Pub Date : 2024-09-18DOI: 10.1016/j.virusres.2024.199461
Jia-Hao Zheng , Zhi-Jian Zhou , Zheng-Chan Liao , Ye Qiu , Xing-Yi Ge , Xun Huang
Human parechovirus (HPeV) is a common virus that can cause severe infections in newborns. Due to the limited knowledge of the prevalence of HPeV in different cities in China and the unknown association between HPeV infection and clinical characteristics of newborns, this research investigated the epidemiological and clinical characteristics of HPeV infection in hospitalized neonates in Changsha. From August to October 2023, 145 anal swab samples from 96 newborns and 38 pharyngeal swab samples from 33 newborns in the neonatal intensive care unit (NICU) were collected. The prevalence of HPeV was detected by reverse transcription-polymerase chain reaction (RT-PCR). The genomes of HPeV were sequenced and the viral protein 1 (VP1) region was used for genotyping. Phylogenetic analysis and recombination analysis of HPeV genome were performed. Finally, HPeV was detected in 10 out of 44 patients in October, all of them were HPeV-1. The sequenced 4 genomes of HPeV showed high genetic diversity with known strains. Additionally, a HPeV-1 recombinant strain was detected. Compared with HPeV negative patients, HPeV patients had higher prevalence of abdominal pain and diarrhea, intracranial hemorrhage, and purulent meningitis. Compared with HPeV negative patients, HPeV patients had higher peripheral blood lymphocytes, albumin, globulin, pH and lower peripheral blood neutrophils and hemoglobin. HPeV is an important viral cause of newborn infections and appears to be increasing in prevalence in recent years. Characteristic clinical pictures exist in HPeV infections, and further research is needed to accumulate more cases to obtain a comprehensive understanding of HPeV infections.
{"title":"Prevalence and genetic diversity of Parechovirus","authors":"Jia-Hao Zheng , Zhi-Jian Zhou , Zheng-Chan Liao , Ye Qiu , Xing-Yi Ge , Xun Huang","doi":"10.1016/j.virusres.2024.199461","DOIUrl":"10.1016/j.virusres.2024.199461","url":null,"abstract":"<div><p>Human parechovirus (HPeV) is a common virus that can cause severe infections in newborns. Due to the limited knowledge of the prevalence of HPeV in different cities in China and the unknown association between HPeV infection and clinical characteristics of newborns, this research investigated the epidemiological and clinical characteristics of HPeV infection in hospitalized neonates in Changsha. From August to October 2023, 145 anal swab samples from 96 newborns and 38 pharyngeal swab samples from 33 newborns in the neonatal intensive care unit (NICU) were collected. The prevalence of HPeV was detected by reverse transcription-polymerase chain reaction (RT-PCR). The genomes of HPeV were sequenced and the viral protein 1 (VP1) region was used for genotyping. Phylogenetic analysis and recombination analysis of HPeV genome were performed. Finally, HPeV was detected in 10 out of 44 patients in October, all of them were HPeV-1. The sequenced 4 genomes of HPeV showed high genetic diversity with known strains. Additionally, a HPeV-1 recombinant strain was detected. Compared with HPeV negative patients, HPeV patients had higher prevalence of abdominal pain and diarrhea, intracranial hemorrhage, and purulent meningitis. Compared with HPeV negative patients, HPeV patients had higher peripheral blood lymphocytes, albumin, globulin, pH and lower peripheral blood neutrophils and hemoglobin. HPeV is an important viral cause of newborn infections and appears to be increasing in prevalence in recent years. Characteristic clinical pictures exist in HPeV infections, and further research is needed to accumulate more cases to obtain a comprehensive understanding of HPeV infections.</p></div>","PeriodicalId":23483,"journal":{"name":"Virus research","volume":"349 ","pages":"Article 199461"},"PeriodicalIF":2.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168170224001540/pdfft?md5=b494f505e3990f48bb40a8798443ee6e&pid=1-s2.0-S0168170224001540-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Respiratory syncytial virus (RSV) is the most predominant viral pathogen worldwide in children with lower respiratory tract infections. The coronavirus disease 2019 (COVID-19) pandemic and resulting non-pharmaceutical interventions perturbed the transmission pattern of respiratory pathogens in South Africa. A seasonality shift and RSV resurgence was observed in 2020 and 2021, with several infected children observed.
Conventional RSV-positive nasopharyngeal swabs were collected from various hospitals in the Free State province, Bloemfontein, South Africa, from children suffering from respiratory distress and severe acute respiratory infection between 2020 to 2021. Overlapping genome fragments were amplified and complete genomes were sequenced using the Illumina MiSeq platform. Maximum likelihood phylogenetic and evolutionary analysis were performed on both RSV-A/-B G-genes with published reference sequences from GISAID and GenBank. Our study strains belonged to the RSV-A GA2.3.2 and RSV-B GB5.0.5a clades. The upsurge of RSV was due to pre-existing strains that predominated in South Africa and circulating globally also driving these off-season RSV outbreaks during the COVID-19 pandemic. The variants responsible for the resurgence were phylogenetically related to pre-pandemic strains and could have contributed to the immune debt resulting from pandemic imposed restrictions. The deviation of the RSV season from the usual pattern affected by the COVID-19 pandemic highlights the need for ongoing genomic surveillance and the identification of genetic variants to prevent unforeseen outbreaks in the future.
{"title":"Corrigendum to “Whole genome molecular analysis of respiratory syncytial virus pre and during the COVID-19 pandemic in Free State province, South Africa” [Virus Research, Volume 347, September 2024, 199421]","authors":"Hlengiwe Sondlane , Ayodeji Ogunbayo , Celeste Donato , Milton Mogotsi , Mathew Esona , Ute Hallbauer , Phillip Bester , Dominique Goedhals , Martin Nyaga","doi":"10.1016/j.virusres.2024.199449","DOIUrl":"10.1016/j.virusres.2024.199449","url":null,"abstract":"<div><div>Respiratory syncytial virus (RSV) is the most predominant viral pathogen worldwide in children with lower respiratory tract infections. The coronavirus disease 2019 (COVID-19) pandemic and resulting non-pharmaceutical interventions perturbed the transmission pattern of respiratory pathogens in South Africa. A seasonality shift and RSV resurgence was observed in 2020 and 2021, with several infected children observed.</div><div>Conventional RSV-positive nasopharyngeal swabs were collected from various hospitals in the Free State province, Bloemfontein, South Africa, from children suffering from respiratory distress and severe acute respiratory infection between 2020 to 2021. Overlapping genome fragments were amplified and complete genomes were sequenced using the Illumina MiSeq platform. Maximum likelihood phylogenetic and evolutionary analysis were performed on both RSV-A/-B G-genes with published reference sequences from GISAID and GenBank. Our study strains belonged to the RSV-A GA2.3.2 and RSV-B GB5.0.5a clades. The upsurge of RSV was due to pre-existing strains that predominated in South Africa and circulating globally also driving these off-season RSV outbreaks during the COVID-19 pandemic. The variants responsible for the resurgence were phylogenetically related to pre-pandemic strains and could have contributed to the immune debt resulting from pandemic imposed restrictions. The deviation of the RSV season from the usual pattern affected by the COVID-19 pandemic highlights the need for ongoing genomic surveillance and the identification of genetic variants to prevent unforeseen outbreaks in the future.</div></div>","PeriodicalId":23483,"journal":{"name":"Virus research","volume":"349 ","pages":"Article 199449"},"PeriodicalIF":2.5,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168170224001424/pdfft?md5=257099debe7b71b54f3e0e68a6b619f2&pid=1-s2.0-S0168170224001424-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1016/j.virusres.2024.199462
Živilė Buivydaitė , Anne Winding , Lise Nistrup Jørgensen , Athanasios Zervas , Rumakanta Sapkota
Fusarium head blight (FHB) continues to be a major problem in wheat production and is considered a disease complex caused by several fungal pathogens including Fusarium culmorum, F. graminearum and F. equiseti. With the objective of investigating diversity of mycoviruses in FHB-associated pathogens, we isolated Fusarium spp. from six wheat (Triticum aestivum) cultivars. In total, 56 Fusarium isolates (29 F. culmorum, 24 F. graminearum, one F. equiseti) were screened for mycoviruses by extracting and sequencing double-stranded RNA. We found that a large proportion of Fusarium isolates (46 %) were infected with mycoviruses. F. culmorum, previously described to harbor only one mycovirus, tended to host more viruses than F. graminearum, with a few isolates harboring seven mycoviruses simultaneously. Based on the RNA-dependent RNA polymerase domain analysis, ten were positive-sense single-stranded RNA viruses (related to viruses from families Mitoviridae, Botourmiaviridae, Narnaviridae, Tymoviridae, Gammaflexiviridae, as well as proposed Ambiguiviridae and ormycovirus viral group), one was double-stranded RNA virus (Partitiviridae), and five were negative-sense single-stranded RNA viruses (related to members in the families of Yueviridae, Phenuiviridae, Mymonaviridae, as well as proposed Mycoaspiviridae). Five mycoviruses were shared between F. graminearum and F. culmorum. These results increase our general understanding of mycovirology. To our knowledge, this is the first in-depth report of the mycovirome in F. culmorum and the first report on the diversity of mycoviruses from Danish isolates of FHB-causing fungi in general.
{"title":"New insights into RNA mycoviruses of fungal pathogens causing Fusarium head blight","authors":"Živilė Buivydaitė , Anne Winding , Lise Nistrup Jørgensen , Athanasios Zervas , Rumakanta Sapkota","doi":"10.1016/j.virusres.2024.199462","DOIUrl":"10.1016/j.virusres.2024.199462","url":null,"abstract":"<div><p>Fusarium head blight (FHB) continues to be a major problem in wheat production and is considered a disease complex caused by several fungal pathogens including <em>Fusarium culmorum, F. graminearum</em> and <em>F. equiseti</em>. With the objective of investigating diversity of mycoviruses in FHB-associated pathogens, we isolated <em>Fusarium</em> spp. from six wheat (<em>Triticum aestivum</em>) cultivars. In total, 56 <em>Fusarium</em> isolates (29 <em>F. culmorum</em>, 24 <em>F. graminearum</em>, one <em>F. equiseti</em>) were screened for mycoviruses by extracting and sequencing double-stranded RNA. We found that a large proportion of <em>Fusarium</em> isolates (46 %) were infected with mycoviruses. <em>F. culmorum</em>, previously described to harbor only one mycovirus, tended to host more viruses than <em>F. graminearum</em>, with a few isolates harboring seven mycoviruses simultaneously. Based on the RNA-dependent RNA polymerase domain analysis, ten were positive-sense single-stranded RNA viruses (related to viruses from families <em>Mitoviridae, Botourmiaviridae, Narnaviridae, Tymoviridae, Gammaflexiviridae</em>, as well as proposed Ambiguiviridae and ormycovirus viral group), one was double-stranded RNA virus (<em>Partitiviridae</em>), and five were negative-sense single-stranded RNA viruses (related to members in the families of <em>Yueviridae, Phenuiviridae, Mymonaviridae</em>, as well as proposed Mycoaspiviridae). Five mycoviruses were shared between <em>F. graminearum</em> and <em>F. culmorum</em>. These results increase our general understanding of mycovirology. To our knowledge, this is the first in-depth report of the mycovirome in <em>F. culmorum</em> and the first report on the diversity of mycoviruses from Danish isolates of FHB-causing fungi in general.</p></div>","PeriodicalId":23483,"journal":{"name":"Virus research","volume":"349 ","pages":"Article 199462"},"PeriodicalIF":2.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168170224001552/pdfft?md5=6a7189badf7673728b7d9d824120ffbb&pid=1-s2.0-S0168170224001552-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1016/j.virusres.2024.199457
Hossein Nasr Azadani , Mohssen Nassiri Toosi , Shohreh Shahmahmoodi , Ahmad Nejati , Hamzeh Rahimi , Mohammad Farahmand , Abolfazl Keshavarz , Fatemeh Ghorbani Motlagh , Katayoun Samimi-Rad
Chronic hepatitis C virus infection is a major cause of mortality due to liver cirrhosis globally. Despite the advances in recent therapeutic strategies, there is yet a high burden of HCV-related cirrhosis worldwide concerning low coverage of newly developed antiviral therapies, insufficient validity of the current diagnostic methods for cirrhosis, and incomplete understanding of the pathogenesis in this stage of liver disease. Hence we aimed to clarify the molecular events in HCV-related cirrhosis and identify a liver-specific gene signature to potentially improve diagnosis and prognosis of the disease.
Through RNA-seq transcriptome profiling of liver samples of Iranian patients with HCV-related cirrhosis, the differentially expressed genes (DEGs) were identified and subjected to functional annotation including biological process (BP) and molecular function (MF) analysis and also KEGG pathway enrichment analysis. Furthermore, the validation of RNA-seq data was investigated for seven candidate genes using qRT-PCR. Moreover, the diagnostic and prognostic power of validated DEGs were analyzed in both forms of individual DEG and combined biomarkers through receiver operating characteristic (ROC) analysis. Finally, we explored the pair-wise correlation of these six validated DEGs in a new approach.
We identified 838 significant DEGs (padj ˂0.05) enriching 375 and 15 significant terms subjected to BP and MF, respectively (false discovery rate ˂ 0.01) and 46 significant pathways (p-value ˂ 0.05). Most of these biological processes and pathways were related to inflammation, immune responses, and cellular processes participating somewhat in the pathogenesis of liver disease. Interestingly, some neurological-associated genes and pathways were involved in HCV cirrhosis-related neuropsychiatric disorders. Out of seven candidate genes, six DEGs, including inflammation-related genes ISLR, LTB, ZAP70, KLRB1, and neuronal-related genes MOXD1 and Slitrk3 were significantly confirmed by qRT-PCR. There was a close agreement in the expression change results between RNA-seq and qRT-PCR for our candidate genes except for SAA2-SAA4 (P= 0.8). High validity and reproducibility of six novel DEGs as diagnostic and prognostic biomarkers were observed. We also found several pair-wise correlations between validated DEGs.
Our findings indicate that the six genes LTB, ZAP70, KLRB1, ISLR, MOXD1, and Slitrk3 could stand as promising biomarkers for diagnosing of HCV-related cirrhosis. However, further studies are recommended to validate the diagnostic potential of these biomarkers and evaluate their capability as targets for the prevention and treatment of cirrhosis disease.
{"title":"New insights into potential biomarkers and their roles in biological processes associated with hepatitis C-related liver cirrhosis by hepatic RNA-seq-based transcriptome profiling","authors":"Hossein Nasr Azadani , Mohssen Nassiri Toosi , Shohreh Shahmahmoodi , Ahmad Nejati , Hamzeh Rahimi , Mohammad Farahmand , Abolfazl Keshavarz , Fatemeh Ghorbani Motlagh , Katayoun Samimi-Rad","doi":"10.1016/j.virusres.2024.199457","DOIUrl":"10.1016/j.virusres.2024.199457","url":null,"abstract":"<div><p>Chronic hepatitis C virus infection is a major cause of mortality due to liver cirrhosis globally. Despite the advances in recent therapeutic strategies, there is yet a high burden of HCV-related cirrhosis worldwide concerning low coverage of newly developed antiviral therapies, insufficient validity of the current diagnostic methods for cirrhosis, and incomplete understanding of the pathogenesis in this stage of liver disease. Hence we aimed to clarify the molecular events in HCV-related cirrhosis and identify a liver-specific gene signature to potentially improve diagnosis and prognosis of the disease.</p><p>Through RNA-seq transcriptome profiling of liver samples of Iranian patients with HCV-related cirrhosis, the differentially expressed genes (DEGs) were identified and subjected to functional annotation including biological process (BP) and molecular function (MF) analysis and also KEGG pathway enrichment analysis. Furthermore, the validation of RNA-seq data was investigated for seven candidate genes using qRT-PCR. Moreover, the diagnostic and prognostic power of validated DEGs were analyzed in both forms of individual DEG and combined biomarkers through receiver operating characteristic (ROC) analysis. Finally, we explored the pair-wise correlation of these six validated DEGs in a new approach.</p><p>We identified 838 significant DEGs (<em>p</em>adj ˂0.05) enriching 375 and 15 significant terms subjected to BP and MF, respectively (false discovery rate ˂ 0.01) and 46 significant pathways (<em>p</em>-value ˂ 0.05). Most of these biological processes and pathways were related to inflammation, immune responses, and cellular processes participating somewhat in the pathogenesis of liver disease. Interestingly, some neurological-associated genes and pathways were involved in HCV cirrhosis-related neuropsychiatric disorders. Out of seven candidate genes, six DEGs, including inflammation-related genes ISLR, LTB, ZAP70, KLRB1, and neuronal-related genes MOXD1 and Slitrk3 were significantly confirmed by qRT-PCR. There was a close agreement in the expression change results between RNA-seq and qRT-PCR for our candidate genes except for SAA2-SAA4 (P= 0.8). High validity and reproducibility of six novel DEGs as diagnostic and prognostic biomarkers were observed. We also found several pair-wise correlations between validated DEGs.</p><p>Our findings indicate that the six genes LTB, ZAP70, KLRB1, ISLR, MOXD1, and Slitrk3 could stand as promising biomarkers for diagnosing of HCV-related cirrhosis. However, further studies are recommended to validate the diagnostic potential of these biomarkers and evaluate their capability as targets for the prevention and treatment of cirrhosis disease.</p></div>","PeriodicalId":23483,"journal":{"name":"Virus research","volume":"349 ","pages":"Article 199457"},"PeriodicalIF":2.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168170224001503/pdfft?md5=203221dcf3a0304b85435a7c617a110b&pid=1-s2.0-S0168170224001503-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-07DOI: 10.1016/j.virusres.2024.199456
Shannon Harger Payen , Kayla Andrada , Evelyn Tara , Juli Petereit , Subhash C. Verma , Cyprian C. Rossetto
Kaposi's sarcoma-associated herpesvirus (KSHV) relies on many cellular proteins to complete replication and generate new virions. Paraspeckle nuclear bodies consisting of core ribonucleoproteins splicing factor proline/glutamine-rich (SFPQ), Non-POU domain-containing octamer-binding protein (NONO), and paraspeckle protein component 1 (PSPC1) along with the long non-coding RNA NEAT1, form a complex that has been speculated to play an important role in viral replication. Paraspeckle bodies are multifunctional and involved in various processes including gene expression, mRNA splicing, and anti-viral defenses. To better understand the role of SFPQ during KSHV replication, we performed SFPQ immunoprecipitation followed by mass spectrometry from KSHV-infected cells. Proteomic analysis showed that during lytic reactivation, SFPQ associates with viral proteins, including ORF10, ORF59, and ORF61. These results are consistent with a previously reported ORF59 proteomics assay identifying SFPQ. To test if the association between ORF59 and SFPQ is important for replication, we first identified the region of ORF59 that associates with SFPQ using a series of 50 amino acid deletion mutants of ORF59 in the KSHV BACmid system. By performing co-immunoprecipitations, we identified the region spanning amino acids 101–150 of ORF59 as the association domain with SFPQ. Using this information, we generated a dominant negative polypeptide of ORF59 encompassing amino acids 101–150, that disrupted the association between SFPQ and full-length ORF59, and decreased virus production. Interestingly, when we tested other human herpesvirus processivity factors (EBV BMRF1, HSV-1 UL42, and HCMV UL44) by transfection of each expression plasmid followed by co-immunoprecipitation, we found a conserved association with SFPQ. These are limited studies that remain to be done in the context of infection but suggest a potential association of SFPQ with processivity factors across multiple herpesviruses.
{"title":"The cellular paraspeckle component SFPQ associates with the viral processivity factor ORF59 during lytic replication of Kaposi's Sarcoma-associated herpesvirus (KSHV)","authors":"Shannon Harger Payen , Kayla Andrada , Evelyn Tara , Juli Petereit , Subhash C. Verma , Cyprian C. Rossetto","doi":"10.1016/j.virusres.2024.199456","DOIUrl":"10.1016/j.virusres.2024.199456","url":null,"abstract":"<div><p>Kaposi's sarcoma-associated herpesvirus (KSHV) relies on many cellular proteins to complete replication and generate new virions. Paraspeckle nuclear bodies consisting of core ribonucleoproteins splicing factor proline/glutamine-rich (SFPQ), Non-POU domain-containing octamer-binding protein (NONO), and paraspeckle protein component 1 (PSPC1) along with the long non-coding RNA NEAT1, form a complex that has been speculated to play an important role in viral replication. Paraspeckle bodies are multifunctional and involved in various processes including gene expression, mRNA splicing, and anti-viral defenses. To better understand the role of SFPQ during KSHV replication, we performed SFPQ immunoprecipitation followed by mass spectrometry from KSHV-infected cells. Proteomic analysis showed that during lytic reactivation, SFPQ associates with viral proteins, including ORF10, ORF59, and ORF61. These results are consistent with a previously reported ORF59 proteomics assay identifying SFPQ. To test if the association between ORF59 and SFPQ is important for replication, we first identified the region of ORF59 that associates with SFPQ using a series of 50 amino acid deletion mutants of ORF59 in the KSHV BACmid system. By performing co-immunoprecipitations, we identified the region spanning amino acids 101–150 of ORF59 as the association domain with SFPQ. Using this information, we generated a dominant negative polypeptide of ORF59 encompassing amino acids 101–150, that disrupted the association between SFPQ and full-length ORF59, and decreased virus production. Interestingly, when we tested other human herpesvirus processivity factors (EBV BMRF1, HSV-1 UL42, and HCMV UL44) by transfection of each expression plasmid followed by co-immunoprecipitation, we found a conserved association with SFPQ. These are limited studies that remain to be done in the context of infection but suggest a potential association of SFPQ with processivity factors across multiple herpesviruses.</p></div>","PeriodicalId":23483,"journal":{"name":"Virus research","volume":"349 ","pages":"Article 199456"},"PeriodicalIF":2.5,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168170224001497/pdfft?md5=ebe81682ec25edcd013aa730da9b6053&pid=1-s2.0-S0168170224001497-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Avian hepatitis E virus (HEV) has resulted in significant economic losses in the poultry industry. There is currently no commercial vaccination available to prevent avian HEV infection. Previously, a novel epitope (601TFPS604) was discovered in the ORF2 protein of avian HEV. In this study, peptides were synthesized and assessed for their ability to provide immunoprotecting against avian HEV infection in poultry. Twenty-five Hy-Line Variety Brown laying hens were randomly divided into five groups; groups 1 to 3 respectively immunized with RLLDRLSRTFPS, PETRRLLDRLSR (irrelevant peptide control), or truncated avian HEV ORF2 protein (aa 339–606), while group 4 (negative control) was mock-immunized with PBS and group 5 (normal control) was not immunized or challenged. After the challenge, all hens in groups 2 and 4 showed seroconversion, fecal virus shedding, viremia, alanine aminotransferase (ALT) level increasing, liver lesions and HEV antigen in the liver. There were no pathogenic effects in other groups. Collectively, all of these findings showed that hens were completely protected against avian HEV infection when they were immunized with the peptide containing TFPS of the avian HEV ORF2 protein.
禽戊型肝炎病毒(HEV)给家禽业造成了巨大的经济损失。目前还没有商业疫苗可用于预防禽 HEV 感染。此前,在禽 HEV 的 ORF2 蛋白中发现了一个新的表位(601TFPS604)。本研究合成了多肽,并评估了它们对家禽感染禽 HEV 提供免疫保护的能力。将 25 只海系变种褐壳蛋鸡随机分为 5 组,第 1 组至第 3 组分别免疫 RLLDRLSRTFPS、PETRRLLDRLSR(无关肽对照)或截短的禽 HEV ORF2 蛋白(aa 339-606),第 4 组(阴性对照)用 PBS 进行模拟免疫,第 5 组(正常对照)不免疫也不接受挑战。挑战后,第 2 组和第 4 组的所有母鸡均出现血清转换、粪便病毒脱落、病毒血症、丙氨酸氨基转移酶(ALT)水平升高、肝脏病变和肝脏中的 HEV 抗原。其他组别则无致病影响。所有这些结果表明,用含有禽 HEV ORF2 蛋白 TFPS 的肽免疫母鸡后,可完全防止禽 HEV 感染。
{"title":"Evaluation of novel synthetic peptides of avian hepatitis E virus ORF2 as vaccine candidate in chickens","authors":"Yiyang Chen , Yujia Tang , Shiyu Zhang , Yinuo Tian , Shenhao Xu , Chengwei Zhang , Huanqing Lin , Qin Zhao , En-Min Zhou , Baoyuan Liu","doi":"10.1016/j.virusres.2024.199459","DOIUrl":"10.1016/j.virusres.2024.199459","url":null,"abstract":"<div><p>Avian hepatitis E virus (HEV) has resulted in significant economic losses in the poultry industry. There is currently no commercial vaccination available to prevent avian HEV infection. Previously, a novel epitope (<sup>601</sup>TFPS<sup>604</sup>) was discovered in the ORF2 protein of avian HEV. In this study, peptides were synthesized and assessed for their ability to provide immunoprotecting against avian HEV infection in poultry. Twenty-five Hy-Line Variety Brown laying hens were randomly divided into five groups; groups 1 to 3 respectively immunized with RLLDRLSRTFPS, PETRRLLDRLSR (irrelevant peptide control), or truncated avian HEV ORF2 protein (aa 339–606), while group 4 (negative control) was mock-immunized with PBS and group 5 (normal control) was not immunized or challenged. After the challenge, all hens in groups 2 and 4 showed seroconversion, fecal virus shedding, viremia, alanine aminotransferase (ALT) level increasing, liver lesions and HEV antigen in the liver. There were no pathogenic effects in other groups. Collectively, all of these findings showed that hens were completely protected against avian HEV infection when they were immunized with the peptide containing TFPS of the avian HEV ORF2 protein.</p></div>","PeriodicalId":23483,"journal":{"name":"Virus research","volume":"349 ","pages":"Article 199459"},"PeriodicalIF":2.5,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168170224001527/pdfft?md5=c4369c58e3ab65a546bd30ab4ea84066&pid=1-s2.0-S0168170224001527-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-31DOI: 10.1016/j.virusres.2024.199448
Diyuan Yang , Jing Ning , Yuyu Zhang , Xuehua Xu , Dongwei Zhang , Huifeng Fan , Jing Wang , Gen Lu
Adenoviral infections, particularly in children, remain a significant public health issue with no approved targeted treatments. Artemisinin and its derivatives, well-known for their use in malaria treatment, have shown antiviral activities in recent studies. However, their efficacy against human adenovirus (HAdV) remains unexplored. This study aimed to assess the activity of artemisinin and its derivatives against HAdV infection in vitro using cell lines and primary cells. Our data revealed that artemisinin exhibited dose-dependent anti-HAdV activity with no apparent cytotoxicity over a wide concentration range. Mechanistically, artemisinin did not affect viral attachment or entry into target cells, nor the viral genome entry into cell nucleus. Instead, it inhibited HAdV through suppression of viral DNA replication. Comparative analysis with its derivatives, artesunate and artemisone, showed distinct cytotoxicity and anti-adenoviral profiles, with artemisone showing superior efficacy and lower toxicity. Further validation using a primary airway epithelial cell model confirmed the anti-adenoviral activity of both artemisinin and artemisone against different virus strains. Together, our findings suggest that artemisinin and its derivatives may be promising candidates for anti-HAdV treatment.
腺病毒感染,尤其是儿童的腺病毒感染,仍然是一个重大的公共卫生问题,目前还没有获得批准的靶向治疗方法。青蒿素及其衍生物因用于治疗疟疾而闻名,在最近的研究中显示出了抗病毒活性。然而,它们对人类腺病毒(HAdV)的疗效仍有待探索。本研究旨在利用细胞系和原代细胞评估青蒿素及其衍生物在体外抗HAdV感染的活性。我们的数据显示,青蒿素具有剂量依赖性的抗HAdV活性,在很宽的浓度范围内没有明显的细胞毒性。从机理上讲,青蒿素不影响病毒附着或进入靶细胞,也不影响病毒基因组进入细胞核。相反,它是通过抑制病毒 DNA 复制来抑制 HAdV 的。与青蒿素的衍生物青蒿琥酯和青蒿酮的比较分析表明,青蒿素具有不同的细胞毒性和抗腺病毒特性,其中青蒿酮的疗效更好,毒性更低。使用原发性气道上皮细胞模型进行的进一步验证证实了青蒿素和青蒿酮对不同病毒株的抗腺病毒活性。总之,我们的研究结果表明,青蒿素及其衍生物可能是抗HAdV治疗的理想候选药物。
{"title":"In vitro assessment of the anti-adenoviral activity of artemisinin and its derivatives","authors":"Diyuan Yang , Jing Ning , Yuyu Zhang , Xuehua Xu , Dongwei Zhang , Huifeng Fan , Jing Wang , Gen Lu","doi":"10.1016/j.virusres.2024.199448","DOIUrl":"10.1016/j.virusres.2024.199448","url":null,"abstract":"<div><p>Adenoviral infections, particularly in children, remain a significant public health issue with no approved targeted treatments. Artemisinin and its derivatives, well-known for their use in malaria treatment, have shown antiviral activities in recent studies. However, their efficacy against human adenovirus (HAdV) remains unexplored. This study aimed to assess the activity of artemisinin and its derivatives against HAdV infection in vitro using cell lines and primary cells. Our data revealed that artemisinin exhibited dose-dependent anti-HAdV activity with no apparent cytotoxicity over a wide concentration range. Mechanistically, artemisinin did not affect viral attachment or entry into target cells, nor the viral genome entry into cell nucleus. Instead, it inhibited HAdV through suppression of viral DNA replication. Comparative analysis with its derivatives, artesunate and artemisone, showed distinct cytotoxicity and anti-adenoviral profiles, with artemisone showing superior efficacy and lower toxicity. Further validation using a primary airway epithelial cell model confirmed the anti-adenoviral activity of both artemisinin and artemisone against different virus strains. Together, our findings suggest that artemisinin and its derivatives may be promising candidates for anti-HAdV treatment.</p></div>","PeriodicalId":23483,"journal":{"name":"Virus research","volume":"349 ","pages":"Article 199448"},"PeriodicalIF":2.5,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168170224001412/pdfft?md5=c4356e42e31743b8ace3d1dc00e713cc&pid=1-s2.0-S0168170224001412-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1016/j.virusres.2024.199458
Mikael Cristofer Sitinjak , Jui-Kai Chen , Fang-Lin Liu , Ming-Hon Hou , Shan-Meng Lin , Hung-Jen Liu , Chi-Young Wang
Coronaviruses (CoVs) are significant animal and human pathogens, characterized by being enveloped RNA viruses with positive-sense single-stranded RNA. The Coronaviridae family encompasses four genera, among which gammacoronaviruses pose a major threat to the poultry industry, which infectious bronchitis virus (IBV) being the most prominent of these threats. Particularly, IBV adversely affects broiler growth and egg production, causing substantial losses. The IBV strains currently circulating in Taiwan include the IBV Taiwan-I (TW-I) serotype, IBV Taiwan-II (TW-II) serotype, and vaccine strains. Therefore, ongoing efforts have focused on developing novel vaccines and discovering antiviral agents. The envelope (E) proteins of CoVs accumulate in the endoplasmic reticulum-Golgi intermediate compartment prior to virus budding. These E proteins assemble into viroporins, exhibiting ion channel activity that leads to cell membrane disruption, making them attractive targets for antiviral therapy.
In this study, we investigated the E proteins of IBV H-120, as well as IBV serotypes TW-I and TW-II. E protein expression resulted in inhibited bacteria growth, increased permeability of bacteria to β-galactosidase substrates, and blocked protein synthesis of bacteria by hygromycin B (HygB). Furthermore, in the presence of E proteins, HygB also impeded protein translation in DF-1 cells and damaged their membrane integrity. Collectively, these findings confirm the viroporin activity of the E proteins from IBV H-120, IBV serotype TW-I, and IBV serotype TW-II. Next, the viroporin inhibitors, 5-(N,N-hexamethylene) amiloride (HMA) and 4,4’-diisothiocyano stilbene-2,2’-disulphonic acid (DIDS) were used to inhibit the viroporin activities of the E proteins of IBV H-120, IBV serotype TW-I, and IBV serotype TW-II. In chicken embryos and chickens infected with IBV serotypes TW-I and IBV TW-II, no survivors were observed at 6 and 11 days post-infection (dpi), respectively. However, treatments with both DIDS and HMA increased the survival rates in infected chicken embryos and chickens and mitigated histopathological lesions in the trachea and kidney. Additionally, a 3D pentameric structure of the IBV E protein was constructed via homology modeling. As expected, both inhibitors were found to bind to the lipid-facing surface within the transmembrane domain of the E protein, inhibiting ion conduction. Taken together, our findings provide comprehensive evidence supporting the use of viroporin inhibitors as promising antiviral agents against IBV Taiwan isolates.
冠状病毒(CoVs)是重要的动物和人类病原体,其特征是具有正义单链 RNA 的包膜 RNA 病毒。冠状病毒科包括四个属,其中伽马冠状病毒对家禽业构成重大威胁,而传染性支气管炎病毒(IBV)是其中最突出的威胁。尤其是 IBV 会对肉鸡的生长和产蛋产生不利影响,造成重大损失。目前在台湾流行的 IBV 株系包括 IBV 台湾 I 型(TW-I)血清型、IBV 台湾 II 型(TW-II)血清型和疫苗株。因此,目前的工作重点是开发新型疫苗和发现抗病毒药物。CoV 的包膜(E)蛋白在病毒出芽前积聚在内质网-高尔基体中间区室。这些 E 蛋白组装成病毒孢子蛋白,表现出离子通道活性,导致细胞膜破坏,使它们成为抗病毒治疗的诱人靶标。在本研究中,我们对 IBV H-120 以及 IBV 血清型 TW-I 和 TW-II 的 E 蛋白进行了研究。E 蛋白的表达抑制了细菌的生长,增加了细菌对 β-半乳糖苷酶底物的通透性,并阻断了细菌在土霉素 B(HygB)作用下的蛋白质合成。此外,在 E 蛋白存在的情况下,HygB 还会阻碍 DF-1 细胞的蛋白质翻译,并破坏其膜的完整性。总之,这些发现证实了 IBV H-120、IBV 血清型 TW-I 和 IBV 血清型 TW-II 的 E 蛋白具有抗病毒活性。接下来,我们使用病毒抑制剂 5-(N,N-六亚甲基)阿米洛利(HMA)和 4,4'-二硫氰基-2,2'-二苯乙烯二磺酸(DIDS)来抑制 IBV H-120、IBV 血清型 TW-I 和 IBV 血清型 TW-II 的 E 蛋白的病毒抑制活性。在鸡胚和鸡感染 IBV 血清型 TW-I 和 IBV 血清型 TW-II 后,分别在感染后 6 天和 11 天(dpi)未观察到存活者。然而,使用 DIDS 和 HMA 可提高受感染鸡胚和鸡的存活率,并减轻气管和肾脏的组织病理学损伤。此外,还通过同源建模构建了 IBV E 蛋白的三维五聚体结构。不出所料,两种抑制剂都能与 E 蛋白跨膜结构域内的脂面结合,从而抑制离子传导。总之,我们的研究结果提供了全面的证据,支持使用病毒蛋白抑制剂作为抗台湾 IBV 分离物的抗病毒药物。
{"title":"Antiviral effect of the viroporin inhibitors against Taiwan isolates of infectious bronchitis virus (IBV)","authors":"Mikael Cristofer Sitinjak , Jui-Kai Chen , Fang-Lin Liu , Ming-Hon Hou , Shan-Meng Lin , Hung-Jen Liu , Chi-Young Wang","doi":"10.1016/j.virusres.2024.199458","DOIUrl":"10.1016/j.virusres.2024.199458","url":null,"abstract":"<div><p>Coronaviruses (CoVs) are significant animal and human pathogens, characterized by being enveloped RNA viruses with positive-sense single-stranded RNA. The Coronaviridae family encompasses four genera, among which gammacoronaviruses pose a major threat to the poultry industry, which infectious bronchitis virus (IBV) being the most prominent of these threats. Particularly, IBV adversely affects broiler growth and egg production, causing substantial losses. The IBV strains currently circulating in Taiwan include the IBV Taiwan-I (TW-I) serotype, IBV Taiwan-II (TW-II) serotype, and vaccine strains. Therefore, ongoing efforts have focused on developing novel vaccines and discovering antiviral agents. The envelope (E) proteins of CoVs accumulate in the endoplasmic reticulum-Golgi intermediate compartment prior to virus budding. These E proteins assemble into viroporins, exhibiting ion channel activity that leads to cell membrane disruption, making them attractive targets for antiviral therapy.</p><p>In this study, we investigated the E proteins of IBV H-120, as well as IBV serotypes TW-I and TW-II. E protein expression resulted in inhibited bacteria growth, increased permeability of bacteria to β-galactosidase substrates, and blocked protein synthesis of bacteria by hygromycin B (HygB). Furthermore, in the presence of E proteins, HygB also impeded protein translation in DF-1 cells and damaged their membrane integrity. Collectively, these findings confirm the viroporin activity of the E proteins from IBV H-120, IBV serotype TW-I, and IBV serotype TW-II. Next, the viroporin inhibitors, 5-(N,N-hexamethylene) amiloride (HMA) and 4,4’-diisothiocyano stilbene-2,2’-disulphonic acid (DIDS) were used to inhibit the viroporin activities of the E proteins of IBV H-120, IBV serotype TW-I, and IBV serotype TW-II. In chicken embryos and chickens infected with IBV serotypes TW-I and IBV TW-II, no survivors were observed at 6 and 11 days post-infection (dpi), respectively. However, treatments with both DIDS and HMA increased the survival rates in infected chicken embryos and chickens and mitigated histopathological lesions in the trachea and kidney. Additionally, a 3D pentameric structure of the IBV E protein was constructed via homology modeling. As expected, both inhibitors were found to bind to the lipid-facing surface within the transmembrane domain of the E protein, inhibiting ion conduction. Taken together, our findings provide comprehensive evidence supporting the use of viroporin inhibitors as promising antiviral agents against IBV Taiwan isolates.</p></div>","PeriodicalId":23483,"journal":{"name":"Virus research","volume":"349 ","pages":"Article 199458"},"PeriodicalIF":2.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168170224001515/pdfft?md5=d9ee6b6fb11971c725661e8d1c38bfad&pid=1-s2.0-S0168170224001515-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.1016/j.virusres.2024.199451
Sarah Duehren , Takuro Uchida , Masataka Tsuge , Nobuhiko Hiraga , Susan L. Uprichard , Ohad Etzion , Jeffrey Glenn , Christopher Koh , Theo Heller , Scott J. Cotler , Shiro Oka , Kazuaki Chayama , Harel Dahari
Recent studies indicate that treatment of chronic hepatitis D virus (HDV) with either pegylated interferon (IFN)λ or pegylated IFNα monotherapy leads to a dramatic decline in HDV RNA. Herein, we investigated the innate antiviral efficacy of IFNλ and IFNα in humanized mice that lack an adaptive immune response. Humanized mice were either co-infected with hepatitis B virus (HBV) and HDV simultaneously, or HDV infection was performed subsequent to HBV infection (i.e., superinfected). After steady viral replication was achieved, mice received either IFNλ (n = 6) or IFNα (n = 7) for 12 (or 13) weeks. Pretreatment median levels of serum HBV DNA (8.8 [IQR:0.2] log IU/ml), HDV RNA (9.8 [0.5] log IU/ml), HBsAg (4.0 [0.4] log IU/ml) and human albumin, hAlb (6.9 [0.1] log ng/mL) were similar between mice treated with IFNα or IFNλ and between those coinfected versus superinfected. Compared to mice treated with IFNλ, mice treated with IFNα had a significantly greater decline in HBV, HDV, and HBsAg levels. In conclusion, IFNα induces stronger inhibition of HBV and HDV than IFNλ in humanized mice that lack an adaptive immune response. Further studies are needed to assess the respective role of the combined innate-and adaptive-immune systems in the treatment of HBV and HDV with IFNα and IFNλ.
{"title":"Interferon alpha induces a stronger antiviral effect than interferon lambda in HBV/HDV infected humanized mice","authors":"Sarah Duehren , Takuro Uchida , Masataka Tsuge , Nobuhiko Hiraga , Susan L. Uprichard , Ohad Etzion , Jeffrey Glenn , Christopher Koh , Theo Heller , Scott J. Cotler , Shiro Oka , Kazuaki Chayama , Harel Dahari","doi":"10.1016/j.virusres.2024.199451","DOIUrl":"10.1016/j.virusres.2024.199451","url":null,"abstract":"<div><p>Recent studies indicate that treatment of chronic hepatitis D virus (HDV) with either pegylated interferon (IFN)λ or pegylated IFNα monotherapy leads to a dramatic decline in HDV RNA. Herein, we investigated the innate antiviral efficacy of IFNλ and IFNα in humanized mice that lack an adaptive immune response. Humanized mice were either co-infected with hepatitis B virus (HBV) and HDV simultaneously, or HDV infection was performed subsequent to HBV infection (i.e., superinfected). After steady viral replication was achieved, mice received either IFNλ (<em>n</em> = 6) or IFNα (<em>n</em> = 7) for 12 (or 13) weeks. Pretreatment median levels of serum HBV DNA (8.8 [IQR:0.2] log IU/ml), HDV RNA (9.8 [0.5] log IU/ml), HBsAg (4.0 [0.4] log IU/ml) and human albumin, hAlb (6.9 [0.1] log ng/mL) were similar between mice treated with IFNα or IFNλ and between those coinfected versus superinfected. Compared to mice treated with IFNλ, mice treated with IFNα had a significantly greater decline in HBV, HDV, and HBsAg levels. In conclusion, IFNα induces stronger inhibition of HBV and HDV than IFNλ in humanized mice that lack an adaptive immune response. Further studies are needed to assess the respective role of the combined innate-and adaptive-immune systems in the treatment of HBV and HDV with IFNα and IFNλ.</p></div>","PeriodicalId":23483,"journal":{"name":"Virus research","volume":"349 ","pages":"Article 199451"},"PeriodicalIF":2.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168170224001448/pdfft?md5=cdaedbbad67ee80968aa420f057b651b&pid=1-s2.0-S0168170224001448-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The growing threat of viral infections requires innovative therapeutic approaches to safeguard human health. Nanomaterials emerge as a promising solution to overcome the limitations associated with conventional therapies. The eco-friendly synthesis of silver nanoparticles (AgNPs) currently represents a method that guarantees antimicrobial efficacy, safety, and cost-effectiveness. This study explores the use of AgNPs derived from the peel (Lp-AgNPs) and juice (Lj-AgNPs) Citrus limon “Ovale di Sorrento”, cultivars of the Campania region. The antiviral potential was tested against viruses belonging to the Coronaviridae and Herpesviridae. AgNPs were synthesized by reduction method using silver nitrate solution mixed with aqueous extract of C. limon peel and juice. The formation of Lp-AgNPs and Lj-AgNPs was assessed using a UV–Vis spectrophotometer. The size, ζ-potential, concentration, and morphology of AgNPs were evaluated by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and field emission-scanning electron microscopy (FE-SEM). Cytotoxicity was evaluated in a concentration range between 500 and 7.8 µg/mL on VERO-76 and HaCaT cells, with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium test bromide (MTT). Antiviral activity consisted of virus pre-treatment, co-treatment, cellular pre-treatment, and post-infection tests versus HSV-1 and SARS-CoV-2 at a multiplicity of infections (MOI) of 0.01. Plaque reduction assays and real-time PCR provided data on the antiviral potential of tested compounds. Lp-AgNPs and Lj-AgNPs exhibited spherical morphology with respective diameters of 60 and 92 nm with concentrations of 4.22 and 4.84 × 1010 particles/mL, respectively. The MTT data demonstrated minimal cytotoxicity, with 50 % cytotoxic concentrations (CC50) of Lp-AgNPs and Lj-AgNPs against VERO cells of 754.6 and 486.7 µg/mL. Similarly, CC50 values against HaCaT were 457.3 µg/mL for Lp-AgNPs and 339.6 µg/mL for Lj-AgNPs, respectively. In the virus pre-treatment assay, 90 % inhibitory concentrations of HSV-1 and SARS-CoV-2 were 8.54–135.04 µg/mL for Lp-AgNPs and 6.13–186.77 µg/mL for Lj-AgNPs, respectively. The molecular investigation confirmed the antiviral data, recording a reduction in the UL54 and UL27 genes for HSV-1 and in the Spike (S) gene for SARS-CoV-2, following AgNP exposure. The results of this study suggest that Lp-AgNPs and Lj-AgNPs derived from C. Limon could offer a valid ecological, natural, local and safe strategy against viral infections.
{"title":"Eco-friendly synthesis of silver nanoparticles from peel and juice C. limon and their antiviral efficacy against HSV-1 and SARS-CoV-2","authors":"Federica Dell'Annunziata , Ekaterine Mosidze , Veronica Folliero , Erwin P. Lamparelli , Valentina Lopardo , Pasquale Pagliano , Giovanna Della Porta , Massimiliano Galdiero , Aliosha Dzh Bakuridze , Gianluigi Franci","doi":"10.1016/j.virusres.2024.199455","DOIUrl":"10.1016/j.virusres.2024.199455","url":null,"abstract":"<div><p>The growing threat of viral infections requires innovative therapeutic approaches to safeguard human health. Nanomaterials emerge as a promising solution to overcome the limitations associated with conventional therapies. The eco-friendly synthesis of silver nanoparticles (AgNPs) currently represents a method that guarantees antimicrobial efficacy, safety, and cost-effectiveness. This study explores the use of AgNPs derived from the peel (Lp-AgNPs) and juice (Lj-AgNPs) <em>Citrus limon “Ovale di Sorrento”</em>, cultivars of the Campania region. The antiviral potential was tested against viruses belonging to the <em>Coronaviridae</em> and <em>Herpesviridae</em>. AgNPs were synthesized by reduction method using silver nitrate solution mixed with aqueous extract of <em>C. limon</em> peel and juice. The formation of Lp-AgNPs and Lj-AgNPs was assessed using a UV–Vis spectrophotometer. The size, ζ-potential, concentration, and morphology of AgNPs were evaluated by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and field emission-scanning electron microscopy (FE-SEM). Cytotoxicity was evaluated in a concentration range between 500 and 7.8 µg/mL on VERO-76 and HaCaT cells, with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium test bromide (MTT). Antiviral activity consisted of virus pre-treatment, co-treatment, cellular pre-treatment, and post-infection tests versus HSV-1 and SARS-CoV-2 at a multiplicity of infections (MOI) of 0.01. Plaque reduction assays and real-time PCR provided data on the antiviral potential of tested compounds. Lp-AgNPs and Lj-AgNPs exhibited spherical morphology with respective diameters of 60 and 92 nm with concentrations of 4.22 and 4.84 × 10<sup>10</sup> particles/mL, respectively. The MTT data demonstrated minimal cytotoxicity, with 50 % cytotoxic concentrations (CC<sub>50</sub>) of Lp-AgNPs and Lj-AgNPs against VERO cells of 754.6 and 486.7 µg/mL. Similarly, CC<sub>50</sub> values against HaCaT were 457.3 µg/mL for Lp-AgNPs and 339.6 µg/mL for Lj-AgNPs, respectively. In the virus pre-treatment assay, 90 % inhibitory concentrations of HSV-1 and SARS-CoV-2 were 8.54–135.04 µg/mL for Lp-AgNPs and 6.13–186.77 µg/mL for Lj-AgNPs, respectively. The molecular investigation confirmed the antiviral data, recording a reduction in the UL54 and UL27 genes for HSV-1 and in the Spike (S) gene for SARS-CoV-2, following AgNP exposure. The results of this study suggest that Lp-AgNPs and Lj-AgNPs derived from <em>C. Limon</em> could offer a valid ecological, natural, local and safe strategy against viral infections.</p></div>","PeriodicalId":23483,"journal":{"name":"Virus research","volume":"349 ","pages":"Article 199455"},"PeriodicalIF":2.5,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168170224001485/pdfft?md5=0c8250a8a812d909e10b66b46c36f7f5&pid=1-s2.0-S0168170224001485-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}