This study investigated microplastic pollution in the large mud snail Terebralia palustris (Linnaeus, 1767) (Gastropoda: Potamididae) inhabiting the Avicennia marina mangrove ecosystems along the Sea of Oman. A modified digestion protocol, combining two methods, was employed to improve the detection of microplastics within the snail tissue. Results indicated that 50 % of the examined snails contained microplastics, with significant variability observed among different lagoons. Snails from the polluted Shinas lagoon exhibited higher levels of microplastics compared to those from the lowest polluted Al-Qurum Natural Reserve (MPA). The most prevalent type of microplastic in snail tissues was fibers, making up 75.7 % of the total. Fragments constituted about 24.2 %. Using portable Raman spectrometry, Polyurethane (PU) was identified as the predominant polymer, accounting for 50 % of the total. This was followed by Acrylic and Polyethylene, each representing 18.75 %, and Polyethylene Vynil Acetate (PEVA) at 12.50 %. Overall, it is clear that while snails do reflect the presence of microplastics (MPs) in their environment, their physical attributes do not strongly correlate with the levels or types of MPs they contain. Additionally, the significant difference between the abundance of MPs in sediment and in snails illustrates that, while snails may serve as general indicators of microplastic pollution, they may not be reliable as precise bioindicators or sentinel species for quantifying the extent of this pollution. Further studies are needed to explore other potential bioindicators in mangrove habitats.