首页 > 最新文献

Ultramicroscopy最新文献

英文 中文
Standardization and quantification of backscattered electron imaging in scanning electron microscopy 扫描电子显微镜中背散射电子成像的标准化和量化
IF 2.2 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-04-26 DOI: 10.1016/j.ultramic.2024.113982
Shih-Ming Wang , Yu-Cheng Chiu , Yu-Hsin Wu , Bo-Yi Chen , I-Ling Chang , Chih-Wei Chang

Backscattered electron (BSE) imaging based on scanning electron microscopy (SEM) has been widely used in scientific and industrial disciplines. However, achieving consistent standards and precise quantification in BSE images has proven to be a long-standing challenge. Previous methods incorporating dedicated calibration processes and Monte Carlo simulations have still posed practical limitations for widespread adoption. Here we introduce a bolometer platform that directly measures the absorbed thermal energy of the sample and demonstrates that it can help to analyze the atomic number (Z) of the investigated samples. The technique, named Atomic Number Electron Microscopy (ZEM), employs the conservation of energy as the foundation of standardization and can serve as a nearly ideal BSE detector. Our approach combines the strengths of both BSE and ZEM detectors, simplifying quantitative analysis for samples of various shapes and sizes. The complementary relation between the ZEM and BSE signals also makes the detection of light elements or compounds more accessible than existing microanalysis techniques.

基于扫描电子显微镜(SEM)的背散射电子(BSE)成像技术已广泛应用于科学和工业领域。然而,事实证明,在 BSE 图像中实现一致的标准和精确的量化是一项长期的挑战。以前采用的方法包括专门的校准过程和蒙特卡罗模拟,但这些方法在实际应用中仍然受到限制。在这里,我们介绍了一种直接测量样品吸收热能的原子辐射计平台,并证明它有助于分析所研究样品的原子序数(Z)。这项技术被命名为原子序数电子显微镜(ZEM),采用能量守恒作为标准化的基础,可作为近乎理想的 BSE 探测器。我们的方法结合了 BSE 和 ZEM 探测器的优势,简化了对各种形状和大小样品的定量分析。ZEM 和 BSE 信号之间的互补关系也使得轻元素或化合物的检测比现有的微分析技术更容易实现。
{"title":"Standardization and quantification of backscattered electron imaging in scanning electron microscopy","authors":"Shih-Ming Wang ,&nbsp;Yu-Cheng Chiu ,&nbsp;Yu-Hsin Wu ,&nbsp;Bo-Yi Chen ,&nbsp;I-Ling Chang ,&nbsp;Chih-Wei Chang","doi":"10.1016/j.ultramic.2024.113982","DOIUrl":"https://doi.org/10.1016/j.ultramic.2024.113982","url":null,"abstract":"<div><p>Backscattered electron (BSE) imaging based on scanning electron microscopy (SEM) has been widely used in scientific and industrial disciplines. However, achieving consistent standards and precise quantification in BSE images has proven to be a long-standing challenge. Previous methods incorporating dedicated calibration processes and Monte Carlo simulations have still posed practical limitations for widespread adoption. Here we introduce a bolometer platform that directly measures the absorbed thermal energy of the sample and demonstrates that it can help to analyze the atomic number (<em>Z</em>) of the investigated samples. The technique, named Atomic Number Electron Microscopy (ZEM), employs the conservation of energy as the foundation of standardization and can serve as a nearly ideal BSE detector. Our approach combines the strengths of both BSE and ZEM detectors, simplifying quantitative analysis for samples of various shapes and sizes. The complementary relation between the ZEM and BSE signals also makes the detection of light elements or compounds more accessible than existing microanalysis techniques.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140816151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic domain wall dynamics studied by in-situ lorentz microscopy with aid of custom-made Hall-effect sensor holder 借助定制霍尔效应传感器支架,通过原位洛伦兹显微镜研究磁畴壁动力学
IF 2.2 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-04-26 DOI: 10.1016/j.ultramic.2024.113979
Mari Honkanen , Henri Lukinmaa , Sami Kaappa , Suvi Santa-aho , Jaakko Kajan , Samuli Savolainen , Lucio Azzari , Lasse Laurson , Mikko Palosaari , Minnamari Vippola

We built a custom-made holder with a Hall-effect sensor to measure the single point magnetic flux density inside a transmission electron microscope (TEM, JEM-F200, JEOL). The measurement point is at the same place as the sample inside the TEM. We utilized information collected with the Hall-effect sensor holder to study magnetic domain wall (DW) dynamics by in-situ Lorentz microscopy. We generated an external magnetic field to the sample using the objective lens (OL) of the TEM. Based on our measurements with the Hall-effect sensor holder, the OL has nearly linear response, and when it is switched off, the strength of the magnetic field in the sample region is very close to 0 mT.

A ferritic-pearlitic sample studied has globular and lamellar cementite (Fe3C) carbides in the ferrite matrix. Based on the in-situ Lorentz microscopy experiments, DWs in the ferritic matrix perpendicular to the lamellar carbides start to move first at ∼10 mT. At 160 mT, DWs inside the globular carbide start to disappear, and the saturation occurs at ∼210 mT. At 288 mT, the DWs parallel to the lamellar carbides still exist. Thus, these lamellar carbides are very strong pinning sites for DWs. We also run dynamical micromagnetic simulations to reproduce the DW disappearance in the globular carbide. As in the in-situ experiments, the DWs stay stable until the external field reaches the magnitude of 160 mT, and the DWs disappear before the field is 214 mT. In general, the micromagnetic simulations supported very well the interpretation of the experimental findings.

我们定制了一个带有霍尔效应传感器的支架,用于测量透射电子显微镜(TEM,JEM-F200,JEOL)内的单点磁通密度。测量点与 TEM 内的样品位于同一位置。我们利用霍尔效应传感器支架收集的信息,通过原位洛伦兹显微镜研究磁畴壁(DW)动力学。我们利用 TEM 的物镜 (OL) 对样品产生外部磁场。根据我们使用霍尔效应传感器支架进行的测量,OL 具有近乎线性的响应,当其关闭时,样品区域的磁场强度非常接近 0 mT。根据原位洛伦兹显微镜实验,铁素体基体中垂直于片状碳化物的 DW 在 ∼10 mT 时首先开始移动。160 mT 时,球状碳化物内部的 DW 开始消失,210 mT 时达到饱和。在 288 mT 时,与片状碳化物平行的 DW 仍然存在。因此,这些片状碳化物是 DWs 非常强的钉扎点。我们还进行了动态微磁模拟,以再现球状碳化物中 DW 的消失。与原位实验一样,DWs 在外部磁场强度达到 160 mT 之前保持稳定,而在磁场强度达到 214 mT 之前就会消失。总的来说,微磁模拟很好地支持了对实验结果的解释。
{"title":"Magnetic domain wall dynamics studied by in-situ lorentz microscopy with aid of custom-made Hall-effect sensor holder","authors":"Mari Honkanen ,&nbsp;Henri Lukinmaa ,&nbsp;Sami Kaappa ,&nbsp;Suvi Santa-aho ,&nbsp;Jaakko Kajan ,&nbsp;Samuli Savolainen ,&nbsp;Lucio Azzari ,&nbsp;Lasse Laurson ,&nbsp;Mikko Palosaari ,&nbsp;Minnamari Vippola","doi":"10.1016/j.ultramic.2024.113979","DOIUrl":"https://doi.org/10.1016/j.ultramic.2024.113979","url":null,"abstract":"<div><p>We built a custom-made holder with a Hall-effect sensor to measure the single point magnetic flux density inside a transmission electron microscope (TEM, JEM-F200, JEOL). The measurement point is at the same place as the sample inside the TEM. We utilized information collected with the Hall-effect sensor holder to study magnetic domain wall (DW) dynamics by <em>in-situ</em> Lorentz microscopy. We generated an external magnetic field to the sample using the objective lens (OL) of the TEM. Based on our measurements with the Hall-effect sensor holder, the OL has nearly linear response, and when it is switched off, the strength of the magnetic field in the sample region is very close to 0 mT.</p><p>A ferritic-pearlitic sample studied has globular and lamellar cementite (Fe<sub>3</sub>C) carbides in the ferrite matrix. Based on the <em>in-situ</em> Lorentz microscopy experiments, DWs in the ferritic matrix perpendicular to the lamellar carbides start to move first at ∼10 mT. At 160 mT, DWs inside the globular carbide start to disappear, and the saturation occurs at ∼210 mT. At 288 mT, the DWs parallel to the lamellar carbides still exist. Thus, these lamellar carbides are very strong pinning sites for DWs. We also run dynamical micromagnetic simulations to reproduce the DW disappearance in the globular carbide. As in the <em>in-situ</em> experiments, the DWs stay stable until the external field reaches the magnitude of 160 mT, and the DWs disappear before the field is 214 mT. In general, the micromagnetic simulations supported very well the interpretation of the experimental findings.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399124000585/pdfft?md5=83afb159438d4d13ebbbcee41c7d1bf4&pid=1-s2.0-S0304399124000585-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140822818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elemental quantification using electron energy-loss spectroscopy with a low voltage scanning transmission electron microscope (STEM-EELS) 利用低电压扫描透射电子显微镜(STEM-EELS)进行电子能量损失光谱元素定量分析
IF 2.2 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-04-23 DOI: 10.1016/j.ultramic.2024.113977
Nicolas Dumaresq, Nicolas Brodusch, Stéphanie Bessette, Raynald Gauvin

Electron beam damage in electron microscopes is becoming more and more problematic in material research with the increasing demand of characterization of new beam sensitive material such as Li based compounds used in lithium-ion batteries. To avoid radiolysis damage, it has become common practice to use Cryo-EM, however, knock-on damage can still occur in conventional TEM/STEM with a high-accelerating voltage (200–300 keV). In this work, electron energy loss spectroscopy with an accelerating voltage of 30,20 and 10 keV was explored with h-BN, TiB2 and TiN compounds. All Ti L2,3, N K and B K edges were successfully observed with an accelerating voltage as low as 10 keV. An accurate elemental quantification for all three samples was obtained using a multi-linear least square (MLLS) procedure which gives at most a 5 % of standard deviation which is well within the error of the computation of the inelastic partial-cross section used for the quantification. These results show the great potential of using low-voltage EELS which is another step towards a knock-on damage free analysis.

随着对新型光束敏感材料(如锂离子电池中使用的锂基化合物)表征需求的不断增加,电子显微镜中的电子束损伤问题在材料研究中变得越来越严重。为了避免辐射损伤,使用低温电子显微镜(Cryo-EM)已成为一种常见的做法,但在传统的 TEM/STEM 中,高加速电压(200-300 keV)仍可能会产生连锁损伤。在这项工作中,对 h-BN、TiB2 和 TiN 化合物在 30、20 和 10 keV 加速电压下的电子能量损失光谱进行了探索。在低至 10 keV 的加速电压下,成功观测到了所有 Ti L2、3、N K 和 B K 边缘。使用多线性最小平方(MLLS)程序对所有三种样品进行了精确的元素定量,其标准偏差最多为 5%,完全在用于定量的非弹性部分截面计算误差范围之内。这些结果表明了使用低电压 EELS 的巨大潜力,这是向无损分析迈出的又一步。
{"title":"Elemental quantification using electron energy-loss spectroscopy with a low voltage scanning transmission electron microscope (STEM-EELS)","authors":"Nicolas Dumaresq,&nbsp;Nicolas Brodusch,&nbsp;Stéphanie Bessette,&nbsp;Raynald Gauvin","doi":"10.1016/j.ultramic.2024.113977","DOIUrl":"10.1016/j.ultramic.2024.113977","url":null,"abstract":"<div><p>Electron beam damage in electron microscopes is becoming more and more problematic in material research with the increasing demand of characterization of new beam sensitive material such as Li based compounds used in lithium-ion batteries. To avoid radiolysis damage, it has become common practice to use Cryo-EM, however, knock-on damage can still occur in conventional TEM/STEM with a high-accelerating voltage (200–300 keV). In this work, electron energy loss spectroscopy with an accelerating voltage of 30,20 and 10 keV was explored with h-BN, TiB<sub>2</sub> and TiN compounds. All Ti L<sub>2,3,</sub> N K and B K edges were successfully observed with an accelerating voltage as low as 10 keV. An accurate elemental quantification for all three samples was obtained using a multi-linear least square (MLLS) procedure which gives at most a 5 % of standard deviation which is well within the error of the computation of the inelastic partial-cross section used for the quantification. These results show the great potential of using low-voltage EELS which is another step towards a knock-on damage free analysis.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399124000561/pdfft?md5=fad0fa2101ee5d52c4d660db2954c7b3&pid=1-s2.0-S0304399124000561-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140764916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of magnetic field on electron beam-induced Coulomb explosion of gold microparticles in transmission electron microscopy 磁场对透射电子显微镜下电子束诱导的金微粒库仑爆炸的影响
IF 2.2 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-04-22 DOI: 10.1016/j.ultramic.2024.113978
Wen Feng , Thomas Gemming , Lars Giebeler , Jiang Qu , Kristina Weinel , Leonardo Agudo Jácome , Bernd Büchner , Ignacio Gonzalez-Martinez

In this work we instigated the fragmentation of Au microparticles supported on a thin amorphous carbon film by irradiating them with a gradually convergent electron beam inside the Transmission Electron Microscope. This phenomenon has been generically labeled as “electron beam-induced fragmentation” or EBIF and its physical origin remains contested. On the one hand, EBIF has been primarily characterized as a consequence of beam-induced heating. On the other, EBIF has been attributed to beam-induced charging eventually leading to Coulomb explosion. To test the feasibility of the charging framework for EBIF, we instigated the fragmentation of Au particles under two different experimental conditions. First, with the magnetic objective lens of the microscope operating at full capacity, i.e. background magnetic field B=2 T, and with the magnetic objective lens switched off (Lorenz mode), i.e. B=0 T. We observe that the presence or absence of the magnetic field noticeably affects the critical current density at which EBIF occurs. This strongly suggests that magnetic field effects play a crucial role in instigating EBIF on the microparticles. The dependence of the value of the critical current density on the absence or presence of an ambient magnetic field cannot be accounted for by the beam-induced heating model. Consequently, this work presents robust experimental evidence suggesting that Coulomb explosion driven by electrostatic charging is the root cause of EBIF.

在这项工作中,我们在透射电子显微镜内用逐渐会聚的电子束照射支撑在无定形碳薄膜上的金微粒,使其碎裂。这种现象被通称为 "电子束诱导碎裂 "或 EBIF,其物理起源仍存在争议。一方面,EBIF 主要被描述为电子束诱导加热的结果。另一方面,EBIF 被认为是束流诱导充电最终导致库仑爆炸的结果。为了测试 EBIF 充电框架的可行性,我们在两种不同的实验条件下对金粒子进行了碎裂试验。首先,显微镜的磁性物镜满负荷工作,即背景磁场 B=2 T,然后关闭磁性物镜(洛伦兹模式),即 B=0T。这有力地表明,磁场效应在诱发微颗粒上的 EBIF 方面起着至关重要的作用。临界电流密度值与环境磁场存在与否的关系无法用光束诱导加热模型来解释。因此,这项研究提出了强有力的实验证据,表明静电荷驱动的库仑爆炸是 EBIF 的根本原因。
{"title":"Influence of magnetic field on electron beam-induced Coulomb explosion of gold microparticles in transmission electron microscopy","authors":"Wen Feng ,&nbsp;Thomas Gemming ,&nbsp;Lars Giebeler ,&nbsp;Jiang Qu ,&nbsp;Kristina Weinel ,&nbsp;Leonardo Agudo Jácome ,&nbsp;Bernd Büchner ,&nbsp;Ignacio Gonzalez-Martinez","doi":"10.1016/j.ultramic.2024.113978","DOIUrl":"10.1016/j.ultramic.2024.113978","url":null,"abstract":"<div><p>In this work we instigated the fragmentation of Au microparticles supported on a thin amorphous carbon film by irradiating them with a gradually convergent electron beam inside the Transmission Electron Microscope. This phenomenon has been generically labeled as “electron beam-induced fragmentation” or EBIF and its physical origin remains contested. On the one hand, EBIF has been primarily characterized as a consequence of beam-induced heating. On the other, EBIF has been attributed to beam-induced charging eventually leading to Coulomb explosion. To test the feasibility of the charging framework for EBIF, we instigated the fragmentation of Au particles under two different experimental conditions. First, with the magnetic objective lens of the microscope operating at full capacity, i.e. background magnetic field <span><math><mrow><mi>B</mi><mo>=</mo><mn>2</mn></mrow></math></span> T, and with the magnetic objective lens switched off (Lorenz mode), i.e. <span><math><mrow><mi>B</mi><mo>=</mo><mn>0</mn></mrow></math></span> T. We observe that the presence or absence of the magnetic field noticeably affects the critical current density at which EBIF occurs. This strongly suggests that magnetic field effects play a crucial role in instigating EBIF on the microparticles. The dependence of the value of the critical current density on the absence or presence of an ambient magnetic field cannot be accounted for by the beam-induced heating model. Consequently, this work presents robust experimental evidence suggesting that Coulomb explosion driven by electrostatic charging is the root cause of EBIF.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399124000573/pdfft?md5=7bafb5ee66d165bca9838748743ecd51&pid=1-s2.0-S0304399124000573-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140778265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ghostbuster: A phase retrieval diffraction tomography algorithm for cryo-EM 幽灵克星用于低温电子显微镜的相位检索衍射层析成像算法
IF 2.2 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-04-12 DOI: 10.1016/j.ultramic.2024.113962
Joel Yeo , Benedikt J. Daurer , Dari Kimanius , Deepan Balakrishnan , Tristan Bepler , Yong Zi Tan , N. Duane Loh

Ewald sphere curvature correction, which extends beyond the projection approximation, stretches the shallow depth of field in cryo-EM reconstructions of thick particles. Here we show that even for previously assumed thin particles, reconstruction artifacts which we refer to as ghosts can appear. By retrieving the lost phases of the electron exitwaves and accounting for the first Born approximation scattering within the particle, we show that these ghosts can be effectively eliminated. Our simulations demonstrate how such ghostbusting can improve reconstructions as compared to existing state-of-the-art software. Like ptychographic cryo-EM, our Ghostbuster algorithm uses phase retrieval to improve reconstructions, but unlike the former, we do not need to modify the existing data acquisition pipelines.

埃瓦尔德球曲率校正超越了投影近似,它拉伸了厚颗粒低温电子显微镜重建的浅景深。在这里,我们展示了即使是先前假定的薄粒子,也会出现我们称之为鬼影的重建伪影。通过找回电子出口波的丢失相位并考虑粒子内部的第一玻恩近似散射,我们证明可以有效消除这些鬼影。我们的模拟结果表明,与现有的最先进软件相比,这种消除幽灵的方法可以改善重建效果。与层析低温电子显微镜一样,我们的 "鬼影克星 "算法也使用相位检索来改进重构,但与前者不同的是,我们不需要修改现有的数据采集管道。
{"title":"Ghostbuster: A phase retrieval diffraction tomography algorithm for cryo-EM","authors":"Joel Yeo ,&nbsp;Benedikt J. Daurer ,&nbsp;Dari Kimanius ,&nbsp;Deepan Balakrishnan ,&nbsp;Tristan Bepler ,&nbsp;Yong Zi Tan ,&nbsp;N. Duane Loh","doi":"10.1016/j.ultramic.2024.113962","DOIUrl":"https://doi.org/10.1016/j.ultramic.2024.113962","url":null,"abstract":"<div><p>Ewald sphere curvature correction, which extends beyond the projection approximation, stretches the shallow depth of field in cryo-EM reconstructions of thick particles. Here we show that even for previously assumed thin particles, reconstruction artifacts which we refer to as ghosts can appear. By retrieving the lost phases of the electron exitwaves and accounting for the first Born approximation scattering within the particle, we show that these ghosts can be effectively eliminated. Our simulations demonstrate how such ghostbusting can improve reconstructions as compared to existing state-of-the-art software. Like ptychographic cryo-EM, our Ghostbuster algorithm uses phase retrieval to improve reconstructions, but unlike the former, we do not need to modify the existing data acquisition pipelines.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S030439912400041X/pdfft?md5=91e0f31479bb50ea667d5e0e1ca4e2e3&pid=1-s2.0-S030439912400041X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140618811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A soft touch with electron beams: Digging out structural information of nanomaterials with advanced scanning low energy electron microscopy coupled with deep learning 电子束的柔软触感:利用先进的扫描低能电子显微镜和深度学习挖掘纳米材料的结构信息
IF 2.2 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-04-10 DOI: 10.1016/j.ultramic.2024.113965
Eliška Materna Mikmeková , Jiří Materna , Ivo Konvalina , Šárka Mikmeková , Ilona Müllerová , Tewodros Asefa

Nanostructured materials continue to find applications in various electronic and sensing devices, chromatography, separations, drug delivery, renewable energy, and catalysis. While major advancements on the synthesis and characterization of these materials have already been made, getting information about their structures at sub-nanometer resolution remains challenging. It is also unfortunate to find that many emerging or already available powerful analytical methods take time to be fully adopted for characterization of various nanomaterials. The scanning low energy electron microscopy (SLEEM) is a good example to this. In this report, we show how clearer structural and surface information at nanoscale can be obtained by SLEEM, coupled with deep learning. The method is demonstrated using Au nanoparticles-loaded mesoporous silica as a model system. Moreover, unlike conventional scanning electron microscopy (SEM), SLEEM does not require the samples to be coated with conductive films for analysis; thus, not only it is convenient to use but it also does not give artifacts. The results further reveal that SLEEM and deep learning can serve as great tools to analyze materials at nanoscale well. The biggest advantage of the presented method is its availability, as most modern SEMs are able to operate at low energies and deep learning methods are already being widely used in many fields.

纳米结构材料在各种电子和传感设备、色谱、分离、药物输送、可再生能源和催化等领域不断得到应用。虽然在这些材料的合成和表征方面已经取得了重大进展,但以亚纳米分辨率获取有关其结构的信息仍然具有挑战性。同样令人遗憾的是,许多新兴的或已有的强大分析方法需要一段时间才能完全用于表征各种纳米材料。扫描低能电子显微镜(SLEEM)就是一个很好的例子。在本报告中,我们展示了如何通过 SLEEM 并结合深度学习获得更清晰的纳米级结构和表面信息。该方法以金纳米颗粒负载的介孔二氧化硅为模型系统进行了演示。此外,与传统的扫描电子显微镜(SEM)不同,SLEEM 无需在样品上涂覆导电膜即可进行分析,因此不仅使用方便,而且不会产生伪影。研究结果进一步表明,SLEEM 和深度学习可以很好地作为分析纳米级材料的工具。所介绍方法的最大优势在于其可用性,因为大多数现代扫描电子显微镜都能在低能量下工作,而且深度学习方法已在许多领域得到广泛应用。
{"title":"A soft touch with electron beams: Digging out structural information of nanomaterials with advanced scanning low energy electron microscopy coupled with deep learning","authors":"Eliška Materna Mikmeková ,&nbsp;Jiří Materna ,&nbsp;Ivo Konvalina ,&nbsp;Šárka Mikmeková ,&nbsp;Ilona Müllerová ,&nbsp;Tewodros Asefa","doi":"10.1016/j.ultramic.2024.113965","DOIUrl":"https://doi.org/10.1016/j.ultramic.2024.113965","url":null,"abstract":"<div><p>Nanostructured materials continue to find applications in various electronic and sensing devices, chromatography, separations, drug delivery, renewable energy, and catalysis. While major advancements on the synthesis and characterization of these materials have already been made, getting information about their structures at sub-nanometer resolution remains challenging. It is also unfortunate to find that many emerging or already available powerful analytical methods take time to be fully adopted for characterization of various nanomaterials. The scanning low energy electron microscopy (SLEEM) is a good example to this. In this report, we show how clearer structural and surface information at nanoscale can be obtained by SLEEM, coupled with deep learning. The method is demonstrated using Au nanoparticles-loaded mesoporous silica as a model system. Moreover, unlike conventional scanning electron microscopy (SEM), SLEEM does not require the samples to be coated with conductive films for analysis; thus, not only it is convenient to use but it also does not give artifacts. The results further reveal that SLEEM and deep learning can serve as great tools to analyze materials at nanoscale well. The biggest advantage of the presented method is its availability, as most modern SEMs are able to operate at low energies and deep learning methods are already being widely used in many fields.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140605755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strain visualization using large-angle convergent-beam electron diffraction 利用大角度会聚束电子衍射实现应变可视化
IF 2.2 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-04-10 DOI: 10.1016/j.ultramic.2024.113966
Fumihiko Uesugi , Chiaki Tanii , Naoyuki Sugiyama , Masaki Takeguchi

In this study, we report a strain visualization method using large-angle convergent-beam electron diffraction (LACBED).1 We compare the proposed method with the strain maps acquired via STEM-NBD, a combination of scanning transmission electron microscopy (STEM) and nanobeam electron diffraction (NBD). Although STEM-NBD can precisely measure the lattice parameters, it requires a large amount of data and personal computer (PC) resources to obtain a two-dimensional strain map. Deficiency lines in the transmitted disk of LACBED reflect the crystalline structure information and move, curve, or disappear in the deformed area. Properly setting the optical conditions makes it possible to acquire real-space images over a broad area in conjunction with deficiency lines on the transmitted disk. The proposed method acquires images by changing the relative position between the specimen and the deficiency line and can grasp the strain information with a small number of images. In addition, the proposed method does not require high-resolution images. It can reduce the required PC memory or storage consumption in comparison with that of STEM-NBD, which requires a high-resolution diffraction pattern (DP) from each point of the region of interest. Compared with the two-dimensional maps of LACBED and NBD, NBD could detect large distortions in the area where the deficiency line curved, moved, or disappeared. The curving or moving direction of the deficiency line is qualitatively consistent with the NBD results. If quantitative strain values are not essential, strain visualization using LACBED can be considered an effective technique. We believe that the strain information of a sample can be obtained effectively using both methods.

在本研究中,我们报告了一种利用大角度汇聚束电子衍射(LACBED)的应变可视化方法1 。我们将所提出的方法与通过 STEM-NBD (扫描透射电子显微镜(STEM)和纳米束电子衍射(NBD)的组合)获得的应变图进行了比较。虽然 STEM-NBD 可以精确测量晶格参数,但它需要大量数据和个人计算机(PC)资源才能获得二维应变图。LACBED 透射盘中的缺陷线反映了晶体结构信息,并在变形区域移动、弯曲或消失。通过适当设置光学条件,可以结合透射盘上的缺陷线获取大范围的实空间图像。建议的方法通过改变试样与缺损线之间的相对位置来获取图像,只需少量图像即可掌握应变信息。此外,建议的方法不需要高分辨率图像。与需要从感兴趣区域的每个点获取高分辨率衍射图样(DP)的 STEM-NBD 相比,它可以减少所需的 PC 内存或存储消耗。与 LACBED 和 NBD 的二维地图相比,NBD 可以检测到缺陷线弯曲、移动或消失区域的大变形。缺陷线的弯曲或移动方向与 NBD 的结果在性质上是一致的。如果定量应变值不是必需的,使用 LACBED 进行应变可视化也不失为一种有效的技术。我们相信,使用这两种方法都能有效地获得样品的应变信息。
{"title":"Strain visualization using large-angle convergent-beam electron diffraction","authors":"Fumihiko Uesugi ,&nbsp;Chiaki Tanii ,&nbsp;Naoyuki Sugiyama ,&nbsp;Masaki Takeguchi","doi":"10.1016/j.ultramic.2024.113966","DOIUrl":"https://doi.org/10.1016/j.ultramic.2024.113966","url":null,"abstract":"<div><p>In this study, we report a strain visualization method using large-angle convergent-beam electron diffraction (LACBED).<span><sup>1</sup></span> We compare the proposed method with the strain maps acquired via STEM-NBD, a combination of scanning transmission electron microscopy (STEM) and nanobeam electron diffraction (NBD). Although STEM-NBD can precisely measure the lattice parameters, it requires a large amount of data and personal computer (PC) resources to obtain a two-dimensional strain map. Deficiency lines in the transmitted disk of LACBED reflect the crystalline structure information and move, curve, or disappear in the deformed area. Properly setting the optical conditions makes it possible to acquire real-space images over a broad area in conjunction with deficiency lines on the transmitted disk. The proposed method acquires images by changing the relative position between the specimen and the deficiency line and can grasp the strain information with a small number of images. In addition, the proposed method does not require high-resolution images. It can reduce the required PC memory or storage consumption in comparison with that of STEM-NBD, which requires a high-resolution diffraction pattern (DP) from each point of the region of interest. Compared with the two-dimensional maps of LACBED and NBD, NBD could detect large distortions in the area where the deficiency line curved, moved, or disappeared. The curving or moving direction of the deficiency line is qualitatively consistent with the NBD results. If quantitative strain values are not essential, strain visualization using LACBED can be considered an effective technique. We believe that the strain information of a sample can be obtained effectively using both methods.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140549190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secondary-electron imaging of bulk crystalline specimens in an aberration corrected STEM 在畸变校正 STEM 中对块状晶体试样进行二次电子成像
IF 2.2 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-04-10 DOI: 10.1016/j.ultramic.2024.113967
Sooyeon Hwang , Lijun Wu , Kim Kisslinger , Judith Yang , Ray Egerton , Yimei Zhu

Atomic-scale electron microscopy traditionally probes thin specimens, with thickness below 100 nm, and its feasibility for bulk samples has not been documented. In this study, we explore the practicality of scanning transmission electron microscope (STEM) imaging with secondary electrons (SE), using a silicon-wedge specimen having a maximum thickness of 18 μm. We find that the atomic structure is present in the entire thickness range of the SE images although the background intensity increases moderately with thickness. The consistent intensity of secondary electron (SE) images at atomic positions and the modest increase in background intensity observed in silicon suggest a limited contribution from SEs generated by backscattered electrons, a conclusion supported by our multislice calculations. We conclude that achieving atomic resolution in SE imaging for bulk specimens is indeed attainable using aberration-corrected STEM and an aberration-corrected scanning electron microscope (SEM) may have the capacity for atomic-level resolution, holding great promise for future strides in materials research.

原子尺度电子显微镜传统上用于探测厚度低于 100 纳米的薄型试样,其对大块试样的可行性尚未得到证实。在这项研究中,我们利用最大厚度为 18 μm 的硅楔试样,探索了利用二次电子(SE)进行扫描透射电子显微镜(STEM)成像的实用性。我们发现,虽然背景强度随厚度的增加而适度增加,但原子结构存在于 SE 图像的整个厚度范围内。在硅中观察到的原子位置上的二次电子(SE)图像强度一致,背景强度适度增加,这表明后向散射电子产生的 SE 的贡献有限,我们的多片计算也支持这一结论。我们的结论是,使用像差校正 STEM 确实可以实现大块试样 SE 成像的原子分辨率,而像差校正扫描电子显微镜 (SEM) 可能具有原子级分辨率的能力,这为未来材料研究的长足进步带来了巨大希望。
{"title":"Secondary-electron imaging of bulk crystalline specimens in an aberration corrected STEM","authors":"Sooyeon Hwang ,&nbsp;Lijun Wu ,&nbsp;Kim Kisslinger ,&nbsp;Judith Yang ,&nbsp;Ray Egerton ,&nbsp;Yimei Zhu","doi":"10.1016/j.ultramic.2024.113967","DOIUrl":"https://doi.org/10.1016/j.ultramic.2024.113967","url":null,"abstract":"<div><p>Atomic-scale electron microscopy traditionally probes thin specimens, with thickness below 100 nm, and its feasibility for bulk samples has not been documented. In this study, we explore the practicality of scanning transmission electron microscope (STEM) imaging with secondary electrons (SE), using a silicon-wedge specimen having a maximum thickness of 18 μm. We find that the atomic structure is present in the entire thickness range of the SE images although the background intensity increases moderately with thickness. The consistent intensity of secondary electron (SE) images at atomic positions and the modest increase in background intensity observed in silicon suggest a limited contribution from SEs generated by backscattered electrons, a conclusion supported by our multislice calculations. We conclude that achieving atomic resolution in SE imaging for bulk specimens is indeed attainable using aberration-corrected STEM and an aberration-corrected scanning electron microscope (SEM) may have the capacity for atomic-level resolution, holding great promise for future strides in materials research.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140549191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-resolution scanning tunneling microscope and its adaptation for local thermopower measurements in 2D materials 高分辨率扫描隧道显微镜及其在二维材料局部热功率测量中的应用
IF 2.2 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-04-09 DOI: 10.1016/j.ultramic.2024.113963
Jose D. Bermúdez-Perez , Edwin Herrera-Vasco , Javier Casas-Salgado , Hector A. Castelblanco , Karen Vega-Bustos , Gabriel Cardenas-Chirivi , Oscar L. Herrera-Sandoval , Hermann Suderow , Paula Giraldo-Gallo , Jose Augusto Galvis

We present the design, fabrication and discuss the performance of a new combined high-resolution Scanning Tunneling and Thermopower Microscope (STM/SThEM). We also describe the development of the electronic control, the user interface, the vacuum system, and arrangements to reduce acoustical noise and vibrations. We demonstrate the microscope’s performance with atomic-resolution topographic images of highly oriented pyrolytic graphite (HOPG) and local thermopower measurements in the semimetal Bi2Te3. Our system offers a tool to investigate the relationship between electronic structure and thermoelectric properties at the nanoscale.

我们介绍了新型组合式高分辨率扫描隧道显微镜和热动力显微镜(STM/SThEM)的设计、制造和性能讨论。我们还介绍了电子控制、用户界面、真空系统的开发,以及减少声学噪音和振动的安排。我们通过高取向热解石墨 (HOPG) 的原子分辨率形貌图像和半金属 Bi2Te3 的局部热功率测量,展示了显微镜的性能。我们的系统为研究纳米尺度电子结构与热电特性之间的关系提供了一种工具。
{"title":"High-resolution scanning tunneling microscope and its adaptation for local thermopower measurements in 2D materials","authors":"Jose D. Bermúdez-Perez ,&nbsp;Edwin Herrera-Vasco ,&nbsp;Javier Casas-Salgado ,&nbsp;Hector A. Castelblanco ,&nbsp;Karen Vega-Bustos ,&nbsp;Gabriel Cardenas-Chirivi ,&nbsp;Oscar L. Herrera-Sandoval ,&nbsp;Hermann Suderow ,&nbsp;Paula Giraldo-Gallo ,&nbsp;Jose Augusto Galvis","doi":"10.1016/j.ultramic.2024.113963","DOIUrl":"https://doi.org/10.1016/j.ultramic.2024.113963","url":null,"abstract":"<div><p>We present the design, fabrication and discuss the performance of a new combined high-resolution Scanning Tunneling and Thermopower Microscope (STM/SThEM). We also describe the development of the electronic control, the user interface, the vacuum system, and arrangements to reduce acoustical noise and vibrations. We demonstrate the microscope’s performance with atomic-resolution topographic images of highly oriented pyrolytic graphite (HOPG) and local thermopower measurements in the semimetal <span><math><mrow><msub><mrow><mi>Bi</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>Te</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>. Our system offers a tool to investigate the relationship between electronic structure and thermoelectric properties at the nanoscale.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140548240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive under-sampling strategy for fast imaging in compressive sensing-based atomic force microscopy 基于压缩传感的原子力显微镜中快速成像的自适应欠采样策略
IF 2.2 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2024-04-02 DOI: 10.1016/j.ultramic.2024.113964
Peng Cheng , Yingzi Li , Rui Lin , Yifan Hu , Xiaodong Gao , Jianqiang Qian , Wendong Sun , Quan Yuan

Compressive sensing (CS) can reconstruct the rest information almost without distortion by advanced computational algorithm, which significantly simplifies the process of atomic force microscope (AFM) scanning with high imaging quality. In common CS-AFM, the partial measurements randomly come from the whole region to be measured, which easily leads to detail loss and poor image quality in regions of interest (ROIs). Consequently, important microscopic phenomena are missed probably. In this paper, we developed an adaptive under-sampling strategy for CS-AFM to optimize the process of sampling. Under a certain under-sampling ratio, the weight coefficient of ROIs and regions of base (ROBs) were set to control the distribution of under-sampling points and corresponding measurement matrix. A series of simulations were completed to demonstrate the relationship between the weight coefficient of ROIs and image quality. After that, we verified the effectiveness of the method on our homemade AFM. Through a lot of simulations and experiments, we demonstrated how the proposed method optimized the sampling process of CS-AFM, which speeded up the process of AFM imaging with high quality.

压缩传感(Compressive sensing,CS)通过先进的计算算法几乎不失真地重建其余信息,从而大大简化了原子力显微镜(AFM)的扫描过程,并获得了较高的成像质量。在普通的 CS-AFM 中,部分测量值随机来自整个待测区域,这很容易导致感兴趣区域(ROI)的细节丢失和图像质量低下。因此,可能会错过重要的微观现象。本文开发了 CS-AFM 的自适应欠采样策略,以优化采样过程。在一定的欠采样率下,设置 ROI 和基底区域(ROB)的权重系数来控制欠采样点的分布和相应的测量矩阵。我们完成了一系列模拟,以证明 ROI 权重系数与图像质量之间的关系。之后,我们在自制的原子力显微镜上验证了该方法的有效性。通过大量的模拟和实验,我们证明了所提出的方法如何优化了 CS-AFM 的采样过程,从而加快了 AFM 高质量成像的进程。
{"title":"Adaptive under-sampling strategy for fast imaging in compressive sensing-based atomic force microscopy","authors":"Peng Cheng ,&nbsp;Yingzi Li ,&nbsp;Rui Lin ,&nbsp;Yifan Hu ,&nbsp;Xiaodong Gao ,&nbsp;Jianqiang Qian ,&nbsp;Wendong Sun ,&nbsp;Quan Yuan","doi":"10.1016/j.ultramic.2024.113964","DOIUrl":"https://doi.org/10.1016/j.ultramic.2024.113964","url":null,"abstract":"<div><p>Compressive sensing (CS) can reconstruct the rest information almost without distortion by advanced computational algorithm, which significantly simplifies the process of atomic force microscope (AFM) scanning with high imaging quality. In common CS-AFM, the partial measurements randomly come from the whole region to be measured, which easily leads to detail loss and poor image quality in regions of interest (ROIs). Consequently, important microscopic phenomena are missed probably. In this paper, we developed an adaptive under-sampling strategy for CS-AFM to optimize the process of sampling. Under a certain under-sampling ratio, the weight coefficient of ROIs and regions of base (ROBs) were set to control the distribution of under-sampling points and corresponding measurement matrix. A series of simulations were completed to demonstrate the relationship between the weight coefficient of ROIs and image quality. After that, we verified the effectiveness of the method on our homemade AFM. Through a lot of simulations and experiments, we demonstrated how the proposed method optimized the sampling process of CS-AFM, which speeded up the process of AFM imaging with high quality.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140347933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Ultramicroscopy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1