Pub Date : 2024-03-06DOI: 10.1016/j.biosx.2024.100457
Olga I. Guliy, Lev A. Dykman
Infections cause concern for mankind, and sometimes their diagnosis may take much time. Owing to its high sensitivity, rapidity, and specificity, the immunochromatographic assay (ICA) is used widely to diagnose infections. The use of the ICA for this purpose makes it possible to detect dangerous diseases early, prevent their progress, strongly reduce the treatment cost and mortality, and increase life expectancy. One promising ICA format involves the use of gold nanoparticles. Here we present the principles and history of ICA use for the diagnosis of infections and discuss the prospects for using gold nanoparticles in the ICA. We present data on the methods used to make and conjugate gold nanoparticles and on the effect of particle size and shape on ICA sensitivity. We discuss the prospects for using the ICA to diagnose bacterial and viral infections, and we review instrumental methods for quantifying ICA results. Finally, we discuss the prospects for using the gold nanoparticle–based ICA in the diagnosis of infections.
{"title":"Gold nanoparticle–based lateral-flow immunochromatographic biosensing assays for the diagnosis of infections","authors":"Olga I. Guliy, Lev A. Dykman","doi":"10.1016/j.biosx.2024.100457","DOIUrl":"10.1016/j.biosx.2024.100457","url":null,"abstract":"<div><p>Infections cause concern for mankind, and sometimes their diagnosis may take much time. Owing to its high sensitivity, rapidity, and specificity, the immunochromatographic assay (ICA) is used widely to diagnose infections. The use of the ICA for this purpose makes it possible to detect dangerous diseases early, prevent their progress, strongly reduce the treatment cost and mortality, and increase life expectancy. One promising ICA format involves the use of gold nanoparticles. Here we present the principles and history of ICA use for the diagnosis of infections and discuss the prospects for using gold nanoparticles in the ICA. We present data on the methods used to make and conjugate gold nanoparticles and on the effect of particle size and shape on ICA sensitivity. We discuss the prospects for using the ICA to diagnose bacterial and viral infections, and we review instrumental methods for quantifying ICA results. Finally, we discuss the prospects for using the gold nanoparticle–based ICA in the diagnosis of infections.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"17 ","pages":"Article 100457"},"PeriodicalIF":10.61,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000219/pdfft?md5=8654bd97075b580b24f5f83aa803d582&pid=1-s2.0-S2590137024000219-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140054659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-17DOI: 10.1016/j.biosx.2024.100453
Manish S. Sengar , Priya Kumari , Neha Sengar , Soami P. Satsangee , Rajeev Jain
This study focuses on the first-ever high-sensitivity, low-cost, and quick response electrochemical estimation of metadoxine (MTD) in pharmaceuticals and human blood serum using a non-enzymatic nanocomposite modified glassy carbon electrode (CuO/CH/GCE) loaded with chitosan. The electroactive surface of GCE was produced by drop-casting a suspension of CuO/CH nanocomposite in N,N-dimethylformamide (DMF) onto the non-enzymatic electrode surface. Synthesized nanocomposite was characterised by using XRD, XPS, EDX, TEM, Raman and FESEM techniques. EIS technique was utilized to study the enhanced charge-transfer phenomenon occurring at the surface of modified sensor. The electrooxidation of MTD at CuO/CH/GCE surface is depending at pH of supporting electrolyte, scan rate and concentration of analyte. CV and SWV technique were used to carry out electrochemical study, optimised voltammetric response is observed in the BR buffer at pH 2.5, with irreversible diffusion-controlled process. Within the linear concentration range of MTD from 1.99 μg/L to 29.56 μg/L, this sensor exhibited lowest LOD (0.64 μg/L) and LOQ (2.14 μg/L). The MTD in pharmaceutical formulation and human blood serum can be determined with this highly selective peak potential (Ep ∼ 1.2 V), repeatable (%RSD 0.91), and reproducible (%RSD 2.31) method. The average percentage recovery in human blood serum and pharmaceutical formulation is 99.89% and 99.90%. This paper reports a lowest LOD value for MTD detection in the comparison with other reported methods (Table S1). None of the selected excipients were found to interfere more than 5% with redox potential of MTD without affecting the performance of sensor.
{"title":"Non-enzymatic electrochemical sensing platform based on metal oxide-loaded biopolymer for voltammetric measurement of hepatoprotective metadoxine drug in pharmaceutical formulation and human blood serum","authors":"Manish S. Sengar , Priya Kumari , Neha Sengar , Soami P. Satsangee , Rajeev Jain","doi":"10.1016/j.biosx.2024.100453","DOIUrl":"10.1016/j.biosx.2024.100453","url":null,"abstract":"<div><p>This study focuses on the first-ever high-sensitivity, low-cost, and quick response electrochemical estimation of metadoxine (MTD) in pharmaceuticals and human blood serum using a non-enzymatic nanocomposite modified glassy carbon electrode (CuO/CH/GCE) loaded with chitosan. The electroactive surface of GCE was produced by drop-casting a suspension of CuO/CH nanocomposite in N,N-dimethylformamide (DMF) onto the non-enzymatic electrode surface. Synthesized nanocomposite was characterised by using XRD, XPS, EDX, TEM, Raman and FESEM techniques. EIS technique was utilized to study the enhanced charge-transfer phenomenon occurring at the surface of modified sensor. The electrooxidation of MTD at CuO/CH/GCE surface is depending at pH of supporting electrolyte, scan rate and concentration of analyte. CV and SWV technique were used to carry out electrochemical study, optimised voltammetric response is observed in the BR buffer at pH 2.5, with irreversible diffusion-controlled process. Within the linear concentration range of MTD from 1.99 μg/L to 29.56 μg/L, this sensor exhibited lowest LOD (0.64 μg/L) and LOQ (2.14 μg/L). The MTD in pharmaceutical formulation and human blood serum can be determined with this highly selective peak potential (Ep ∼ 1.2 V), repeatable (%RSD 0.91), and reproducible (%RSD 2.31) method. The average percentage recovery in human blood serum and pharmaceutical formulation is 99.89% and 99.90%. This paper reports a lowest LOD value for MTD detection in the comparison with other reported methods (Table S1). None of the selected excipients were found to interfere more than 5% with redox potential of MTD without affecting the performance of sensor.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"17 ","pages":"Article 100453"},"PeriodicalIF":10.61,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000177/pdfft?md5=109df676fa512a6da046be990582ac28&pid=1-s2.0-S2590137024000177-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139927573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-15DOI: 10.1016/j.biosx.2024.100455
Pei Li , Pramod K. Kalambate , Kenneth D. Harris , Abebaw B. Jemere , Xiaowu (Shirley) Tang
In this work, nickel oxide (NiO) nanostructures deposited by glancing angle deposition (GLAD) are fabricated to achieve highly specific catalytic electrooxidation of lactate, replacing the natural enzyme lactate oxidase for electrochemical detection of lactate in sweat. GLAD NiO electrodes exhibit high sensitivity (412 μA mM−1 cm−2), wide linear detection range (1–45 mM), low detection limit (3 μM), and excellent specificity in artificial sweat samples. The unique microporous structure of the GLAD NiO electrodes, combined with their high surface area, high catalytic activity, and excellent conductivity, enhance the performance of the sensor and demonstrate their exceptional effectiveness in the sensitive detection of lactate. In-house fabricated gold counter, and stable solid-state Ag/AgCl reference electrodes, all fabricated on a flexible PET substrate along with the GLAD NiO working electrode, demonstrate performance comparable to commercial Pt auxiliary and Ag/AgCl (1M KCl) reference electrodes in lactate detection, along with outstanding flexibility, tested at various radii of curvature (15 mm, 7.5 mm, and 5 mm). The durable and long-lasting GLAD NiO electrode chips overcome numerous challenges in transport, storage, and operation, paving the way for the development of wearable lactate sensors that can detect lactate levels in sweat.
{"title":"Robust and flexible electrochemical lactate sensors for sweat analysis based on nanozyme-enhanced electrode","authors":"Pei Li , Pramod K. Kalambate , Kenneth D. Harris , Abebaw B. Jemere , Xiaowu (Shirley) Tang","doi":"10.1016/j.biosx.2024.100455","DOIUrl":"10.1016/j.biosx.2024.100455","url":null,"abstract":"<div><p>In this work, nickel oxide (NiO) nanostructures deposited by glancing angle deposition (GLAD) are fabricated to achieve highly specific catalytic electrooxidation of lactate, replacing the natural enzyme lactate oxidase for electrochemical detection of lactate in sweat. GLAD NiO electrodes exhibit high sensitivity (412 μA mM<sup>−1</sup> cm<sup>−2</sup>), wide linear detection range (1–45 mM), low detection limit (3 μM), and excellent specificity in artificial sweat samples. The unique microporous structure of the GLAD NiO electrodes, combined with their high surface area, high catalytic activity, and excellent conductivity, enhance the performance of the sensor and demonstrate their exceptional effectiveness in the sensitive detection of lactate. In-house fabricated gold counter, and stable solid-state Ag/AgCl reference electrodes, all fabricated on a flexible PET substrate along with the GLAD NiO working electrode, demonstrate performance comparable to commercial Pt auxiliary and Ag/AgCl (1M KCl) reference electrodes in lactate detection, along with outstanding flexibility, tested at various radii of curvature (15 mm, 7.5 mm, and 5 mm). The durable and long-lasting GLAD NiO electrode chips overcome numerous challenges in transport, storage, and operation, paving the way for the development of wearable lactate sensors that can detect lactate levels in sweat.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"17 ","pages":"Article 100455"},"PeriodicalIF":10.61,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000190/pdfft?md5=f9c66c171415d33813f315f86d28def3&pid=1-s2.0-S2590137024000190-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139811977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-15DOI: 10.1016/j.biosx.2024.100456
Darío Sánchez Martín , Tingting Li , Marie Wrande , Linus Sandegren , Bo Tian , Maria Strømme , Teresa Zardán Gómez de la Torre
Synthetic single-stranded oligonucleotides play crucial roles in DNA amplification reactions for various applications, such as serving as primers, enabling magnetic separation, and generating dsDNA for subsequent digestion. Typically, these oligos are added in excess to ensure rapid binding to their intended targets. However, while performing rolling circle amplification (RCA) using phi29 DNA polymerase, we observed a decrease in amplification efficiency when oligos were present in the reaction. This phenomenon was consistently observed in two separate laboratories, prompting this study to delve into the root causes responsible for the decline in RCA efficiency. The lowered efficiency was consistent regardless of the manufacturer or any mutations in the phi29 polymerase. We identified several variables that influenced RCA efficiency, mainly the length of the oligos used and the presence of modifications, particularly those obstructing 3’ end digestion. This strongly suggests that the exonuclease domain of phi29 DNA polymerase is responsible for the competition-based inhibition. Our investigation shows that even picomole quantities of oligos can significantly reduce total DNA production during the phi29 DNA polymerase-mediated amplification process. Conversely, the addition of oligos to the reaction did not impede the efficiency of Bst 3.0 polymerase, likely due to the lack of an exonuclease domain of said polymerase. While increasing the quantity of phi29 DNA polymerase in the reaction partially alleviated the adverse effects of excess oligos, we believe it is crucial to carefully optimize the oligo quantities to achieve maximum amplification of the desired targets.
合成单链寡核苷酸在各种应用的 DNA 扩增反应中发挥着至关重要的作用,如作为引物、实现磁性分离以及生成供后续消化的 dsDNA。通常情况下,这些寡核苷酸会被过量添加,以确保快速与目标结合。然而,在使用 phi29 DNA 聚合酶进行滚圆扩增(RCA)时,我们发现当反应中存在寡聚物时,扩增效率会降低。这一现象在两个不同的实验室中被持续观察到,促使本研究深入探讨导致 RCA 效率下降的根本原因。无论生产商是哪家,也无论 phi29 聚合酶是否发生了突变,效率下降的现象都是一致的。我们发现了影响 RCA 效率的几个变量,主要是所用寡核苷酸的长度和是否存在修饰,尤其是那些阻碍 3' 端消化的修饰。这强烈表明,phi29 DNA 聚合酶的外切酶结构域是竞争性抑制的原因。我们的研究表明,在 phi29 DNA 聚合酶介导的扩增过程中,即使是皮摩尔量的寡聚物也能显著减少 DNA 的总产量。相反,在反应中加入寡聚物并不会影响 Bst 3.0 聚合酶的效率,这可能是因为该聚合酶缺乏外切酶结构域。虽然在反应中增加 phi29 DNA 聚合酶的数量部分缓解了过量寡聚物的不利影响,但我们认为仔细优化寡聚物的数量以最大限度地扩增所需目标是至关重要的。
{"title":"Reduced amplification by phi29 DNA polymerase in the presence of unbound oligos during reaction in RCA","authors":"Darío Sánchez Martín , Tingting Li , Marie Wrande , Linus Sandegren , Bo Tian , Maria Strømme , Teresa Zardán Gómez de la Torre","doi":"10.1016/j.biosx.2024.100456","DOIUrl":"10.1016/j.biosx.2024.100456","url":null,"abstract":"<div><p>Synthetic single-stranded oligonucleotides play crucial roles in DNA amplification reactions for various applications, such as serving as primers, enabling magnetic separation, and generating dsDNA for subsequent digestion. Typically, these oligos are added in excess to ensure rapid binding to their intended targets. However, while performing rolling circle amplification (RCA) using phi29 DNA polymerase, we observed a decrease in amplification efficiency when oligos were present in the reaction. This phenomenon was consistently observed in two separate laboratories, prompting this study to delve into the root causes responsible for the decline in RCA efficiency. The lowered efficiency was consistent regardless of the manufacturer or any mutations in the phi29 polymerase. We identified several variables that influenced RCA efficiency, mainly the length of the oligos used and the presence of modifications, particularly those obstructing 3’ end digestion. This strongly suggests that the exonuclease domain of phi29 DNA polymerase is responsible for the competition-based inhibition. Our investigation shows that even picomole quantities of oligos can significantly reduce total DNA production during the phi29 DNA polymerase-mediated amplification process. Conversely, the addition of oligos to the reaction did not impede the efficiency of Bst 3.0 polymerase, likely due to the lack of an exonuclease domain of said polymerase. While increasing the quantity of phi29 DNA polymerase in the reaction partially alleviated the adverse effects of excess oligos, we believe it is crucial to carefully optimize the oligo quantities to achieve maximum amplification of the desired targets.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"17 ","pages":"Article 100456"},"PeriodicalIF":10.61,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000207/pdfft?md5=d287c9aee31a57315a7717b990891ab8&pid=1-s2.0-S2590137024000207-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139872072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vibrio vulnificus (Vv) is a marine pathogen that can cause rapid death by septicemia (vibriosis) in humans and several fish species. This pathogen is considered a biomarker of climate change, as both its presence and vibriosis incidence in coastal environments are increasing because of global warming. Currently, gold-standard methods for Vv detection are all PCR-based, requiring expensive equipment and skilled personnel, which hinders their use on a global scale. The aim of this work was to design and test a more affordable method that could be used worldwide for both vibriosis diagnosis and pathogen monitoring in water. To this end, we functionalized thin film microelectrodes with thiolated single-stranded DNA sequences complementary to the species-specific genetic marker, the gene vvha, and monitored the impedance changes upon hybridization. We tested the biosensor specificity with synthetic and natural DNA samples (from cultures of Vv and V. cholerae, a closely related species) and determined the detectable concentration range. The results obtained showed that this biosensor was specific for Vv, achieving detection down to 1 pM synthetic DNA and DNA extracted from 102 bacteria mL−1, which is equivalent to that obtained by PCR. Consequently, this biosensor could be used on a global scale for vibriosis diagnostics, health risk studies and climate change monitoring, with potential application for in situ detection.
弧菌(Vv)是一种海洋病原体,可导致人类和多种鱼类因败血症(弧菌病)而迅速死亡。这种病原体被认为是气候变化的生物标志物,因为由于全球变暖,它在沿海环境中的存在和弧菌病发病率都在增加。目前,检测 Vv 的黄金标准方法都是基于 PCR 的,需要昂贵的设备和熟练的人员,这阻碍了它们在全球范围内的使用。这项工作的目的是设计和测试一种更经济实惠的方法,可在全球范围内用于弧菌病诊断和水中病原体监测。为此,我们用与物种特异性遗传标记 vvha 基因互补的硫醇化单链 DNA 序列对薄膜微电极进行了功能化,并监测了杂交后的阻抗变化。我们用合成 DNA 样品和天然 DNA 样品(来自 Vv 和霍乱弧菌(一种密切相关的物种)的培养物)测试了生物传感器的特异性,并确定了可检测的浓度范围。结果表明,这种生物传感器对 Vv 具有特异性,能检测到低至 1 pM 的合成 DNA 和从 102 个细菌 mL-1 中提取的 DNA,这与通过 PCR 获得的结果相当。因此,这种生物传感器可在全球范围内用于弧菌病诊断、健康风险研究和气候变化监测,并有可能应用于原位检测。
{"title":"Vibrio vulnificus marine pathogen detection with thin-film impedance biosensors","authors":"Arnau Pérez Roig , Bergoi Ibarlucea , Carmen Amaro , Gianaurelio Cuniberti","doi":"10.1016/j.biosx.2024.100454","DOIUrl":"https://doi.org/10.1016/j.biosx.2024.100454","url":null,"abstract":"<div><p><em>Vibrio vulnificus</em> (Vv) is a marine pathogen that can cause rapid death by septicemia (vibriosis) in humans and several fish species. This pathogen is considered a biomarker of climate change, as both its presence and vibriosis incidence in coastal environments are increasing because of global warming. Currently, gold-standard methods for Vv detection are all PCR-based, requiring expensive equipment and skilled personnel, which hinders their use on a global scale. The aim of this work was to design and test a more affordable method that could be used worldwide for both vibriosis diagnosis and pathogen monitoring in water. To this end, we functionalized thin film microelectrodes with thiolated single-stranded DNA sequences complementary to the species-specific genetic marker, the gene <em>vvha</em>, and monitored the impedance changes upon hybridization. We tested the biosensor specificity with synthetic and natural DNA samples (from cultures of Vv and <em>V. cholerae</em>, a closely related species) and determined the detectable concentration range. The results obtained showed that this biosensor was specific for Vv, achieving detection down to 1 pM synthetic DNA and DNA extracted from 10<sup>2</sup> bacteria mL<sup>−1</sup>, which is equivalent to that obtained by PCR. Consequently, this biosensor could be used on a global scale for vibriosis diagnostics, health risk studies and climate change monitoring, with potential application for <em>in situ</em> detection.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"17 ","pages":"Article 100454"},"PeriodicalIF":10.61,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000189/pdfft?md5=af3b0aefae9767e5f3c6747487932fd8&pid=1-s2.0-S2590137024000189-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139737797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The manuscript describes a technique for fabrication and validation of a standalone handheld optical biosensor designed for non-invasive monitoring of glucose through saliva. In this cost-effective process, a 3D-printed glucose test strip was filled with sieving paste comprising of cellulose, polyethylene glycol (PEG), polyvinyl alcohol (PVA) and glycerol, onto which, glucose oxidase-peroxidase (GOD-POD) enzymes and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) chromogenic dye were co-immobilized. The enzymatic reaction produced H2O2 as by-product with which the ABTS reacted, leading to colour change on the detection zone of the strip which was detected by the developed glucometer. The in-house developed meter included an optically isolated section in its structure for inserting the strip to prevent interference from the ambient light conditions. The biosensor exhibited a broad detection range of 28–204 mg/dL of glucose concentration, with a sensitivity of 26.89 count/mg/dL and a limit of detection (LOD) at 28 mg/dL, within a response time of 120 s. The device along with strips was validated with clinical samples, comparing salivary glucose levels (SGL) to blood glucose levels (BGL) using a commercial glucometer i.e., Accu-Chek Active. Student's t-test on clinical data yielded p-values of 0.018, 0.01, 0.008, and 0.003 in fasting and post-prandial samples of non-diabetic and diabetic patients respectively, which represents a significant correlation. The device also passed Clarke's error grid analysis and is hence considered medically acceptable. The low-cost and simple-to-use saliva-based glucometer should be ideally suited for mass screening of diabetes as well as day-to-day health check-ups in a non-invasive and painless manner.
手稿介绍了一种用于通过唾液无创监测葡萄糖的独立手持式光学生物传感器的制造和验证技术。在这一经济高效的工艺中,3D 打印的葡萄糖试纸充满了由纤维素、聚乙二醇(PEG)、聚乙烯醇(PVA)和甘油组成的筛浆,葡萄糖氧化酶-过氧化物酶(GOD-POD)和 2,2′-偶氮双(3-乙基苯并噻唑啉-6-磺酸)(ABTS)致色染料被共同固定在筛浆上。酶反应产生的副产物 H2O2 与 ABTS 发生反应,导致色带检测区的颜色发生变化,并由开发的血糖仪进行检测。内部开发的血糖仪在其结构中包括一个光学隔离部分,用于插入条带,以防止环境光条件的干扰。该生物传感器的葡萄糖浓度检测范围为 28-204 毫克/分升,灵敏度为 26.89 次/毫克/分升,检测限(LOD)为 28 毫克/分升,响应时间为 120 秒。该装置和血糖条通过临床样本进行了验证,使用商用血糖仪 Accu-Chek Active 比较了唾液葡萄糖水平(SGL)和血糖水平(BGL)。通过对临床数据进行学生 t 检验,非糖尿病患者和糖尿病患者空腹和餐后样本的 p 值分别为 0.018、0.01、0.008 和 0.003,这表明两者之间存在显著的相关性。该装置还通过了克拉克误差网格分析,因此在医学上是可以接受的。这种基于唾液的血糖仪成本低、使用简单,非常适合用于大规模的糖尿病筛查,以及以非侵入性和无痛的方式进行日常健康检查。
{"title":"Portable optical biosensor for point-of-care monitoring of salivary glucose using a paper-based microfluidic strip","authors":"Shweta Panwar , Paulami Sarkar , D. Syed Kasim , Raksha Anand , Akanksha Priya , Shyam Prakash , Sandeep Kumar Jha","doi":"10.1016/j.biosx.2024.100452","DOIUrl":"10.1016/j.biosx.2024.100452","url":null,"abstract":"<div><p>The manuscript describes a technique for fabrication and validation of a standalone handheld optical biosensor designed for non-invasive monitoring of glucose through saliva. In this cost-effective process, a 3D-printed glucose test strip was filled with sieving paste comprising of cellulose, polyethylene glycol (PEG), polyvinyl alcohol (PVA) and glycerol, onto which, glucose oxidase-peroxidase (GOD-POD) enzymes and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) chromogenic dye were co-immobilized. The enzymatic reaction produced H<sub>2</sub>O<sub>2</sub> as by-product with which the ABTS reacted, leading to colour change on the detection zone of the strip which was detected by the developed glucometer. The in-house developed meter included an optically isolated section in its structure for inserting the strip to prevent interference from the ambient light conditions. The biosensor exhibited a broad detection range of 28–204 mg/dL of glucose concentration, with a sensitivity of 26.89 count/mg/dL and a limit of detection (LOD) at 28 mg/dL, within a response time of 120 s. The device along with strips was validated with clinical samples, comparing salivary glucose levels (SGL) to blood glucose levels (BGL) using a commercial glucometer i.e., Accu-Chek Active. Student's t-test on clinical data yielded p-values of 0.018, 0.01, 0.008, and 0.003 in fasting and post-prandial samples of non-diabetic and diabetic patients respectively, which represents a significant correlation. The device also passed Clarke's error grid analysis and is hence considered medically acceptable. The low-cost and simple-to-use saliva-based glucometer should be ideally suited for mass screening of diabetes as well as day-to-day health check-ups in a non-invasive and painless manner.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"17 ","pages":"Article 100452"},"PeriodicalIF":10.61,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000165/pdfft?md5=6079c2eb7aa736c6042d9fe826728f82&pid=1-s2.0-S2590137024000165-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139817391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methylglyoxal (MG) is a prominent biomarker for diabetic syndromes and ageing disorders. In the present study, a non-enzymatic electrochemical detection of MG in human saliva at low levels was achieved via polyaniline/nickel oxide nanohybrid modified graphite sheet (PANI/NiO/GS) electrode. The physical characteristics and structure of the PANI/NiO nanohybrid showed the presence of NiO flakes embedded within the irregular granular like structure of PANI matrices. Chronoamperometric (CA) analysis of the nanohybrid electrode showed excellent electrocatalytic activity towards MG with the linear range from 1 to 10 μM in 0.1 M phosphate buffer (pH 7). The proposed sensor boasts a high sensitivity of 1.136 μA.μM−1 including a lower limit of detection of 2.64 nM. The real-time functionality of the proposed biosensor was also employed to estimate the precise quantification of MG levels in both healthy and diabetic patients' saliva. For the healthy and diabetes samples, the recovery values for MG were 95–103 % and 102–111 %, respectively. This approach is truly noninvasive and circumvents the discomforts associated with the traditional modalities.
{"title":"Non-enzymatic electrochemical detection of methylglyoxal in saliva using a polyaniline/nickel oxide nanohybrid biosensor: A noninvasive approach for diabetes diagnosis","authors":"Subramanian Vasanth, Humayun Amir, Nagomony Ponpandian, Chinnuswamy Viswanathan","doi":"10.1016/j.biosx.2024.100444","DOIUrl":"10.1016/j.biosx.2024.100444","url":null,"abstract":"<div><p>Methylglyoxal (MG) is a prominent biomarker for diabetic syndromes and ageing disorders. In the present study, a non-enzymatic electrochemical detection of MG in human saliva at low levels was achieved via polyaniline/nickel oxide nanohybrid modified graphite sheet (PANI/NiO/GS) electrode. The physical characteristics and structure of the PANI/NiO nanohybrid showed the presence of NiO flakes embedded within the irregular granular like structure of PANI matrices. Chronoamperometric (CA) analysis of the nanohybrid electrode showed excellent electrocatalytic activity towards MG with the linear range from 1 to 10 μM in 0.1 M phosphate buffer (pH 7). The proposed sensor boasts a high sensitivity of 1.136 μA.μM<sup>−1</sup> including a lower limit of detection of 2.64 nM. The real-time functionality of the proposed biosensor was also employed to estimate the precise quantification of MG levels in both healthy and diabetic patients' saliva. For the healthy and diabetes samples, the recovery values for MG were 95–103 % and 102–111 %, respectively. This approach is truly noninvasive and circumvents the discomforts associated with the traditional modalities.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"17 ","pages":"Article 100444"},"PeriodicalIF":10.61,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000086/pdfft?md5=674c68aedf012f0c96e8069884f4477f&pid=1-s2.0-S2590137024000086-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139586908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-22DOI: 10.1016/j.biosx.2024.100441
Dhanendiren Narayanasamy , Safura Taufik , Ahmad Farid Mohd Azmi , Siti Aminah Mohd Nor , Jahwarhar Izuan Abdul Rashid
The threat posed by microbial infections to human health remains very significant, particularly in considering the increasing mechanisms of antibiotic resistance. Pseudomonas aeruginosa is known for its antibiotic resistance and is linked to serious conditions like ventilator-associated pneumonia and cystic fibrosis. Rapid infection elimination relies on identifying harmful bacteria and preventing colonization. Due to the redox-active nature of P. aeruginosa biomarkers metabolites, several electrochemical sensing approaches are being evaluated as diagnostic platforms for the rapid and precise detection of P. aeruginosa with high sensitivity. These sensors must be developed and modified to achieve optimal selectivity, sensitivity, and biocompatibility, enabling dynamic, real-time metabolite detection. This minireview highlights recent advancements in electrochemical and optical biosensors for detecting P. aeruginosa biomarkers, particularly pyocyanin. It highlighted design, analytical performance, biological recognition elements, and personalized wearable electrochemical sensor devices. It concludes with the future suggestions of sensor concepts for clinical diagnostics, environmental monitoring, and food safety.
{"title":"Modern technology advances of Pseudomonas aeruginosa based biosensor approach","authors":"Dhanendiren Narayanasamy , Safura Taufik , Ahmad Farid Mohd Azmi , Siti Aminah Mohd Nor , Jahwarhar Izuan Abdul Rashid","doi":"10.1016/j.biosx.2024.100441","DOIUrl":"10.1016/j.biosx.2024.100441","url":null,"abstract":"<div><p>The threat posed by microbial infections to human health remains very significant, particularly in considering the increasing mechanisms of antibiotic resistance. <em>Pseudomonas aeruginosa</em> is known for its antibiotic resistance and is linked to serious conditions like ventilator-associated pneumonia and cystic fibrosis. Rapid infection elimination relies on identifying harmful bacteria and preventing colonization. Due to the redox-active nature of <em>P. aeruginosa</em> biomarkers metabolites, several electrochemical sensing approaches are being evaluated as diagnostic platforms for the rapid and precise detection of <em>P. aeruginosa</em> with high sensitivity. These sensors must be developed and modified to achieve optimal selectivity, sensitivity, and biocompatibility, enabling dynamic, real-time metabolite detection. This minireview highlights recent advancements in electrochemical and optical biosensors for detecting <em>P. aeruginosa</em> biomarkers, particularly pyocyanin. It highlighted design, analytical performance, biological recognition elements, and personalized wearable electrochemical sensor devices. It concludes with the future suggestions of sensor concepts for clinical diagnostics, environmental monitoring, and food safety.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"17 ","pages":"Article 100441"},"PeriodicalIF":10.61,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000050/pdfft?md5=099bb01d4140f2dbaab739e43f653384&pid=1-s2.0-S2590137024000050-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139552342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soil Health parameters serve as excellent surrogate measures towards assessing environmental quality and understanding effects of climate change mitigation via carbon sequestration. Soil Organic Matter (SOM) is a parameter that is synonymous to soil health and understanding SOM is a key metric to building and influencing good soil and agronomic practices by impacting soil aggregation and water withholding capacity. It is a vital regulator of soil nutrient cycling and uptake as well as a factor in the global carbon cycle and is hence more advantageous than just carbon monitoring. While it is understood that soil health cannot be analyzed directly, the use of an efficient indicator that can relay information about the soil physico-chemical and biological characteristics is highly desirable since it offers the ability to analyze soil information over time and build patterns in terms of geographical location.
The proposed sensing system offers an in-situ electroanalytical approach to survey various electroactive substances present in the soil matrix. Utilizing this experimental framework- A mechanism of interaction between the RTIL (Room Temperature Ionic-Liquid) modified electrode and the OM functional moieties based on hydrogen bonding and pi-pi interactions captured using electrochemical impedance spectroscopy method is utilized to build a first-of-a-kind electrochemical SOM sensor.
土壤健康参数是评估环境质量和了解通过碳固存减缓气候变化影响的绝佳替代指标。土壤有机质(SOM)是与土壤健康同义的参数,了解土壤有机质是通过影响土壤团聚和保水能力来建立和影响良好土壤和农艺实践的关键指标。它是土壤养分循环和吸收的重要调节器,也是全球碳循环的一个因素,因此比单纯的碳监测更具优势。虽然我们知道土壤健康状况无法直接分析,但使用一种能传递土壤物理化学和生物特征信息的高效指标是非常可取的,因为它能提供随时间变化的土壤信息分析能力,并根据地理位置建立模式。利用这一实验框架--基于氢键和 pi-pi 相互作用的 RTIL(室温离子液体)修饰电极与 OM 功能分子之间的相互作用机制,并使用电化学阻抗光谱方法进行捕捉,从而建立了首个电化学 SOM 传感器。
{"title":"Electrochemical framework for dynamic tracking of Soil Organic Matter","authors":"Vikram Narayanan Dhamu , Anirban Paul , Sriram Muthukumar , Shalini Prasad","doi":"10.1016/j.biosx.2024.100440","DOIUrl":"10.1016/j.biosx.2024.100440","url":null,"abstract":"<div><p>Soil Health parameters serve as excellent surrogate measures towards assessing environmental quality and understanding effects of climate change mitigation via carbon sequestration. Soil Organic Matter (SOM) is a parameter that is synonymous to soil health and understanding SOM is a key metric to building and influencing good soil and agronomic practices by impacting soil aggregation and water withholding capacity. It is a vital regulator of soil nutrient cycling and uptake as well as a factor in the global carbon cycle and is hence more advantageous than just carbon monitoring. While it is understood that soil health cannot be analyzed directly, the use of an efficient indicator that can relay information about the soil physico-chemical and biological characteristics is highly desirable since it offers the ability to analyze soil information over time and build patterns in terms of geographical location.</p><p>The proposed sensing system offers an in-situ electroanalytical approach to survey various electroactive substances present in the soil matrix. Utilizing this experimental framework- A mechanism of interaction between the RTIL (Room Temperature Ionic-Liquid) modified electrode and the OM functional moieties based on hydrogen bonding and pi-pi interactions captured using electrochemical impedance spectroscopy method is utilized to build a first-of-a-kind electrochemical SOM sensor.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"17 ","pages":"Article 100440"},"PeriodicalIF":10.61,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000049/pdfft?md5=593646efa5e2764dbbad5ef991c94038&pid=1-s2.0-S2590137024000049-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139506452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Excessive consumption of antibiotics like gentamicin (GEN) can lead to hostile effects as antibiotic resistance. Therefore, the detection is important for which, reduced graphene oxide-Gadolinium oxide nanocomposite (rGO@Gd2O3 NC) was composed through co-precipitation method for the detection of GEN. The structural, morphological and functional group characterizations were done using XRD, FT-IR, SEM and TEM techniques. The cyclic voltammetry (CV) showed excellent electrocatalytic activity and superior performance towards GEN detection. Through the use of GEN monoclonal antibodies (anti-GEN) on a screen-printed electrode (SPE), a very sensitive electrochemical immunosensor was fabricated. Covalent interactions were employed to construct the electrochemical immunosensor, while bovine serum albumin (BSA) was employed as a blocking agent on the anti-GEN/rGO@Gd2O3/SPE electrode surface. The analysis of the CV response of the BSA/anti-GEN/rGO@Gd2O3/SPE bioelectrode demonstrated linear detection range from 1 pM – 100 μM, along with limit of detection (LOD) of 0.424 pM and sensitivity of 44.87 μA pM-1 cm− 2. Additionally, rGO@Gd2O3 immunosensor, exhibited a good level of linearity with R2 value of 0.978. These findings indicate the excellent potential of the rGO@Gd2O3 electrochemical immunosensor for accurately detecting GEN in spiked milk samples at different concentrations.
过量使用庆大霉素(GEN)等抗生素会导致抗生素耐药性的产生。因此,检测就显得尤为重要,为此,我们通过共沉淀法利用还原氧化石墨烯-氧化钆纳米复合材料(rGO@Gd2O3 NC)来检测庆大霉素。利用 XRD、FT-IR、SEM 和 TEM 技术对其结构、形态和官能团进行了表征。循环伏安法(CV)显示了其出色的电催化活性和检测 GEN 的卓越性能。通过在丝网印刷电极(SPE)上使用 GEN 单克隆抗体(抗 GEN),制备出了一种非常灵敏的电化学免疫传感器。电化学免疫传感器的构建采用了共价相互作用,而牛血清白蛋白(BSA)被用作抗 GEN/rGO@Gd2O3/SPE 电极表面的阻断剂。对 BSA/抗-GEN/rGO@Gd2O3/SPE 生物电极 CV 响应的分析表明,其线性检测范围为 1 pM - 100 μM,检测限(LOD)为 0.424 pM,灵敏度为 44.87 μA pM-1 cm- 2。此外,rGO@Gd2O3 免疫传感器表现出良好的线性关系,R2 值为 0.981。这些研究结果表明,rGO@Gd2O3 电化学免疫传感器在准确检测含有添加浓度的牛奶样品中的 GEN 方面具有极大的潜力。
{"title":"Reduced graphene oxide-gadolinium oxide-functionalized paper based immunosensor for electrochemical detection of gentamicin","authors":"Jayendra Kumar Himanshu , G.B.V.S. Lakshmi , Akhilesh Kumar Singh , Pratima R. Solanki","doi":"10.1016/j.biosx.2024.100442","DOIUrl":"10.1016/j.biosx.2024.100442","url":null,"abstract":"<div><p>Excessive consumption of antibiotics like gentamicin (GEN) can lead to hostile effects as antibiotic resistance. Therefore, the detection is important for which, reduced graphene oxide-Gadolinium oxide nanocomposite (rGO@Gd<sub>2</sub>O<sub>3</sub> NC) was composed through co-precipitation method for the detection of GEN. The structural, morphological and functional group characterizations were done using XRD, FT-IR, SEM and TEM techniques. The cyclic voltammetry (CV) showed excellent electrocatalytic activity and superior performance towards GEN detection. Through the use of GEN monoclonal antibodies (anti-GEN) on a screen-printed electrode (SPE), a very sensitive electrochemical immunosensor was fabricated. Covalent interactions were employed to construct the electrochemical immunosensor, while bovine serum albumin (BSA) was employed as a blocking agent on the anti-GEN/rGO@Gd<sub>2</sub>O<sub>3</sub>/SPE electrode surface. The analysis of the CV response of the BSA/anti-GEN/rGO@Gd<sub>2</sub>O<sub>3</sub>/SPE bioelectrode demonstrated linear detection range from 1 pM – 100 μM, along with limit of detection (LOD) of 0.424 pM and sensitivity of 44.87 μA pM<sup>-1</sup> cm<sup>− 2</sup>. Additionally, rGO@Gd<sub>2</sub>O<sub>3</sub> immunosensor, exhibited a good level of linearity with R<sup>2</sup> value of 0.978. These findings indicate the excellent potential of the rGO@Gd<sub>2</sub>O<sub>3</sub> electrochemical immunosensor for accurately detecting GEN in spiked milk samples at different concentrations.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"17 ","pages":"Article 100442"},"PeriodicalIF":10.61,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000062/pdfft?md5=faab388e2f48a6ab8362314cdf7a22e5&pid=1-s2.0-S2590137024000062-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139501676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}