Perovskite solar cells (PSCs) employing a SnO2 electron transport layer (ETL) have consistently broken efficiency records over the past decade by developing new active materials and optimizing device structures. As a key functional layer of PSCs, the SnO2 ETL directly dictates the performance and stability of the entire device. However, the defect-induced recombination losses and the optical losses caused by suboptimal optical paths on the SnO2/perovskite interface remain major barriers to PSCs performance improvement. Therefore, from the perspective of interfacial engineering, this study designs and synthesizes a metal–organic framework (MOF) material based on tin sulfate (SnSO4) and 2-nitroterephthalic acid (NTA), namely, Sn-NTA, which combines the functions of regulating the incident optical path and passivating interface defects. The Sn-NTA nanocluster enhances light scattering at the SnO2/perovskite interface, thus increasing perovskite light absorption. Moreover, the mesoporous MOF with carboxyl groups templates the crystallization of the perovskite and enables the formation of a radial MOF/perovskite junction, accelerating charge transfer. As a result, devices based on Sn-NTA show significantly improved photovoltaic properties, achieving a high power conversion efficiency of 24.04%. This work not only provides a new method for preparing multifunctional MOF materials but also inspires future researchers to focus on the collaborative design of interface optical structures and defect termination.
Sorption-based low-pressure green ammonia synthesis using supported metal halide salts enables efficient interconversion between hydrogen and ammonia, allowing the high hydrogen density and well-established transportation network of ammonia to be used for green energy storage. Magnesium chloride supported on silica gel (MgCl2/SiO2) sorbent has been the subject of much investigation owing to its high capacity, selectivity, and reversibility at temperatures close to reactor conditions; however, MgCl2/SiO2 suffers from low thermal conductivity, which complicates absorber design at larger scales and prolongs absorption–desorption cycle times. We present a scalable, solventless method for supporting MgCl2 on thermally conductive aluminum fibers (MgCl2/Al)─a thermally conductive ammonia sorbent with a high working capacity of ∼220 mgNH3/gabsorbent. Although the solventless synthesis causes variance in initial-cycle pressure drop and capacity, we show that this stabilizes after cycling. The high thermal conductivity of MgCl2/Al allows for rapid absorption–desorption cycles, enabling easier scale-up. MgCl2/Al also maintains its cyclic capacity up to at least 50 cycles.