首页 > 最新文献

Ultramicroscopy最新文献

英文 中文
Development of a liquid-helium free cryogenic sample holder with mK temperature control for autonomous electron microscopy 开发用于自主电子显微镜的 mK 温度控制无液氦低温样品支架。
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-09-07 DOI: 10.1016/j.ultramic.2024.114037
X. He , R. Kostin , E. Knight , M.G. Han , J. Mun , I. Bozovic , C. Jing , Y. Zhu
The automated and autonomous cryogenic transmission electron microscopy (Cryo-EM) demands a sample holder capable of maintaining temperatures below 10 K with precise control, long holding times, and minimal helium use. Rising to this challenge, we initiated an ambitious project to develop a novel closed-cycle cryocooler-based cryogenic sample holder that operates without the use of liquid helium and the consumption of gaseous helium. This article presents the design, construction, and experimental testing of the initial prototype, which achieves an ultimate temperature of 5.6 K with exceptional stability close to 1mK, while providing a wide temperature control range from 295 K to 5.6 K, marking a clear advancement in cryo-EM holder development. While the prototype was not designed for atomic resolution imaging and thus lacks a sturdy support system to mitigate mechanical vibrations from the cryocooler's pulsed tube, this innovative approach successfully demonstrates proof of concept. It offers unprecedented capabilities for state-of-the-art cryogenic microscopy and microanalysis in materials and biological sciences.
自动和自主低温透射电子显微镜(Cryo-EM)要求样品架能够保持 10 K 以下的温度,并且能够精确控制、保持时间长、氦气用量少。为了应对这一挑战,我们启动了一个雄心勃勃的项目,开发一种基于闭合循环低温冷却器的新型低温样品架,该样品架无需使用液氦和消耗气态氦。这篇文章介绍了最初原型的设计、建造和实验测试,它的极限温度达到了 5.6 K,稳定性接近 1mK,同时提供了从 295 K 到 5.6 K 的宽温度控制范围,标志着低温电子显微镜支架开发的明显进步。虽然原型并非为原子分辨率成像而设计,因此缺乏一个坚固的支撑系统来减轻低温冷却器脉冲管产生的机械振动,但这种创新方法成功地证明了概念。它为材料和生物科学领域最先进的低温显微镜和显微分析提供了前所未有的能力。
{"title":"Development of a liquid-helium free cryogenic sample holder with mK temperature control for autonomous electron microscopy","authors":"X. He ,&nbsp;R. Kostin ,&nbsp;E. Knight ,&nbsp;M.G. Han ,&nbsp;J. Mun ,&nbsp;I. Bozovic ,&nbsp;C. Jing ,&nbsp;Y. Zhu","doi":"10.1016/j.ultramic.2024.114037","DOIUrl":"10.1016/j.ultramic.2024.114037","url":null,"abstract":"<div><div>The automated and autonomous cryogenic transmission electron microscopy (Cryo-EM) demands a sample holder capable of maintaining temperatures below 10 K with precise control, long holding times, and minimal helium use. Rising to this challenge, we initiated an ambitious project to develop a novel closed-cycle cryocooler-based cryogenic sample holder that operates without the use of liquid helium and the consumption of gaseous helium. This article presents the design, construction, and experimental testing of the initial prototype, which achieves an ultimate temperature of 5.6 K with exceptional stability close to 1mK, while providing a wide temperature control range from 295 K to 5.6 K, marking a clear advancement in cryo-EM holder development. While the prototype was not designed for atomic resolution imaging and thus lacks a sturdy support system to mitigate mechanical vibrations from the cryocooler's pulsed tube, this innovative approach successfully demonstrates proof of concept. It offers unprecedented capabilities for state-of-the-art cryogenic microscopy and microanalysis in materials and biological sciences.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"267 ","pages":"Article 114037"},"PeriodicalIF":2.1,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142393722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of five-parameter grain boundary characteristics in nanocrystalline Ni-W by scanning precession electron diffraction tomography 利用扫描前驱电子衍射层析技术测定纳米晶 Ni-W 中的五参数晶界特征
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-09-06 DOI: 10.1016/j.ultramic.2024.114038
Patrick Harrison , Saurabh Mohan Das , William Goncalves , Alessandra da Silva , Xinren Chen , Nicola Viganò , Christian H. Liebscher , Wolfgang Ludwig , Xuyang Zhou , Edgar F. Rauch

Determining the full five-parameter grain boundary characteristics from experiments is essential for understanding grain boundaries impact on material properties, improving related models, and designing advanced alloys. However, achieving this is generally challenging, in particular at nanoscale, due to their 3D nature. In our study, we successfully determined the grain boundary characteristics of an annealed nickel-tungsten alloy (NiW) nanocrystalline needle-shaped specimen (tip) containing twins using Scanning Precession Electron Diffraction (SPED) Tomography. The presence of annealing twins in this face-centered cubic (fcc) material gives rise to common reflections in the SPED diffraction patterns, which challenges the reconstruction of orientation-specific virtual dark field (VDF) images required for tomographic reconstruction of the 3D grain shapes. To address this, an automated post-processing step identifies and deselects these shared reflections prior to the reconstruction of the VDF images. Combined with appropriate intensity normalization and projection alignment procedures, this approach enables high-fidelity 3D reconstruction of the individual grains contained in the needle-shaped sample volume. To probe the accuracy of the resulting boundary characteristics, the twin boundary surface normal directions were extracted from the 3D voxelated grain boundary map using a 3D Hough transform. For the sub-set of coherent Σ3 boundaries, the expected {111} grain boundary plane normals were obtained with an angular error of <3° for boundary sizes down to 400 nm². This work advances our ability to precisely characterize and understand the complex grain boundaries that govern material properties.

从实验中确定完整的五参数晶界特性对于了解晶界对材料特性的影响、改进相关模型和设计先进合金至关重要。然而,由于晶界的三维性质,实现这一目标通常具有挑战性,尤其是在纳米尺度上。在我们的研究中,我们利用扫描前序电子衍射 (SPED) 层析技术成功测定了含有孪晶的退火镍钨合金(NiW)纳米晶针状试样(尖端)的晶界特征。这种面心立方(fcc)材料中存在退火孪晶,导致 SPED 衍射图样中出现共同反射,这给重建三维晶粒形状断层扫描所需的特定取向虚拟暗场(VDF)图像带来了挑战。为了解决这个问题,在重建 VDF 图像之前,一个自动化的后处理步骤会识别并取消选择这些共用反射。结合适当的强度归一化和投影对齐程序,这种方法能够高保真地重建针形样品体积中包含的单个晶粒的三维图像。为了探测所得到的边界特征的准确性,使用三维 Hough 变换从三维体素化晶粒边界图中提取了孪生边界表面法线方向。对于相干 Σ3 边界子集,获得了预期的{111}晶粒边界平面法线,其角度误差为 <3°,边界尺寸小至 400 nm²。这项工作提高了我们精确表征和理解影响材料特性的复杂晶界的能力。
{"title":"Determination of five-parameter grain boundary characteristics in nanocrystalline Ni-W by scanning precession electron diffraction tomography","authors":"Patrick Harrison ,&nbsp;Saurabh Mohan Das ,&nbsp;William Goncalves ,&nbsp;Alessandra da Silva ,&nbsp;Xinren Chen ,&nbsp;Nicola Viganò ,&nbsp;Christian H. Liebscher ,&nbsp;Wolfgang Ludwig ,&nbsp;Xuyang Zhou ,&nbsp;Edgar F. Rauch","doi":"10.1016/j.ultramic.2024.114038","DOIUrl":"10.1016/j.ultramic.2024.114038","url":null,"abstract":"<div><p>Determining the full five-parameter grain boundary characteristics from experiments is essential for understanding grain boundaries impact on material properties, improving related models, and designing advanced alloys. However, achieving this is generally challenging, in particular at nanoscale, due to their 3D nature. In our study, we successfully determined the grain boundary characteristics of an annealed nickel-tungsten alloy (NiW) nanocrystalline needle-shaped specimen (tip) containing twins using Scanning Precession Electron Diffraction (SPED) Tomography. The presence of annealing twins in this face-centered cubic (fcc) material gives rise to common reflections in the SPED diffraction patterns, which challenges the reconstruction of orientation-specific virtual dark field (VDF) images required for tomographic reconstruction of the 3D grain shapes. To address this, an automated post-processing step identifies and deselects these shared reflections prior to the reconstruction of the VDF images. Combined with appropriate intensity normalization and projection alignment procedures, this approach enables high-fidelity 3D reconstruction of the individual grains contained in the needle-shaped sample volume. To probe the accuracy of the resulting boundary characteristics, the twin boundary surface normal directions were extracted from the 3D voxelated grain boundary map using a 3D Hough transform. For the sub-set of coherent Σ3 boundaries, the expected {111} grain boundary plane normals were obtained with an angular error of &lt;3° for boundary sizes down to 400 nm². This work advances our ability to precisely characterize and understand the complex grain boundaries that govern material properties.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"267 ","pages":"Article 114038"},"PeriodicalIF":2.1,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399124001177/pdfft?md5=ee9e4301d297d24a4cc6093c9c64c35a&pid=1-s2.0-S0304399124001177-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clustering characteristic diffraction vectors in 4-D STEM data sets from overlapping structures in nanocrystalline and amorphous materials 从纳米晶体和非晶体材料的重叠结构中对 4-D STEM 数据集中的特征衍射矢量进行聚类
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-09-03 DOI: 10.1016/j.ultramic.2024.114040
Carter Francis, Paul M. Voyles

We describe a method for identifying and clustering diffraction vectors in four-dimensional (4-D) scanning transmission electron microscopy data to determine characteristic diffraction patterns from overlapping structures in projection. First, the data is convolved with a 4-D kernel, then diffraction vectors are identified and clustered using both density-based clustering and a metric that emphasizes rotational symmetries. The method works well for both crystalline and amorphous samples and in high- and low-dose experiments. A simulated dataset of overlapping aluminum nanocrystals provides performance metrics as a function of Poisson noise and the number of overlapping structures. Experimental data from an aluminum nanocrystal sample shows similar performance. For an amorphous Pd77.5Cu6Si16.5 thin film, experiments measuring glassy structure show strong evidence of 4- and 6-fold symmetry structures. A significant background arises from the diffraction of overlapping structures. Quantifying this background helps to separate contributions from single, rotationally symmetric structures vs. apparent symmetries arising from overlapping structures in projection.

我们介绍了一种在四维(4-D)扫描透射电子显微镜数据中识别和聚类衍射向量的方法,以确定投影重叠结构的特征衍射模式。首先,用四维核对数据进行卷积,然后使用基于密度的聚类和一种强调旋转对称性的度量来识别和聚类衍射向量。该方法在晶体和非晶体样品以及高剂量和低剂量实验中都能很好地发挥作用。重叠纳米铝晶体的模拟数据集提供了与泊松噪声和重叠结构数量相关的性能指标。铝纳米晶体样品的实验数据也显示了类似的性能。对于无定形 Pd77.5Cu6Si16.5 薄膜,测量玻璃状结构的实验显示了 4 倍和 6 倍对称结构的有力证据。重叠结构的衍射产生了大量背景。量化这种背景有助于区分单一旋转对称结构与投影重叠结构产生的表观对称性。
{"title":"Clustering characteristic diffraction vectors in 4-D STEM data sets from overlapping structures in nanocrystalline and amorphous materials","authors":"Carter Francis,&nbsp;Paul M. Voyles","doi":"10.1016/j.ultramic.2024.114040","DOIUrl":"10.1016/j.ultramic.2024.114040","url":null,"abstract":"<div><p>We describe a method for identifying and clustering diffraction vectors in four-dimensional (4-D) scanning transmission electron microscopy data to determine characteristic diffraction patterns from overlapping structures in projection. First, the data is convolved with a 4-D kernel, then diffraction vectors are identified and clustered using both density-based clustering and a metric that emphasizes rotational symmetries. The method works well for both crystalline and amorphous samples and in high- and low-dose experiments. A simulated dataset of overlapping aluminum nanocrystals provides performance metrics as a function of Poisson noise and the number of overlapping structures. Experimental data from an aluminum nanocrystal sample shows similar performance. For an amorphous Pd<sub>77.5</sub>Cu<sub>6</sub>Si<sub>16.5</sub> thin film, experiments measuring glassy structure show strong evidence of 4- and 6-fold symmetry structures. A significant background arises from the diffraction of overlapping structures. Quantifying this background helps to separate contributions from single, rotationally symmetric structures vs. apparent symmetries arising from overlapping structures in projection.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"267 ","pages":"Article 114040"},"PeriodicalIF":2.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential phase contrast from electrons that cause inner shell ionization 引起内壳电离的电子产生的差分相位对比
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-08-26 DOI: 10.1016/j.ultramic.2024.114036
Michael Deimetry , Timothy C. Petersen , Hamish G. Brown , Matthew Weyland , Scott D. Findlay

Differential Phase Contrast (DPC) imaging, in which deviations in the bright field beam are in proportion to the electric field, has been extensively studied in the context of pure elastic scattering. Here we discuss differential phase contrast formed from core-loss scattered electrons, i.e. those that have caused inner shell ionization of atoms in the specimen, using a transition potential approach for which we study the number of final states needed for a converged calculation. In the phase object approximation, we show formally that differential phase contrast formed from core-loss scattered electrons is mainly a result of preservation of elastic contrast. Through simulation we demonstrate that whether the inelastic DPC images show element selective contrast depends on the spatial range of the ionization interaction, and specifically that when the energy loss is low the delocalisation can lead to contributions to the contrast from atoms other than that ionized. We further show that inelastic DPC images remain robustly interpretable to larger thicknesses than is the case for elastic DPC images, owing to the incoherence of the inelastic wavefields, though subtleties due to channelling remain. Lastly, we show that while a very high dose will be needed for sufficient counting statistics to discern differential phase contrast from core-loss scattered electrons, there is some enhancement of the signal-to-noise ratio with thickness that makes inelastic DPC imaging more achievable for thicker samples.

差分相位对比(Differential Phase Contrast,DPC)成像是指明场光束的偏差与电场成正比,在纯弹性散射的背景下已被广泛研究。在这里,我们讨论了由核心损耗散射电子形成的差分相位对比,即那些引起试样中原子内壳电离的电子,我们使用过渡势方法研究了收敛计算所需的最终状态数量。在相位对象近似中,我们正式证明了核心损耗散射电子形成的差分相位对比主要是弹性对比保留的结果。通过模拟,我们证明了非弹性 DPC 图像是否显示元素选择性对比取决于电离相互作用的空间范围,特别是当能量损耗较低时,脱域会导致电离原子以外的原子对对比的贡献。我们进一步表明,与弹性 DPC 图像相比,由于非弹性波场的不一致性,非弹性 DPC 图像在更大的厚度上仍可保持稳健的可解释性,尽管由于导流而产生的微妙之处依然存在。最后,我们还表明,虽然需要很高的剂量才能获得足够的计数统计量来辨别核心损耗散射电子的不同相位对比,但随着厚度的增加,信噪比也会有所提高,这使得非弹性 DPC 成像更适用于较厚的样品。
{"title":"Differential phase contrast from electrons that cause inner shell ionization","authors":"Michael Deimetry ,&nbsp;Timothy C. Petersen ,&nbsp;Hamish G. Brown ,&nbsp;Matthew Weyland ,&nbsp;Scott D. Findlay","doi":"10.1016/j.ultramic.2024.114036","DOIUrl":"10.1016/j.ultramic.2024.114036","url":null,"abstract":"<div><p>Differential Phase Contrast (DPC) imaging, in which deviations in the bright field beam are in proportion to the electric field, has been extensively studied in the context of pure elastic scattering. Here we discuss differential phase contrast formed from core-loss scattered electrons, i.e. those that have caused inner shell ionization of atoms in the specimen, using a transition potential approach for which we study the number of final states needed for a converged calculation. In the phase object approximation, we show formally that differential phase contrast formed from core-loss scattered electrons is mainly a result of preservation of elastic contrast. Through simulation we demonstrate that whether the inelastic DPC images show element selective contrast depends on the spatial range of the ionization interaction, and specifically that when the energy loss is low the delocalisation can lead to contributions to the contrast from atoms other than that ionized. We further show that inelastic DPC images remain robustly interpretable to larger thicknesses than is the case for elastic DPC images, owing to the incoherence of the inelastic wavefields, though subtleties due to channelling remain. Lastly, we show that while a very high dose will be needed for sufficient counting statistics to discern differential phase contrast from core-loss scattered electrons, there is some enhancement of the signal-to-noise ratio with thickness that makes inelastic DPC imaging more achievable for thicker samples.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"266 ","pages":"Article 114036"},"PeriodicalIF":2.1,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399124001153/pdfft?md5=ffc4ecab832fb6a095cc846efe6efee1&pid=1-s2.0-S0304399124001153-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential phase contrast STEM image calculation software – Magnifier 差分相衬 STEM 图像计算软件 - 放大镜
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-08-22 DOI: 10.1016/j.ultramic.2024.114035
I.S. Pavlov , B.I. Kineev , A.V. Morozov , A.M. Abakumov , A.L. Vasiliev

An innovative software with a user-friendly interface for calculation of differential phase contrast (DPC) scanning transmission electron microscopy images (integrated iDPC- and differentiated dDPC-STEM) is presented. The underlying algorithm is described and the program functionalities are demonstrated on the examples of Li5OsO6, α-Ga2O3, and LiCoO2. The software supports interpretation of DPC-STEM images, which is crucial for qualitative and quantitative analysis of crystal structures and defects.

本文介绍了一种创新软件,该软件具有友好的用户界面,可用于计算微分相衬(DPC)扫描透射电子显微镜图像(集成 iDPC- 和微分 dDPC-STEM)。该软件描述了基本算法,并以 Li5OsO6、α-Ga2O3 和 LiCoO2 为例演示了程序功能。该软件支持对 DPC-STEM 图像的解读,这对晶体结构和缺陷的定性和定量分析至关重要。
{"title":"Differential phase contrast STEM image calculation software – Magnifier","authors":"I.S. Pavlov ,&nbsp;B.I. Kineev ,&nbsp;A.V. Morozov ,&nbsp;A.M. Abakumov ,&nbsp;A.L. Vasiliev","doi":"10.1016/j.ultramic.2024.114035","DOIUrl":"10.1016/j.ultramic.2024.114035","url":null,"abstract":"<div><p>An innovative software with a user-friendly interface for calculation of differential phase contrast (DPC) scanning transmission electron microscopy images (integrated iDPC- and differentiated dDPC-STEM) is presented. The underlying algorithm is described and the program functionalities are demonstrated on the examples of Li<sub>5</sub>OsO<sub>6</sub>, α-Ga<sub>2</sub>O<sub>3</sub>, and LiCoO<sub>2</sub>. The software supports interpretation of DPC-STEM images, which is crucial for qualitative and quantitative analysis of crystal structures and defects.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"266 ","pages":"Article 114035"},"PeriodicalIF":2.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of electric field strength on the accuracy of boron dopant quantification in silicon using atom probe tomography 电场强度对利用原子探针层析成像技术量化硅中硼掺杂物精度的影响
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-08-21 DOI: 10.1016/j.ultramic.2024.114034
Bavley Guerguis , Ramya Cuduvally , Richard J.H. Morris , Gabriel Arcuri , Brian Langelier , Nabil Bassim

This study investigates the impact of the surface electric field on the quantification accuracy of boron (B) implanted silicon (Si) using atom probe tomography (APT). The Si Charge-State Ratio (CSR(Si) = Si2+/Si+) was used as an indirect measure of the average apex electric field during analysis. For a range of electric fields, the accuracy of the total implanted dose and the depth profile shape determined by APT was evaluated against the National Institute of Standards and Technology Standard Reference Material 2137. The radial (non-)uniformity of the detected B was also examined. At a higher surface electric field (i.e., a greater CSR(Si)), the determined B dose converges on the certified dose. Additionally, the depth profile shape tends towards that derived by secondary ion mass spectrometry. This improvement coincides with a more uniform radial B distribution, evidenced by desorption maps. In contrast, for lower surface electric fields (i.e., a lower CSR(Si)), the B dose is significantly underestimated, and the depth profile is artificially stretched. The desorption maps also indicate a highly inhomogeneous B emission localized around the center of the detector, which is believed to be an artifact of B surface migration on the tip of the sample. For the purposes of routine investigations of semiconductor devices using APT, these results illustrate the potential origin of quantification artifacts and their severity at different operating conditions, thus providing pathways towards best practices for accurate and repeatable measurements.

本研究利用原子探针断层扫描(APT)技术研究了表面电场对硼(B)植入硅(Si)量化精度的影响。在分析过程中,硅电荷态比(CSR(Si) = Si2+/Si+)被用来间接测量平均顶点电场。对于一定范围的电场,通过 APT 确定的总植入剂量和深度剖面形状的准确性与美国国家标准与技术研究院标准参考材料 2137 进行了对比评估。此外,还检测了检测到的 B 的径向(非)均匀性。在较高的表面电场(即较大的 CSR(Si))下,测定的 B 剂量与认证剂量趋同。此外,深度剖面的形状也趋向于二次离子质谱法得出的形状。这一改进与解吸图显示的更均匀的辐射 B 分布相吻合。相反,对于较低的表面电场(即较低的 CSR(Si)),B 剂量被明显低估,深度剖面被人为拉伸。解吸图还显示,探测器中心周围的 B 发射极不均匀,据信这是 B 在样品顶端表面迁移的假象。就使用 APT 对半导体器件进行常规研究而言,这些结果说明了量化伪影的潜在来源及其在不同操作条件下的严重程度,从而为实现准确、可重复测量的最佳实践提供了途径。
{"title":"The impact of electric field strength on the accuracy of boron dopant quantification in silicon using atom probe tomography","authors":"Bavley Guerguis ,&nbsp;Ramya Cuduvally ,&nbsp;Richard J.H. Morris ,&nbsp;Gabriel Arcuri ,&nbsp;Brian Langelier ,&nbsp;Nabil Bassim","doi":"10.1016/j.ultramic.2024.114034","DOIUrl":"10.1016/j.ultramic.2024.114034","url":null,"abstract":"<div><p>This study investigates the impact of the surface electric field on the quantification accuracy of boron (B) implanted silicon (Si) using atom probe tomography (APT). The Si Charge-State Ratio (CSR(Si) = Si<sup>2+</sup>/Si<sup>+</sup>) was used as an indirect measure of the average apex electric field during analysis. For a range of electric fields, the accuracy of the total implanted dose and the depth profile shape determined by APT was evaluated against the National Institute of Standards and Technology Standard Reference Material 2137. The radial (non-)uniformity of the detected B was also examined. At a higher surface electric field (i.e., a greater CSR(Si)), the determined B dose converges on the certified dose. Additionally, the depth profile shape tends towards that derived by secondary ion mass spectrometry. This improvement coincides with a more uniform radial B distribution, evidenced by desorption maps. In contrast, for lower surface electric fields (i.e., a lower CSR(Si)), the B dose is significantly underestimated, and the depth profile is artificially stretched. The desorption maps also indicate a highly inhomogeneous B emission localized around the center of the detector, which is believed to be an artifact of B surface migration on the tip of the sample. For the purposes of routine investigations of semiconductor devices using APT, these results illustrate the potential origin of quantification artifacts and their severity at different operating conditions, thus providing pathways towards best practices for accurate and repeatable measurements.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"266 ","pages":"Article 114034"},"PeriodicalIF":2.1,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of electrostatic lenses through genetic algorithm and particle swarm optimisation methods integrated with differential algebra 通过与微分代数相结合的遗传算法和粒子群优化方法设计静电透镜
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-08-15 DOI: 10.1016/j.ultramic.2024.114024
Aydin Sabouri, Carla Sofia Perez-Martinez

Genetic algorithm (GA) and particle swarm optimisation (PSO) techniques have been integrated with the differential algebra (DA) method in charged particle optics to optimise an Einzel lens. The DA method is a robust and efficient tool for the calculation of aberration coefficients of electrostatic lenses, which makes use of nonstandard analysis for ray tracing a particle as it is subjected to the field generated by a lens. In this study, initial populations of lenses with random geometrical configurations are generated. These initial populations are then subjected to GA and PSO algorithms to alter the geometry of each lens for a set number of iterations. The lens performance is evaluated by calculating the spot size using the aberrations coefficients up to third-order generated by the DA method. Moreover, a focusing column comprising two lenses and a Wien filter was optimised using GA method.

遗传算法(GA)和粒子群优化(PSO)技术与带电粒子光学中的微分代数(DA)方法相结合,对艾因泽尔透镜进行了优化。DA 方法是计算静电透镜像差系数的一种稳健而高效的工具,它利用非标准分析方法对粒子在透镜产生的场中进行射线追踪。在这项研究中,生成了具有随机几何配置的透镜初始群。然后对这些初始种群采用 GA 和 PSO 算法,在设定的迭代次数内改变每个透镜的几何形状。通过使用 DA 方法生成的三阶以下像差系数计算光斑大小,对透镜性能进行评估。此外,还使用 GA 方法优化了由两个透镜和一个维恩滤波器组成的聚焦柱。
{"title":"Design of electrostatic lenses through genetic algorithm and particle swarm optimisation methods integrated with differential algebra","authors":"Aydin Sabouri,&nbsp;Carla Sofia Perez-Martinez","doi":"10.1016/j.ultramic.2024.114024","DOIUrl":"10.1016/j.ultramic.2024.114024","url":null,"abstract":"<div><p>Genetic algorithm (GA) and particle swarm optimisation (PSO) techniques have been integrated with the differential algebra (DA) method in charged particle optics to optimise an Einzel lens. The DA method is a robust and efficient tool for the calculation of aberration coefficients of electrostatic lenses, which makes use of nonstandard analysis for ray tracing a particle as it is subjected to the field generated by a lens. In this study, initial populations of lenses with random geometrical configurations are generated. These initial populations are then subjected to GA and PSO algorithms to alter the geometry of each lens for a set number of iterations. The lens performance is evaluated by calculating the spot size using the aberrations coefficients up to third-order generated by the DA method. Moreover, a focusing column comprising two lenses and a Wien filter was optimised using GA method.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"266 ","pages":"Article 114024"},"PeriodicalIF":2.1,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399124001037/pdfft?md5=9ee61526d5fad6281eea6fdb455bebe3&pid=1-s2.0-S0304399124001037-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142058301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autoencoder latent space sensitivity to material structure in convergent-beam low energy electron diffraction 汇聚束低能电子衍射中自动编码器潜空间对材料结构的敏感性
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-08-06 DOI: 10.1016/j.ultramic.2024.114021
M. Ivanov, J. Pereiro

The convergent-beam low energy electron diffraction technique has been proposed as a novel method to gather local structural and electronic information from crystalline surfaces during low-energy electron microscopy. However, the approach suffers from high complexity of the resulting diffraction patterns. We show that Convolutional Autoencoders trained on CBLEED patterns achieve a highly structured latent space. The latent space is then used to estimate structural parameters with sub-angstrom accuracy. The low complexity of the neural networks enables real time application of the approach during experiments with low latency.

汇聚束低能电子衍射技术是在低能电子显微镜下收集晶体表面局部结构和电子信息的一种新方法。然而,这种方法所产生的衍射图样复杂度较高。我们的研究表明,在 CBLEED 图案上训练的卷积自动编码器可以获得高度结构化的潜在空间。然后利用潜空间以亚埃级精度估算结构参数。神经网络的低复杂性使该方法能够在低延迟实验中实时应用。
{"title":"Autoencoder latent space sensitivity to material structure in convergent-beam low energy electron diffraction","authors":"M. Ivanov,&nbsp;J. Pereiro","doi":"10.1016/j.ultramic.2024.114021","DOIUrl":"10.1016/j.ultramic.2024.114021","url":null,"abstract":"<div><p>The convergent-beam low energy electron diffraction technique has been proposed as a novel method to gather local structural and electronic information from crystalline surfaces during low-energy electron microscopy. However, the approach suffers from high complexity of the resulting diffraction patterns. We show that Convolutional Autoencoders trained on CBLEED patterns achieve a highly structured latent space. The latent space is then used to estimate structural parameters with sub-angstrom accuracy. The low complexity of the neural networks enables real time application of the approach during experiments with low latency.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"266 ","pages":"Article 114021"},"PeriodicalIF":2.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399124001001/pdfft?md5=2b44dc788be0de80f016aef2e3c8c553&pid=1-s2.0-S0304399124001001-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142048702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of the acceleration voltage on the quality of structure determination by 3D-electron diffraction 加速电压对三维电子衍射结构测定质量的影响
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-08-05 DOI: 10.1016/j.ultramic.2024.114022
Saleh Gholam, Joke Hadermann

Nowadays, 3D Electron Diffraction (3DED) is widely used for the structure determination of sub-micron-sized particles. In this work, we investigate the influence of the acceleration voltage on the quality of 3DED datasets acquired on BaTiO3 nanoparticles. Datasets were acquired using a wide range of beam energies, from common, high acceleration voltages (300 kV and 200 kV) to medium (120 kV and 80 kV) and low acceleration voltages (60 kV and 30 kV). It was observed that, in the integration process, Rint increases as the beam energy is reduced, which is mainly due to the increased dynamical scattering. Nevertheless, the structure was solved successfully in all cases. The structure refinement was comparable for all beam energies with small deficiencies such as negative atomic displacements for the heaviest atom in the structure, barium. Including extinction correction in the refinement noticeably improved the model for low acceleration voltages, probably due to higher beam absorption in these cases. Dynamical refinement, however, shows superior results for higher acceleration voltages, since the dynamical refinement calculations currently ignore inelastic scattering effects.

如今,三维电子衍射(3DED)被广泛用于亚微米级颗粒的结构测定。在这项工作中,我们研究了加速电压对 BaTiO3 纳米粒子三维电子衍射数据集质量的影响。数据集是在广泛的光束能量范围内获得的,从常见的高加速电压(300 kV 和 200 kV)到中等加速电压(120 kV 和 80 kV)和低加速电压(60 kV 和 30 kV)。据观察,在积分过程中,Rint 会随着光束能量的降低而增加,这主要是由于动态散射的增加。尽管如此,在所有情况下都成功地解决了结构问题。所有光束能量下的结构细化结果都相当,只是存在一些小的缺陷,例如结构中最重的原子钡的原子位移为负值。在细化过程中加入消光校正明显改善了低加速电压下的模型,这可能是由于在这些情况下光束吸收较多。然而,由于动态细化计算目前忽略了非弹性散射效应,因此动态细化在较高加速电压下显示出更优越的结果。
{"title":"The effect of the acceleration voltage on the quality of structure determination by 3D-electron diffraction","authors":"Saleh Gholam,&nbsp;Joke Hadermann","doi":"10.1016/j.ultramic.2024.114022","DOIUrl":"10.1016/j.ultramic.2024.114022","url":null,"abstract":"<div><p>Nowadays, 3D Electron Diffraction (3DED) is widely used for the structure determination of sub-micron-sized particles. In this work, we investigate the influence of the acceleration voltage on the quality of 3DED datasets acquired on BaTiO<sub>3</sub> nanoparticles. Datasets were acquired using a wide range of beam energies, from common, high acceleration voltages (300 kV and 200 kV) to medium (120 kV and 80 kV) and low acceleration voltages (60 kV and 30 kV). It was observed that, in the integration process, R<sub>int</sub> increases as the beam energy is reduced, which is mainly due to the increased dynamical scattering. Nevertheless, the structure was solved successfully in all cases. The structure refinement was comparable for all beam energies with small deficiencies such as negative atomic displacements for the heaviest atom in the structure, barium. Including extinction correction in the refinement noticeably improved the model for low acceleration voltages, probably due to higher beam absorption in these cases. Dynamical refinement, however, shows superior results for higher acceleration voltages, since the dynamical refinement calculations currently ignore inelastic scattering effects.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"266 ","pages":"Article 114022"},"PeriodicalIF":2.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141997404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of three-dimensional electron diffuse scattering data acquisition 优化三维电子漫散射数据采集。
IF 2.1 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-08-02 DOI: 10.1016/j.ultramic.2024.114023
Romy Poppe, Joke Hadermann

The diffraction patterns of crystalline materials with local order contain sharp Bragg reflections as well as highly structured diffuse scattering. In this study, we quantitatively show how the diffuse scattering in three-dimensional electron diffraction (3D ED) data is influenced by various parameters, including the data acquisition mode, the detector type and the use of an energy filter. We found that diffuse scattering data used for quantitative analysis are preferably acquired in selected area electron diffraction (SAED) mode using a CCD and an energy filter. In this study, we also show that the diffuse scattering in 3D ED data can be obtained with a quality comparable to that from single-crystal X-ray diffraction. As electron diffraction requires much smaller crystal sizes than X-ray diffraction, this opens up the possibility to investigate the local structure of many technologically relevant materials for which no crystals large enough for single-crystal X-ray diffraction are available.

具有局部有序性的晶体材料的衍射图样包含尖锐的布拉格反射以及高度结构化的漫散射。在本研究中,我们定量展示了三维电子衍射(3D ED)数据中的漫散射如何受到各种参数的影响,包括数据采集模式、探测器类型和能量滤波器的使用。我们发现,用于定量分析的漫散射数据最好使用 CCD 和能量滤波器在选区电子衍射(SAED)模式下获取。在这项研究中,我们还发现三维电子衍射数据中的漫散射数据质量可与单晶 X 射线衍射数据相媲美。由于电子衍射所需的晶体尺寸比 X 射线衍射小得多,这就为研究许多技术相关材料的局部结构提供了可能,因为这些材料没有足够大的晶体来进行单晶 X 射线衍射。
{"title":"Optimization of three-dimensional electron diffuse scattering data acquisition","authors":"Romy Poppe,&nbsp;Joke Hadermann","doi":"10.1016/j.ultramic.2024.114023","DOIUrl":"10.1016/j.ultramic.2024.114023","url":null,"abstract":"<div><p>The diffraction patterns of crystalline materials with local order contain sharp Bragg reflections as well as highly structured diffuse scattering. In this study, we quantitatively show how the diffuse scattering in three-dimensional electron diffraction (3D ED) data is influenced by various parameters, including the data acquisition mode, the detector type and the use of an energy filter. We found that diffuse scattering data used for quantitative analysis are preferably acquired in selected area electron diffraction (SAED) mode using a CCD and an energy filter. In this study, we also show that the diffuse scattering in 3D ED data can be obtained with a quality comparable to that from single-crystal X-ray diffraction. As electron diffraction requires much smaller crystal sizes than X-ray diffraction, this opens up the possibility to investigate the local structure of many technologically relevant materials for which no crystals large enough for single-crystal X-ray diffraction are available.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"265 ","pages":"Article 114023"},"PeriodicalIF":2.1,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Ultramicroscopy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1