that become thicker with increasing distance from the edge of the hole produce contrast-inverted patterns. They covered three times the evaluable area and were successfully processed using the contrast-inverted master pattern. In the last example, inverted patterns collected at a non-tiled sample were mathematically inverted to normal contrast, and Hough/Radon-based indexing was successfully applied.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"267 ","pages":"Article 114055"},"PeriodicalIF":2.1,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399124001347/pdfft?md5=805f0bcd2116a88f646294acc77c2b2c&pid=1-s2.0-S0304399124001347-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-low-noise transimpedance amplifier with a single HEMT in pre-amplifier for measuring shot noise in cryogenic STM 超低噪声互阻抗放大器,前置放大器采用单 HEMT,用于测量低温 STM 中的射出噪声
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-09-19 DOI: 10.1016/j.ultramic.2024.114051
Ying-Xin Liang
In this work, a design of transimpedance amplifier (TIA) for cryogenic scanning tunneling microscope (CryoSTM) is proposed. TIA with the tip-sample component in CryoSTM is called as CryoSTM-TIA. With transimpedance gain of 1 GΩ, the bandwidth of the CryoSTM-TIA is larger than 200 kHz. The distinctive feature of the proposed CryoSTM-TIA is that its pre-amplifier is made of a single cryogenic high electron mobility transistor (HEMT), so the apparatus equivalent input noise current power spectral density at 100 kHz is lower than 6 (fA)2/Hz. In addition, “bias-cooling method” can be used to in-situ control the density of the frozen DX centers in the HEMT doping area, changing its structure to reduce the device noises. With this apparatus, fast scanning tunneling spectra measurements with high-energy-resolution are capable to be performed. And, it is capable to measure scanning tunneling shot noise spectra (STSNS) at the atomic scale for various quantum systems, even if the shot noise is very low. It provides a powerful tool to investigate novel quantum states by measuring STSNS, such as detecting the existence of Majorana bound states in the topological quantum systems.
本研究提出了一种用于低温扫描隧道显微镜(CryoSTM)的跨阻抗放大器(TIA)设计方案。在 CryoSTM 中带有尖端-样品组件的 TIA 称为 CryoSTM-TIA。在跨导增益为 1 GΩ 时,CryoSTM-TIA 的带宽大于 200 kHz。所提出的 CryoSTM-TIA 的显著特点是其前置放大器由单个低温高电子迁移率晶体管(HEMT)制成,因此 100 kHz 时的仪器等效输入噪声电流功率谱密度低于 6 (fA)2/Hz。此外,"偏置冷却法 "可用于原位控制 HEMT 掺杂区中冷冻 DX 中心的密度,改变其结构以降低器件噪声。利用这种仪器,可以进行高能量分辨率的快速扫描隧道光谱测量。此外,它还能在原子尺度上测量各种量子系统的扫描隧道射电噪声谱(STSNS),即使射电噪声非常低。它为通过测量 STSNS 来研究新型量子态提供了强有力的工具,例如探测拓扑量子系统中是否存在马约拉纳束缚态。
{"title":"Ultra-low-noise transimpedance amplifier with a single HEMT in pre-amplifier for measuring shot noise in cryogenic STM","authors":"Ying-Xin Liang","doi":"10.1016/j.ultramic.2024.114051","DOIUrl":"10.1016/j.ultramic.2024.114051","url":null,"abstract":"<div><div>In this work, a design of transimpedance amplifier (TIA) for cryogenic scanning tunneling microscope (CryoSTM) is proposed. TIA with the tip-sample component in CryoSTM is called as CryoSTM-TIA. With transimpedance gain of 1 G<span><math><mi>Ω</mi></math></span>, the bandwidth of the CryoSTM-TIA is larger than 200 kHz. The distinctive feature of the proposed CryoSTM-TIA is that its pre-amplifier is made of a single cryogenic high electron mobility transistor (HEMT), so the apparatus equivalent input noise current power spectral density at 100 kHz is lower than 6 (fA)<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>/Hz. In addition, “bias-cooling method” can be used to in-situ control the density of the frozen DX<span><math><msup><mrow></mrow><mrow><mo>−</mo></mrow></msup></math></span> centers in the HEMT doping area, changing its structure to reduce the device noises. With this apparatus, fast scanning tunneling spectra measurements with high-energy-resolution are capable to be performed. And, it is capable to measure scanning tunneling shot noise spectra (STSNS) at the atomic scale for various quantum systems, even if the shot noise is very low. It provides a powerful tool to investigate novel quantum states by measuring STSNS, such as detecting the existence of Majorana bound states in the topological quantum systems.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"267 ","pages":"Article 114051"},"PeriodicalIF":2.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the temporal transfer function in STEM imaging from finite detector response time 从有限探测器响应时间看 STEM 成像中的时间传递函数
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-09-19 DOI: 10.1016/j.ultramic.2024.114056
Jonathan J.P. Peters , Tiarnan Mullarkey , Julie Marie Bekkevold , Matthew Geever , Ryo Ishikawa , Naoya Shibata , Lewys Jones
Faster scanning in scanning transmission electron microscopy has long been desired for the ability to better control dose, minimise effects of environmental distortions, and to capture the dynamics of in-situ experiments. Advances in scan controllers and scan deflection systems have enabled scanning with pixel dwell times on the order of tens of nanoseconds. At these speeds, the finite response time of the electron detector must be considered as the signal from one electron detection event can contribute to multiple pixels, blurring the features within the image. Here we introduce a temporal transfer function (TTF) to describe and model the effects of detector response time on imaging, as well as a framework for incorporating these effects into simulation.
人们一直希望在扫描透射电子显微镜中实现更快的扫描,以便更好地控制剂量,将环境失真的影响降至最低,并捕捉原位实验的动态变化。扫描控制器和扫描偏转系统的进步使扫描像素停留时间达到几十纳秒。在这种速度下,必须考虑电子探测器的有限响应时间,因为一个电子探测事件产生的信号可能会影响多个像素,从而模糊图像中的特征。在此,我们介绍一种时间传递函数(TTF),用于描述和模拟探测器响应时间对成像的影响,以及将这些影响纳入模拟的框架。
{"title":"On the temporal transfer function in STEM imaging from finite detector response time","authors":"Jonathan J.P. Peters ,&nbsp;Tiarnan Mullarkey ,&nbsp;Julie Marie Bekkevold ,&nbsp;Matthew Geever ,&nbsp;Ryo Ishikawa ,&nbsp;Naoya Shibata ,&nbsp;Lewys Jones","doi":"10.1016/j.ultramic.2024.114056","DOIUrl":"10.1016/j.ultramic.2024.114056","url":null,"abstract":"<div><div>Faster scanning in scanning transmission electron microscopy has long been desired for the ability to better control dose, minimise effects of environmental distortions, and to capture the dynamics of in-situ experiments. Advances in scan controllers and scan deflection systems have enabled scanning with pixel dwell times on the order of tens of nanoseconds. At these speeds, the finite response time of the electron detector must be considered as the signal from one electron detection event can contribute to multiple pixels, blurring the features within the image. Here we introduce a temporal transfer function (TTF) to describe and model the effects of detector response time on imaging, as well as a framework for incorporating these effects into simulation.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"267 ","pages":"Article 114056"},"PeriodicalIF":2.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of strongly coupled quartz tuning fork sensors for precision force measurement in atomic force microscopy 用于原子力显微镜精确测力的强耦合石英音叉传感器的特性分析
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-09-18 DOI: 10.1016/j.ultramic.2024.114052
Cedric Shaskey , Amun Jarzembski , Andrew Jue , Keunhan Park

Miniaturized quartz tuning forks (QTFs) have been adopted as force sensors for non-contact atomic force microscopy (AFM). However, the coupled oscillation behaviors of the QTF prongs are not well understood, preventing quantitative measurement of the nanoscale tip-sample interaction forces. This article presents a lumped model that accurately delineates the coupled mechanical oscillations of QTF prongs, establishing rigorous relationships between experimental observables and tip-sample interaction forces. The first-order resonance spectra of a commercial QTF were fully characterized by correlating its piezoelectric response with the actual mechanical oscillation measured with a Fabry-Pérot interferometer. In order to uniquely determine the modeling parameters (i.e., the effective masses, spring constants, and damping constants), the experimental results were compared with the lumped model predictions while masses were added to one prong. The results reveal that the QTF’s center of mass is highly damped, preventing the observation of a symmetric resonance mode. In addition, the mass loading experiment demonstrates that the mechanical oscillations of the QTF prongs are strongly coupled, accounting for 59% (84%) of the effective stiffness at the in-plane (out-of-plane), antisymmetric resonance mode. We believe that the obtained QTF characterization results will pave the way for quantitative measurements of non-contact interaction forces in QTF-based AFM platforms, significantly improving the precision and reliability of nanoscale force measurements.

微型石英音叉(QTF)已被用作非接触式原子力显微镜(AFM)的力传感器。然而,人们对 QTF 叉的耦合振荡行为还不甚了解,因此无法定量测量纳米尺度的针尖-样品相互作用力。本文提出了一个能准确描述 QTF 棱角耦合机械振荡的块状模型,在实验观测值与尖端-样品相互作用力之间建立了严格的关系。通过将商用 QTF 的压电响应与使用法布里-佩罗干涉仪测量的实际机械振荡相关联,全面描述了商用 QTF 的一阶共振频谱。为了唯一确定建模参数(即有效质量、弹簧常数和阻尼常数),在一个棱柱上添加质量时,将实验结果与块状模型预测结果进行了比较。结果表明,QTF 的质心阻尼很大,因此无法观察到对称共振模式。此外,质量加载实验表明,QTF 两棱柱的机械振荡具有很强的耦合性,在平面内(平面外)的非对称共振模式下,占有效刚度的 59% (84%)。我们相信,所获得的 QTF 表征结果将为定量测量基于 QTF 的原子力显微镜平台的非接触相互作用力铺平道路,从而显著提高纳米级力测量的精度和可靠性。
{"title":"Characterization of strongly coupled quartz tuning fork sensors for precision force measurement in atomic force microscopy","authors":"Cedric Shaskey ,&nbsp;Amun Jarzembski ,&nbsp;Andrew Jue ,&nbsp;Keunhan Park","doi":"10.1016/j.ultramic.2024.114052","DOIUrl":"10.1016/j.ultramic.2024.114052","url":null,"abstract":"<div><p>Miniaturized quartz tuning forks (QTFs) have been adopted as force sensors for non-contact atomic force microscopy (AFM). However, the coupled oscillation behaviors of the QTF prongs are not well understood, preventing quantitative measurement of the nanoscale tip-sample interaction forces. This article presents a lumped model that accurately delineates the coupled mechanical oscillations of QTF prongs, establishing rigorous relationships between experimental observables and tip-sample interaction forces. The first-order resonance spectra of a commercial QTF were fully characterized by correlating its piezoelectric response with the actual mechanical oscillation measured with a Fabry-Pérot interferometer. In order to uniquely determine the modeling parameters (i.e., the effective masses, spring constants, and damping constants), the experimental results were compared with the lumped model predictions while masses were added to one prong. The results reveal that the QTF’s center of mass is highly damped, preventing the observation of a symmetric resonance mode. In addition, the mass loading experiment demonstrates that the mechanical oscillations of the QTF prongs are strongly coupled, accounting for 59% (84%) of the effective stiffness at the in-plane (out-of-plane), antisymmetric resonance mode. We believe that the obtained QTF characterization results will pave the way for quantitative measurements of non-contact interaction forces in QTF-based AFM platforms, significantly improving the precision and reliability of nanoscale force measurements.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"267 ","pages":"Article 114052"},"PeriodicalIF":2.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective removal of global tilt from atomically-resolved topography images of vicinal surfaces with narrow terraces 从具有窄梯田的邻接表面的原子分辨地形图像中有效去除全局倾斜
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-09-18 DOI: 10.1016/j.ultramic.2024.114053
A.Yu. Aladyshkin , A.N. Chaika , V.N. Semenov , A.M. Ionov , S.I. Bozhko

The main feature of vicinal surfaces of crystals characterized by the Miller indices (hhm) is rather small width (less than 10 nm) and substantially large length (more than 200 nm) of atomically-flat terraces. This makes difficult to apply standard methods of image processing and correct visualization of crystalline lattices at the terraces and multiatomic steps. Here we consider two procedures allowing us to minimize effects of both small-scale noise and global tilt of sample: (i) analysis of the difference of two Gaussian blurred images, and (ii) subtraction of the plane, whose parameters are determined by optimization of the histogram of the visible heights, from raw topography image. It is shown that both methods provide nondistorted images demonstrating atomic structures on vicinal Si(5 5 6) and Si(5 5 7) surfaces.

以米勒指数(hhm)为特征的晶体临界表面的主要特征是原子平坦梯田的宽度相当小(小于 10 纳米),而长度却相当大(超过 200 纳米)。这就很难应用标准的图像处理方法来正确观察梯田和多原子阶的晶格。在此,我们考虑了两种可使小尺度噪声和样品整体倾斜的影响最小化的方法:(i) 分析两幅高斯模糊图像的差值;(ii) 从原始地形图像中减去平面,平面参数由可见高度直方图的优化决定。结果表明,这两种方法都能提供无失真图像,展示临近硅(5 5 6)和硅(5 5 7)表面的原子结构。
{"title":"Effective removal of global tilt from atomically-resolved topography images of vicinal surfaces with narrow terraces","authors":"A.Yu. Aladyshkin ,&nbsp;A.N. Chaika ,&nbsp;V.N. Semenov ,&nbsp;A.M. Ionov ,&nbsp;S.I. Bozhko","doi":"10.1016/j.ultramic.2024.114053","DOIUrl":"10.1016/j.ultramic.2024.114053","url":null,"abstract":"<div><p>The main feature of vicinal surfaces of crystals characterized by the Miller indices <span><math><mrow><mo>(</mo><mi>h</mi><mspace></mspace><mi>h</mi><mspace></mspace><mi>m</mi><mo>)</mo></mrow></math></span> is rather small width (less than 10 nm) and substantially large length (more than 200 nm) of atomically-flat terraces. This makes difficult to apply standard methods of image processing and correct visualization of crystalline lattices at the terraces and multiatomic steps. Here we consider two procedures allowing us to minimize effects of both small-scale noise and global tilt of sample: (i) analysis of the difference of two Gaussian blurred images, and (ii) subtraction of the plane, whose parameters are determined by optimization of the histogram of the visible heights, from raw topography image. It is shown that both methods provide nondistorted images demonstrating atomic structures on vicinal Si(5<!--> <!-->5<!--> <!-->6) and Si(5<!--> <!-->5<!--> <!-->7) surfaces.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"267 ","pages":"Article 114053"},"PeriodicalIF":2.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated detection and mapping of crystal tilt using thermal diffuse scattering in transmission electron microscopy 在透射电子显微镜中利用热漫散射自动检测和绘制晶体倾斜图
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-09-18 DOI: 10.1016/j.ultramic.2024.114050
Mauricio Cattaneo , Knut Müller-Caspary , Juri Barthel , Katherine E. MacArthur , Nicolas Gauquelin , Marta Lipinska-Chwalek , Johan Verbeeck , Leslie J. Allen , Rafal E. Dunin-Borkowski

Quantitative interpretation of transmission electron microscopy (TEM) data of crystalline specimens often requires the accurate knowledge of the local crystal orientation. A method is presented which exploits momentum-resolved scanning TEM (STEM) data to determine the local mistilt from a major zone axis. It is based on a geometric analysis of Kikuchi bands within a single diffraction pattern, yielding the center of the Laue circle. Whereas the approach is not limited to convergent illumination, it is here developed using unit-cell averaged diffraction patterns corresponding to high-resolution STEM settings. In simulation studies, an accuracy of approximately 0.1 mrad is found. The method is implemented in automated software and applied to crystallographic tilt and in-plane rotation mapping in two experimental cases. In particular, orientation maps of high-Mn steel and an epitaxially grown La0.7Sr0.3MnO3-SrTiO3 interface are presented. The results confirm the estimates of the simulation study and indicate that tilt mapping can be performed consistently over a wide field of view with diameters well above 100 nm at unit cell real space sampling.

定量解读晶体试样的透射电子显微镜(TEM)数据通常需要准确了解晶体的局部取向。本文提出了一种方法,利用动量分辨扫描 TEM(STEM)数据来确定主要区域轴线的局部雾度。该方法基于对单个衍射图样中 Kikuchi 带的几何分析,得出 Laue 圆的中心。虽然该方法并不局限于会聚光照,但在此使用与高分辨率 STEM 设置相对应的单元格平均衍射图样进行开发。在模拟研究中,发现精确度约为 0.1 mrad。该方法在自动软件中实施,并在两个实验案例中应用于晶体倾斜和平面内旋转绘图。特别是高锰钢和外延生长的 La0.7Sr0.3MnO3-SrTiO3 界面的取向图。结果证实了模拟研究的估计值,并表明可以在直径远大于 100 nm 的宽视场中,以单位晶胞实空间采样的方式持续进行倾斜绘图。
{"title":"Automated detection and mapping of crystal tilt using thermal diffuse scattering in transmission electron microscopy","authors":"Mauricio Cattaneo ,&nbsp;Knut Müller-Caspary ,&nbsp;Juri Barthel ,&nbsp;Katherine E. MacArthur ,&nbsp;Nicolas Gauquelin ,&nbsp;Marta Lipinska-Chwalek ,&nbsp;Johan Verbeeck ,&nbsp;Leslie J. Allen ,&nbsp;Rafal E. Dunin-Borkowski","doi":"10.1016/j.ultramic.2024.114050","DOIUrl":"10.1016/j.ultramic.2024.114050","url":null,"abstract":"<div><p>Quantitative interpretation of transmission electron microscopy (TEM) data of crystalline specimens often requires the accurate knowledge of the local crystal orientation. A method is presented which exploits momentum-resolved scanning TEM (STEM) data to determine the local mistilt from a major zone axis. It is based on a geometric analysis of Kikuchi bands within a single diffraction pattern, yielding the center of the Laue circle. Whereas the approach is not limited to convergent illumination, it is here developed using unit-cell averaged diffraction patterns corresponding to high-resolution STEM settings. In simulation studies, an accuracy of approximately 0.1 mrad is found. The method is implemented in automated software and applied to crystallographic tilt and in-plane rotation mapping in two experimental cases. In particular, orientation maps of high-Mn steel and an epitaxially grown La<span><math><msub><mrow></mrow><mrow><mtext>0.7</mtext></mrow></msub></math></span>Sr<span><math><msub><mrow></mrow><mrow><mtext>0.3</mtext></mrow></msub></math></span>MnO<span><math><msub><mrow></mrow><mrow><mtext>3</mtext></mrow></msub></math></span>-SrTiO<span><math><msub><mrow></mrow><mrow><mtext>3</mtext></mrow></msub></math></span> interface are presented. The results confirm the estimates of the simulation study and indicate that tilt mapping can be performed consistently over a wide field of view with diameters well above 100 nm at unit cell real space sampling.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"267 ","pages":"Article 114050"},"PeriodicalIF":2.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new method for estimating nanoparticle deposition coverage from a set of weak-contrast SEM images 从一组弱对比 SEM 图像中估算纳米粒子沉积覆盖率的新方法
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-09-14 DOI: 10.1016/j.ultramic.2024.114048
Bchara Sidnawi , Liang Zhao , Bo Li , Qianhong Wu

Imaging nanomaterials in hybrid systems is critical to understanding the structure and functionality of these systems. However, current technologies such as scanning electron microscopy (SEM) may obtain high resolution/contrast images at the cost of damaging or contaminating the sample. For example, to prevent the charging of organic substrate/matrix, a very thin layer of metal is coated on the surface, which will permanently contaminate the sample and eliminate the possibility of reusing it for following processes. Conversely, examining the sample without any modifications, in pursuit of high-fidelity digital images of its unperturbed state, can come at the cost of low-quality images that are challenging to process. Here, a solution is proposed for the case where no brightness threshold is available to reliably judge whether a region is covered with nanomaterials. The method examines local brightness variability to detect nanomaterial deposits. Very good agreement with manually obtained values of the coverage is observed, and a strong case is made for the method's automatability. Although the developed methodology is showcased in the context of SEM images of Polydimethylsiloxane (PDMS) substrates on which silicone dioxide (SiO2) nanoparticles are assembled, the underlying concepts may be extended to situations where straightforward brightness thresholding is not viable.

对混合系统中的纳米材料进行成像对于了解这些系统的结构和功能至关重要。然而,扫描电子显微镜(SEM)等现有技术在获得高分辨率/高对比度图像的同时,也会对样品造成损害或污染。例如,为了防止有机基底/基质带电,需要在其表面涂上一层很薄的金属,这将永久性地污染样品,使其无法再用于后续工艺。相反,为了获得未受干扰状态下的高保真数字图像,在不做任何改动的情况下对样品进行检测,可能会导致图像质量低下,难以处理。在此,针对没有亮度阈值来可靠判断某个区域是否被纳米材料覆盖的情况,提出了一种解决方案。该方法利用局部亮度变化来检测纳米材料沉积。结果表明,该方法与人工获得的覆盖值非常吻合,并有力地证明了该方法的自动化程度。虽然所开发的方法是在聚二甲基硅氧烷(PDMS)基底的扫描电镜图像中展示的,而二氧化硅(SiO2)纳米粒子是在该基底上组装的,但其基本概念可扩展到无法直接使用亮度阈值的情况。
{"title":"A new method for estimating nanoparticle deposition coverage from a set of weak-contrast SEM images","authors":"Bchara Sidnawi ,&nbsp;Liang Zhao ,&nbsp;Bo Li ,&nbsp;Qianhong Wu","doi":"10.1016/j.ultramic.2024.114048","DOIUrl":"10.1016/j.ultramic.2024.114048","url":null,"abstract":"<div><p>Imaging nanomaterials in hybrid systems is critical to understanding the structure and functionality of these systems. However, current technologies such as scanning electron microscopy (SEM) may obtain high resolution/contrast images at the cost of damaging or contaminating the sample. For example, to prevent the charging of organic substrate/matrix, a very thin layer of metal is coated on the surface, which will permanently contaminate the sample and eliminate the possibility of reusing it for following processes. Conversely, examining the sample without any modifications, in pursuit of high-fidelity digital images of its unperturbed state, can come at the cost of low-quality images that are challenging to process. Here, a solution is proposed for the case where no brightness threshold is available to reliably judge whether a region is covered with nanomaterials. The method examines local brightness variability to detect nanomaterial deposits. Very good agreement with manually obtained values of the coverage is observed, and a strong case is made for the method's automatability. Although the developed methodology is showcased in the context of SEM images of Polydimethylsiloxane (PDMS) substrates on which silicone dioxide (SiO<sub>2</sub>) nanoparticles are assembled, the underlying concepts may be extended to situations where straightforward brightness thresholding is not viable.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"267 ","pages":"Article 114048"},"PeriodicalIF":2.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical study on the effect of temperature gradient on contact-free scanning for scanning ion conductance microscopy 关于温度梯度对扫描离子电导显微镜非接触扫描影响的理论研究
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-09-14 DOI: 10.1016/j.ultramic.2024.114054
Zhiwu Wang , Jian Zhuang , Lidong Zhou , Hongjuan Li , Shaohui Ning , Xiaobo Liao

Scanning ion-conductance microscopy (SICM) is a non-contact, high-resolution, and in-situ scanning probe microscope technique, it can be operated in probing the physical and chemical properties of biological samples such as living cells. Recently, using SICM to study the effects of microenvironment changes such as temperature changes on response of the biological samples has attracted significant attention. However, in this temperature gradient condition, one of the crucial but still unclear issues is the scanning feedback types and safe threshold. In this paper, a theoretical study of effect of the temperature gradient in electrolyte or sample surface on the SICM safe ion-current threshold is conducted using three-dimensional Poisson-Nernst-Planck, Navier-Stokes and energy equations. Two temperature gradient types, sample surface and two types of pipettes with different ratio of inner and outer radii are included, respectively. The results demonstrate that the local temperature of the electrolyte and then sample surface significantly affect the ion flow, shape of the approach curves and thus safe threshold in SICM pipette probe for contact-free scanning. There is a current-increased and decreased phases for approaching the surface with higher temperature and two current-decreased phases for surface with lower temperature. Based on this shape feature of approach curves, the change rate of current is analysis to illustrate the possibility for contact-free scanning of slope object. The results indicate that with the decrease of the normalized tip-surface distance, the coupling effect of large slope angle and local high temperature makes the increase in change rate of ion current not significant and then it challenging to realize contact-free scanning especially for higher surface temperature.

扫描离子导电显微镜(SICM)是一种非接触、高分辨率、原位扫描探针显微镜技术,可用于探测活细胞等生物样品的物理和化学特性。近来,利用 SICM 研究微环境变化(如温度变化)对生物样本响应的影响已引起广泛关注。然而,在这种温度梯度条件下,扫描反馈类型和安全阈值是一个关键但仍不明确的问题。本文利用三维泊松-奈恩斯特-普朗克方程、纳维-斯托克斯方程和能量方程,对电解液或样品表面的温度梯度对 SICM 安全离子电流阈值的影响进行了理论研究。分别包括两种温度梯度类型、样品表面和两种内外半径比不同的移液管。结果表明,电解质和样品表面的局部温度会显著影响离子流、接近曲线的形状,进而影响 SICM 移液管探针进行非接触扫描的安全阈值。在接近温度较高的表面时,会出现一个电流增加和减少阶段,而在接近温度较低的表面时,会出现两个电流减少阶段。根据接近曲线的形状特征,分析了电流的变化率,以说明对斜面物体进行非接触扫描的可能性。结果表明,随着归一化针尖-表面距离的减小,大斜角和局部高温的耦合效应使得离子电流变化率的增加并不显著,因此实现无接触扫描具有挑战性,尤其是在表面温度较高的情况下。
{"title":"Theoretical study on the effect of temperature gradient on contact-free scanning for scanning ion conductance microscopy","authors":"Zhiwu Wang ,&nbsp;Jian Zhuang ,&nbsp;Lidong Zhou ,&nbsp;Hongjuan Li ,&nbsp;Shaohui Ning ,&nbsp;Xiaobo Liao","doi":"10.1016/j.ultramic.2024.114054","DOIUrl":"10.1016/j.ultramic.2024.114054","url":null,"abstract":"<div><p>Scanning ion-conductance microscopy (SICM) is a non-contact, high-resolution, and <em>in-situ</em> scanning probe microscope technique, it can be operated in probing the physical and chemical properties of biological samples such as living cells. Recently, using SICM to study the effects of microenvironment changes such as temperature changes on response of the biological samples has attracted significant attention. However, in this temperature gradient condition, one of the crucial but still unclear issues is the scanning feedback types and safe threshold. In this paper, a theoretical study of effect of the temperature gradient in electrolyte or sample surface on the SICM safe ion-current threshold is conducted using three-dimensional Poisson-Nernst-Planck, Navier-Stokes and energy equations. Two temperature gradient types, sample surface and two types of pipettes with different ratio of inner and outer radii are included, respectively. The results demonstrate that the local temperature of the electrolyte and then sample surface significantly affect the ion flow, shape of the approach curves and thus safe threshold in SICM pipette probe for contact-free scanning. There is a current-increased and decreased phases for approaching the surface with higher temperature and two current-decreased phases for surface with lower temperature. Based on this shape feature of approach curves, the change rate of current is analysis to illustrate the possibility for contact-free scanning of slope object. The results indicate that with the decrease of the normalized tip-surface distance, the coupling effect of large slope angle and local high temperature makes the increase in change rate of ion current not significant and then it challenging to realize contact-free scanning especially for higher surface temperature.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"267 ","pages":"Article 114054"},"PeriodicalIF":2.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximizing the notional area in single tip field emitters 最大化单尖端场发射器的名义面积
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-09-13 DOI: 10.1016/j.ultramic.2024.114049
Sergey V. Filippov , Fernando F. Dall’Agnol , Eugeni O. Popov , Anatoly G. Kolosko , Thiago A. de Assis

One of the critical aspects in advancing high-brightness field emitter devices is determining the conditions under which single-tip emitters should be constructed to optimize their emission area. Recent experiments have explored varying the axis ratio ξ of the cap of a single-tip emitter, ranging from an oblate semi-spheroid to a prolate shape, mounted on a nearly cylindrical conducting body. In this work, we present a strategy, based on high-accuracy computer simulations using the finite element technique, to maximize the emission area of those single-tip emitters. Importantly, our findings indicate that the notional emission area achieves its maximum when the emitter’s cap is adjusted to an oblate semi-spheroid with a characteristic axis ratio ξC0.85. We do a comparison of notional emission area as a function of ξ for an ellipsoidal emitter on a post and compare these results from other emitter configurations, which are feasible to fabricate.

推动高亮度场发射器设备发展的关键之一是确定单尖端发射器的构造条件,以优化其发射区域。最近的实验探索了改变安装在近似圆柱形导电体上的单尖发射器帽的轴比ξ,从扁球形半球形到长球形不等。在这项工作中,我们利用有限元技术,在高精度计算机模拟的基础上提出了一种策略,以最大限度地扩大这些单尖端发射器的发射面积。重要的是,我们的研究结果表明,当发射器的帽被调整为特征轴比ξC≈0.85的扁球形半球体时,名义发射面积达到最大。我们比较了立柱上椭圆形发射器的名义发射面积与 ξ 的函数关系,并将这些结果与其他可行的发射器配置进行了比较。
{"title":"Maximizing the notional area in single tip field emitters","authors":"Sergey V. Filippov ,&nbsp;Fernando F. Dall’Agnol ,&nbsp;Eugeni O. Popov ,&nbsp;Anatoly G. Kolosko ,&nbsp;Thiago A. de Assis","doi":"10.1016/j.ultramic.2024.114049","DOIUrl":"10.1016/j.ultramic.2024.114049","url":null,"abstract":"<div><p>One of the critical aspects in advancing high-brightness field emitter devices is determining the conditions under which single-tip emitters should be constructed to optimize their emission area. Recent experiments have explored varying the axis ratio <span><math><mi>ξ</mi></math></span> of the cap of a single-tip emitter, ranging from an oblate semi-spheroid to a prolate shape, mounted on a nearly cylindrical conducting body. In this work, we present a strategy, based on high-accuracy computer simulations using the finite element technique, to maximize the emission area of those single-tip emitters. Importantly, our findings indicate that the notional emission area achieves its maximum when the emitter’s cap is adjusted to an oblate semi-spheroid with a characteristic axis ratio <span><math><mrow><msub><mrow><mi>ξ</mi></mrow><mrow><mi>C</mi></mrow></msub><mo>≈</mo><mn>0</mn><mo>.</mo><mn>85</mn></mrow></math></span>. We do a comparison of notional emission area as a function of <span><math><mi>ξ</mi></math></span> for an ellipsoidal emitter on a post and compare these results from other emitter configurations, which are feasible to fabricate.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"267 ","pages":"Article 114049"},"PeriodicalIF":2.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomic resolution scanning transmission electron microscopy at liquid helium temperatures for quantum materials 液氦温度下用于量子材料的原子分辨率扫描透射电子显微镜
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-09-07 DOI: 10.1016/j.ultramic.2024.114039
Junsik Mun , Daniel Potemkin , Houk Jang , Suji Park , Stephen Mick , Cedomir Petrovic , Sang-Wook Cheong , Myung-Geun Han , Yimei Zhu

Fundamental quantum phenomena in condensed matter, ranging from correlated electron systems to quantum information processors, manifest their emergent characteristics and behaviors predominantly at low temperatures. This necessitates the use of liquid helium (LHe) cooling for experimental observation. Atomic resolution scanning transmission electron microscopy combined with LHe cooling (cryo-STEM) provides a powerful characterization technique to probe local atomic structural modulations and their coupling with charge, spin and orbital degrees-of-freedom in quantum materials. However, achieving atomic resolution in cryo-STEM is exceptionally challenging, primarily due to sample drifts arising from temperature changes and noises associated with LHe bubbling, turbulent gas flow, etc. In this work, we demonstrate atomic resolution cryo-STEM imaging at LHe temperatures using a commercial side-entry LHe cooling holder. Firstly, we examine STEM imaging performance as a function of He gas flow rate, identifying two primary noise sources: He-gas pulsing and He-gas bubbling. Secondly, we propose two strategies to achieve low noise conditions for atomic resolution STEM imaging: either by temporarily suppressing He gas flow rate using the needle valve or by acquiring images during the natural warming process. Lastly, we show the applications of image acquisition methods and image processing techniques in investigating structural phase transitions in Cr2Ge2Te6, CuIr2S4, and CrCl3. Our findings represent an advance in the field of atomic resolution electron microscopy imaging for quantum materials and devices at LHe temperatures, which can be applied to other commercial side-entry LHe cooling TEM holders.

凝聚态物质中的基本量子现象,从相关电子系统到量子信息处理器,主要在低温下表现出它们的突发性特征和行为。这就需要使用液氦(LHe)冷却进行实验观察。结合液氦冷却的原子分辨率扫描透射电子显微镜(低温扫描透射电子显微镜)提供了一种强大的表征技术,用于探测量子材料中的局部原子结构调制及其与电荷、自旋和轨道自由度的耦合。然而,要在低温-STEM 中实现原子分辨率却极具挑战性,这主要是由于温度变化引起的样品漂移以及与低温气泡、湍流气流等相关的噪音。在这项工作中,我们使用商用侧入式 LHe 冷却支架演示了 LHe 温度下的原子分辨率低温 STEM 成像。首先,我们研究了 STEM 成像性能与 He 气体流速的函数关系,确定了两个主要噪声源:氦气脉冲和氦气冒泡。其次,我们提出了实现原子分辨率 STEM 成像低噪声条件的两种策略:利用针阀暂时抑制氦气流速或在自然升温过程中获取图像。最后,我们展示了图像采集方法和图像处理技术在研究 Cr2Ge2Te6、CuIr2S4 和 CrCl3 结构相变中的应用。我们的研究成果代表了在 LHe 温度下对量子材料和器件进行原子分辨率电子显微镜成像领域的进步,可应用于其他商用侧入式 LHe 冷却 TEM 架。
{"title":"Atomic resolution scanning transmission electron microscopy at liquid helium temperatures for quantum materials","authors":"Junsik Mun ,&nbsp;Daniel Potemkin ,&nbsp;Houk Jang ,&nbsp;Suji Park ,&nbsp;Stephen Mick ,&nbsp;Cedomir Petrovic ,&nbsp;Sang-Wook Cheong ,&nbsp;Myung-Geun Han ,&nbsp;Yimei Zhu","doi":"10.1016/j.ultramic.2024.114039","DOIUrl":"10.1016/j.ultramic.2024.114039","url":null,"abstract":"<div><p>Fundamental quantum phenomena in condensed matter, ranging from correlated electron systems to quantum information processors, manifest their emergent characteristics and behaviors predominantly at low temperatures. This necessitates the use of liquid helium (LHe) cooling for experimental observation. Atomic resolution scanning transmission electron microscopy combined with LHe cooling (cryo-STEM) provides a powerful characterization technique to probe local atomic structural modulations and their coupling with charge, spin and orbital degrees-of-freedom in quantum materials. However, achieving atomic resolution in cryo-STEM is exceptionally challenging, primarily due to sample drifts arising from temperature changes and noises associated with LHe bubbling, turbulent gas flow, etc. In this work, we demonstrate atomic resolution cryo-STEM imaging at LHe temperatures using a commercial side-entry LHe cooling holder. Firstly, we examine STEM imaging performance as a function of He gas flow rate, identifying two primary noise sources: He-gas pulsing and He-gas bubbling. Secondly, we propose two strategies to achieve low noise conditions for atomic resolution STEM imaging: either by temporarily suppressing He gas flow rate using the needle valve or by acquiring images during the natural warming process. Lastly, we show the applications of image acquisition methods and image processing techniques in investigating structural phase transitions in Cr<sub>2</sub>Ge<sub>2</sub>Te<sub>6</sub>, CuIr<sub>2</sub>S<sub>4</sub>, and CrCl<sub>3</sub>. Our findings represent an advance in the field of atomic resolution electron microscopy imaging for quantum materials and devices at LHe temperatures, which can be applied to other commercial side-entry LHe cooling TEM holders.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"267 ","pages":"Article 114039"},"PeriodicalIF":2.1,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Ultramicroscopy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1