Pub Date : 2024-06-08DOI: 10.1016/j.biosx.2024.100505
Dhruba Jyoti Sarkar , Ayan Biswas , Shirsak Mondal , Vijay Kumar Aralappanavar , Jyotsna Dei , Swapnil Sinha , Bijay Kumar Behera , Ramij Raja , Soumyadeb Bhattacharyya , Souvik Pal , Subhankar Mukherjee , Vipul Bansal , Basanta Kumar Das
Despite major advances in biosensing, quick, dependable, and effective on-site detection of bacterial infections remains a serious issue, owing to a lack of acceptable or appropriate diagnostic platforms. To address this gap, we presented a new colorimetric gold NanoZyme aptasensor for rapid sensing of Aeromonas veronii, an infectious bacterial disease in fish. The A. veronii-specific aptamer (AVS01) was developed through Cell-SELEX. The sensing mechanism involves inhibition of AuNPs induced peroxidase-mimic catalytic activity through surface adsorption by AVS01 which in the presence of the A. veronii desorb from the AuNPs allowing recovery of the catalytic activity leading to colorimetric response, whereas the sensor is insesnsitive to other nontarget bacterial cells. This method is very specific and sensitive, allowing for the quick and visible sensing of A. veronii with a detection limit of 1281 CFU mL−1 within 15 min. The method has great potential for rapid diagnosis of bacterial infection in fish caused by A. veronii.
{"title":"Aeromonas veronii specific aptamer and peroxidase mimic tyrosine-capped gold NanoZymes enable highly specific sensing of fish pathogenic bacteria","authors":"Dhruba Jyoti Sarkar , Ayan Biswas , Shirsak Mondal , Vijay Kumar Aralappanavar , Jyotsna Dei , Swapnil Sinha , Bijay Kumar Behera , Ramij Raja , Soumyadeb Bhattacharyya , Souvik Pal , Subhankar Mukherjee , Vipul Bansal , Basanta Kumar Das","doi":"10.1016/j.biosx.2024.100505","DOIUrl":"https://doi.org/10.1016/j.biosx.2024.100505","url":null,"abstract":"<div><p>Despite major advances in biosensing, quick, dependable, and effective on-site detection of bacterial infections remains a serious issue, owing to a lack of acceptable or appropriate diagnostic platforms. To address this gap, we presented a new colorimetric gold NanoZyme aptasensor for rapid sensing of <em>Aeromonas veronii</em>, an infectious bacterial disease in fish. The <em>A. veronii-specific</em> aptamer (AVS01) was developed through Cell-SELEX. The sensing mechanism involves inhibition of AuNPs induced peroxidase-mimic catalytic activity through surface adsorption by AVS01 which in the presence of the <em>A. veronii</em> desorb from the AuNPs allowing recovery of the catalytic activity leading to colorimetric response, whereas the sensor is insesnsitive to other nontarget bacterial cells. This method is very specific and sensitive, allowing for the quick and visible sensing of <em>A. veronii</em> with a detection limit of 1281 CFU mL<sup>−1</sup> within 15 min. The method has great potential for rapid diagnosis of bacterial infection in fish caused by <em>A. veronii</em>.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100505"},"PeriodicalIF":10.61,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000694/pdfft?md5=4eae64d853db566dc9cedf174ca0c16d&pid=1-s2.0-S2590137024000694-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141322672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-07DOI: 10.1016/j.biosx.2024.100506
Raju Sapkota , Sadna Isik , Hery Suyanto , Ni Nyoman Rupiasih , Nahara Ingles , Conrad Rizal
Sensors utilizing magneto-optical surface plasmon resonance are gaining increasing scientific and practical attention to detect atmospheric gases and humidity. The magneto-optic surface plasmon resonance wavelength is defined by the plasmonic structure's geometry and structure, making it immune to electromagnetic interference outside its resonance frequency range. The present study investigates their application for the detection of atmospheric gases including humidity. In contrast to conventional sensors, magneto-optic sensors exhibited excellent performance in terms of sensitivity (10 times greater), higher quality factor (up to 76 times higher) and design simplicity in terms of layer thickness optimization, integration, and robustness. These results suggest significant potential for utilization of magneto-optic sensors across multiple industries.
{"title":"Sensor with combined plasmonic and magnetic activities","authors":"Raju Sapkota , Sadna Isik , Hery Suyanto , Ni Nyoman Rupiasih , Nahara Ingles , Conrad Rizal","doi":"10.1016/j.biosx.2024.100506","DOIUrl":"https://doi.org/10.1016/j.biosx.2024.100506","url":null,"abstract":"<div><p>Sensors utilizing magneto-optical surface plasmon resonance are gaining increasing scientific and practical attention to detect atmospheric gases and humidity. The magneto-optic surface plasmon resonance wavelength is defined by the plasmonic structure's geometry and structure, making it immune to electromagnetic interference outside its resonance frequency range. The present study investigates their application for the detection of atmospheric gases including humidity. In contrast to conventional sensors, magneto-optic sensors exhibited excellent performance in terms of sensitivity (10 times greater), higher quality factor (up to 76 times higher) and design simplicity in terms of layer thickness optimization, integration, and robustness. These results suggest significant potential for utilization of magneto-optic sensors across multiple industries.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100506"},"PeriodicalIF":10.61,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000700/pdfft?md5=1b0217d1ce0a87eace49c2d3adee1cec&pid=1-s2.0-S2590137024000700-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141297978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-05DOI: 10.1016/j.biosx.2024.100504
Kiran N. Roest , Matthew Lee , Jon Rees , Vladimir Gubala
The recent pandemic improved awareness amongst the public of the need for rapid blood tests for community and home settings. In this work, we evaluated the performance of a digital, lipid panel test in microfluidic assay format which can be read using a smartphone camera. The PocDoc Lipid test is embedded within a cardiovascular screening application that utilizes the QRISK3 risk prediction algorithm to determine an individual's risk of having a cardiovascular event in the next 10 years and their healthy heart age. The test can be used to screen for individuals at risk of hyperlipidemia (e.g. high total cholesterol or triglycerides) and for individuals at high risk of cardiovascular disease at home or in community or surgery settings. The device was evaluated in a performance evaluation study, using 125 whole blood samples, following CLSI guidelines. Performance evaluation of the PocDoc device demonstrated accuracy that meets international NCEP guidelines and that is on par with other point-of-care tests. Sensitivity and specificity analysis supports the use of PocDoc to identify patients with hyperlipidemia or at high risk of cardiovascular disease. Bland-Altman analysis suggests that this point-of-care device can be used as an alternative to venous blood collection. This single-step model for cardiovascular disease risk measurement which can be done at home or in community settings may improve cardiovascular disease prevention.
{"title":"Smartphone-based digital point-of-care panel assay with enzymatic catalytic reaction","authors":"Kiran N. Roest , Matthew Lee , Jon Rees , Vladimir Gubala","doi":"10.1016/j.biosx.2024.100504","DOIUrl":"https://doi.org/10.1016/j.biosx.2024.100504","url":null,"abstract":"<div><p>The recent pandemic improved awareness amongst the public of the need for rapid blood tests for community and home settings. In this work, we evaluated the performance of a digital, lipid panel test in microfluidic assay format which can be read using a smartphone camera. The PocDoc Lipid test is embedded within a cardiovascular screening application that utilizes the QRISK3 risk prediction algorithm to determine an individual's risk of having a cardiovascular event in the next 10 years and their healthy heart age. The test can be used to screen for individuals at risk of hyperlipidemia (e.g. high total cholesterol or triglycerides) and for individuals at high risk of cardiovascular disease at home or in community or surgery settings. The device was evaluated in a performance evaluation study, using 125 whole blood samples, following CLSI guidelines. Performance evaluation of the PocDoc device demonstrated accuracy that meets international NCEP guidelines and that is on par with other point-of-care tests. Sensitivity and specificity analysis supports the use of PocDoc to identify patients with hyperlipidemia or at high risk of cardiovascular disease. Bland-Altman analysis suggests that this point-of-care device can be used as an alternative to venous blood collection. This single-step model for cardiovascular disease risk measurement which can be done at home or in community settings may improve cardiovascular disease prevention.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100504"},"PeriodicalIF":10.61,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000682/pdfft?md5=f33458f1e87d0e8032e4bf7bd4fcb148&pid=1-s2.0-S2590137024000682-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141289319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-31DOI: 10.1016/j.biosx.2024.100503
Mahan Hosseinzadeh Fakhr , Ivan Lopez Carrasco , Dmitry Belyaev , Jihun Kang , YeHyeon Shin , Jong-Souk Yeo , Won-Gun Koh , Jeongwoo Ham , Alexander Michaelis , Joerg Opitz , Natalia Beshchasna
The next generation of wearable biosensors comes with the latest advancements in biosensor technology. Soft and stretchable electrode materials like hydrogels with the similar functionalities of human tissue including stretchability, self-healability, and responsiveness to different stimuli have emerged as the most versatile materials in wearable electronics. The incorporation of conductive nanofillers is found to enhance the sensitivity of the electrochemical biosensors significantly. Microfluidic technology has reduced the volume of samples and reagents required for the analysis, allowing continuous biomedical monitoring from a drop of biofluid. In this paper, the most advanced progress in electrochemical wearable platforms that can noninvasively and continuously monitor the biochemical markers in body fluids for the diagnosis and health management is reviewed. Innovation in microelectronics, modification, fabrication technologies, and detection methods are the main focus of the discussion. In particular, hydrogel-based sensors and microfluidic systems as the latest technology trends in wearable detection are discussed in detail. Integration of miniaturized electrochemical wearable biosensors with wireless technology as a great promise for real-time healthcare monitoring and point-of-care (POC) diagnostics is also summarized. Finally, we outline the most advanced wearable biosensors with optimized material and design as well as key challenges that need to be addressed to improve sensing performance (accuracy, sensitivity, selectivity, stability), portability (miniaturized size and light weight), and flexibility of the wearable biosensors.
{"title":"Recent advances in wearable electrochemical biosensors towards technological and material aspects","authors":"Mahan Hosseinzadeh Fakhr , Ivan Lopez Carrasco , Dmitry Belyaev , Jihun Kang , YeHyeon Shin , Jong-Souk Yeo , Won-Gun Koh , Jeongwoo Ham , Alexander Michaelis , Joerg Opitz , Natalia Beshchasna","doi":"10.1016/j.biosx.2024.100503","DOIUrl":"https://doi.org/10.1016/j.biosx.2024.100503","url":null,"abstract":"<div><p>The next generation of wearable biosensors comes with the latest advancements in biosensor technology. Soft and stretchable electrode materials like hydrogels with the similar functionalities of human tissue including stretchability, self-healability, and responsiveness to different stimuli have emerged as the most versatile materials in wearable electronics. The incorporation of conductive nanofillers is found to enhance the sensitivity of the electrochemical biosensors significantly. Microfluidic technology has reduced the volume of samples and reagents required for the analysis, allowing continuous biomedical monitoring from a drop of biofluid. In this paper, the most advanced progress in electrochemical wearable platforms that can noninvasively and continuously monitor the biochemical markers in body fluids for the diagnosis and health management is reviewed. Innovation in microelectronics, modification, fabrication technologies, and detection methods are the main focus of the discussion. In particular, hydrogel-based sensors and microfluidic systems as the latest technology trends in wearable detection are discussed in detail. Integration of miniaturized electrochemical wearable biosensors with wireless technology as a great promise for real-time healthcare monitoring and point-of-care (POC) diagnostics is also summarized. Finally, we outline the most advanced wearable biosensors with optimized material and design as well as key challenges that need to be addressed to improve sensing performance (accuracy, sensitivity, selectivity, stability), portability (miniaturized size and light weight), and flexibility of the wearable biosensors.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100503"},"PeriodicalIF":10.61,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000670/pdfft?md5=884e47b94f329229f5631b2585fe9d41&pid=1-s2.0-S2590137024000670-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141249515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-27DOI: 10.1016/j.biosx.2024.100502
Rishi Raj , Suddhasatwa Basu , Sandeep Kumar Jha
The present study involved the fabrication and testing of a Microchip electrophoresis (MCE) device for pulse amperometry based detection of pesticides from their mixture. We were able to separate and then quantify three distinct types of insecticides, namely Chlorpyrifos, Imidacloprid, and Fipronil using on chip MCE followed by pulsed amperometric detection. All these results were obtained with an inhouse developed potentiostat cum controller unit with a detection time of only 15 min, employing a minimal sample size of 2 μL without any preconcentration or extraction procedure. The limit of detection (LOD) was calculated as 42.69 μM, 62.61 μM, and 71.14 μM or 14.96, 16.0 and 31.09 ppm, respectively for Chlorpyrifos, Imidacloprid, and Fipronil and their respective migration times as 536 ± 6.3 s, 484 ± 1.7 s, and 604 ± 3.5 s (n = 14). The sensitivity of detection was determined as 0.03 nA/μM for Chlorpyrifos, 0.0265 nA/μM for Imidacloprid, and 0.035 nA/μM for Fipronil. In addition, the efficacy of the produced microchip was confirmed by analysing soil extract spiked with known pesticides concentrations while the recovery percentage, representing a ratio of calculated concentration to spiked concentration multiplied by hundred was found as 84.3% (±9.4%) (n = 9). Thus, integrating microchip technology with the developed analytical instruments presents significant promise for practical field applications and the analysis of diverse analytes by way of creating a library where the migration coefficient and peak detection current are needed for any analyte which can be made cationic or anionic using a suitable buffer.
{"title":"Development and characterization of microchip electrophoresis pulsed amperometric detector-based soil pesticide analyser","authors":"Rishi Raj , Suddhasatwa Basu , Sandeep Kumar Jha","doi":"10.1016/j.biosx.2024.100502","DOIUrl":"10.1016/j.biosx.2024.100502","url":null,"abstract":"<div><p>The present study involved the fabrication and testing of a Microchip electrophoresis (MCE) device for pulse amperometry based detection of pesticides from their mixture. We were able to separate and then quantify three distinct types of insecticides, namely Chlorpyrifos, Imidacloprid, and Fipronil using on chip MCE followed by pulsed amperometric detection. All these results were obtained with an inhouse developed potentiostat cum controller unit with a detection time of only 15 min, employing a minimal sample size of 2 μL without any preconcentration or extraction procedure. The limit of detection (LOD) was calculated as 42.69 μM, 62.61 μM, and 71.14 μM or 14.96, 16.0 and 31.09 ppm, respectively for Chlorpyrifos, Imidacloprid, and Fipronil and their respective migration times as 536 ± 6.3 s, 484 ± 1.7 s, and 604 ± 3.5 s (n = 14). The sensitivity of detection was determined as 0.03 nA/μM for Chlorpyrifos, 0.0265 nA/μM for Imidacloprid, and 0.035 nA/μM for Fipronil. In addition, the efficacy of the produced microchip was confirmed by analysing soil extract spiked with known pesticides concentrations while the recovery percentage, representing a ratio of calculated concentration to spiked concentration multiplied by hundred was found as 84.3% (±9.4%) (n = 9). Thus, integrating microchip technology with the developed analytical instruments presents significant promise for practical field applications and the analysis of diverse analytes by way of creating a library where the migration coefficient and peak detection current are needed for any analyte which can be made cationic or anionic using a suitable buffer.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100502"},"PeriodicalIF":10.61,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000669/pdfft?md5=c3b3cbcebf197ef8233415b537d5141d&pid=1-s2.0-S2590137024000669-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-23DOI: 10.1016/j.biosx.2024.100500
Georgeta Vulpe , Guoyi Liu , Sam Oakley , Dimitrios Pletsas , Guanghao Yang , Rosa Dutra , Owen Guy , Yufei Liu , Mark Waldron , Joe Neary , Arjun Ajith Mohan , Sanjiv Sharma
Over the last decade, a significant paradigm shift has been observed towards leveraging less invasive biological fluids—such as skin interstitial fluid (ISF), sweat, tears, and saliva—for health monitoring. This evolution seeks to transcend traditional, invasive blood-based methods, offering a more accessible approach to health monitoring for non-specialized personnel. Skin ISF, with its profound resemblance to blood, emerges as a pivotal medium for the real-time, minimally invasive tracking of a broad spectrum of biomarkers, thus becoming an invaluable asset for correlating with blood-based data. Our exploration delves deeply into the development of wearable molecular biosensors, spotlighting dermal sensors for their pivotal roles across both clinical and everyday health monitoring scenarios and underscoring their contributions to the holistic One Health initiative. In bringing forward the myriad challenges that permeate this field, we also project future directions, notably the potential of skin ISF as a promising candidate for continuous health tracking.
Moreover, this paper aims to catalyse further exploration and innovation by presenting a curated selection of seminal technological advancements. Amidst the saturated landscape of analytical literature on translational challenges, our approach distinctly seeks to highlight recent developments. In attracting a wider spectrum of research groups to this versatile domain, we endeavour to broaden the collective understanding of its trajectory and potential, mapping the evolution of wearable biosensor technology. This strategy not only illuminates the transformative impact of wearable biosensors in reshaping health diagnostics and personalized medicine but also fosters increased participation and progress within the field. Distinct from recent manuscripts in this domain, our review serves as a distillation of key concepts, elucidating pivotal papers that mark the latest advancements in wearable sensors. Through presenting a curated collection of landmark studies and offering our perspectives on the challenges and forward paths, this paper seeks to guide new entrants in the area. We delineate a division between wearable epidermal and subdermal sensors—focusing on the latter as the future frontier—thereby establishing a unique discourse within the ongoing narrative on wearable sensing technologies.
{"title":"Wearable technology for one health: Charting the course of dermal biosensing","authors":"Georgeta Vulpe , Guoyi Liu , Sam Oakley , Dimitrios Pletsas , Guanghao Yang , Rosa Dutra , Owen Guy , Yufei Liu , Mark Waldron , Joe Neary , Arjun Ajith Mohan , Sanjiv Sharma","doi":"10.1016/j.biosx.2024.100500","DOIUrl":"10.1016/j.biosx.2024.100500","url":null,"abstract":"<div><p>Over the last decade, a significant paradigm shift has been observed towards leveraging less invasive biological fluids—such as skin interstitial fluid (ISF), sweat, tears, and saliva—for health monitoring. This evolution seeks to transcend traditional, invasive blood-based methods, offering a more accessible approach to health monitoring for non-specialized personnel. Skin ISF, with its profound resemblance to blood, emerges as a pivotal medium for the real-time, minimally invasive tracking of a broad spectrum of biomarkers, thus becoming an invaluable asset for correlating with blood-based data. Our exploration delves deeply into the development of wearable molecular biosensors, spotlighting dermal sensors for their pivotal roles across both clinical and everyday health monitoring scenarios and underscoring their contributions to the holistic One Health initiative. In bringing forward the myriad challenges that permeate this field, we also project future directions, notably the potential of skin ISF as a promising candidate for continuous health tracking.</p><p>Moreover, this paper aims to catalyse further exploration and innovation by presenting a curated selection of seminal technological advancements. Amidst the saturated landscape of analytical literature on translational challenges, our approach distinctly seeks to highlight recent developments. In attracting a wider spectrum of research groups to this versatile domain, we endeavour to broaden the collective understanding of its trajectory and potential, mapping the evolution of wearable biosensor technology. This strategy not only illuminates the transformative impact of wearable biosensors in reshaping health diagnostics and personalized medicine but also fosters increased participation and progress within the field. Distinct from recent manuscripts in this domain, our review serves as a distillation of key concepts, elucidating pivotal papers that mark the latest advancements in wearable sensors. Through presenting a curated collection of landmark studies and offering our perspectives on the challenges and forward paths, this paper seeks to guide new entrants in the area. We delineate a division between wearable epidermal and subdermal sensors—focusing on the latter as the future frontier—thereby establishing a unique discourse within the ongoing narrative on wearable sensing technologies.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100500"},"PeriodicalIF":10.61,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000645/pdfft?md5=e560ae9f111b111632d58b48d0376254&pid=1-s2.0-S2590137024000645-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141130332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-23DOI: 10.1016/j.biosx.2024.100501
Hayley Richardson , Jeffrey Barahona , Greg Medwig , Angela Johns , Lina M. Acosta Pérez , Koji Sode , Michael Daniele , Francis J. Miller , Edgar Lobaton , Spyridon Pavlidis
Extracellular histone proteins in the blood indicate a heightened risk of morbidity after trauma or in major illnesses such as sepsis. We present the development of an aptasensor for histone detection with an extended gate field-effect transistor (EGFET) configuration, which benefits from low power consumption, rapid response, and compatibility with miniaturized gold electrodes. Histones have a high isoelectric point and charge density, which cause them to physically adsorb to non-specific elements of the sensor that have available electrostatic charges. To combat this, the sensing surface is formed with a thiol-modified, high-affinity and histone-specific RNA aptamer sequence and by co-immobilizing with poly(ethylene glycol) methyl ether thiol (PEG) as a blocking agent. Surface plasmon resonance (SPR) is used to analyze aptamer and PEG immobilization strategies, confirm histone binding, and calculate kinetic binding constants. Through comparison of different blocking agents and time-dependent preparation, the ideal equilibrium dissociation constant (KD) is estimated to be below 200 pM, which is the upper range of extracellular histone concentrations in critically ill patients with high mortality. The EGFET sensitivity of the optimized aptasensor is 6.65 mV/decade concentration change for histone H4 with a physiologically relevant 5 pM limit of detection. Selectivity tests with 100 nM bovine serum albumin (BSA) demonstrate a signal response that is 13-fold smaller than for histones. This EGFET aptasensor platform is suitable for future point-of-care monitoring of histone levels in critically ill patients, thus permitting the early detection of increased risk and the need for more aggressive interventional measures to prevent mortality.
{"title":"Towards monitoring of critical illness via the detection of histones with extended gate field-effect transistor sensors","authors":"Hayley Richardson , Jeffrey Barahona , Greg Medwig , Angela Johns , Lina M. Acosta Pérez , Koji Sode , Michael Daniele , Francis J. Miller , Edgar Lobaton , Spyridon Pavlidis","doi":"10.1016/j.biosx.2024.100501","DOIUrl":"https://doi.org/10.1016/j.biosx.2024.100501","url":null,"abstract":"<div><p>Extracellular histone proteins in the blood indicate a heightened risk of morbidity after trauma or in major illnesses such as sepsis. We present the development of an aptasensor for histone detection with an extended gate field-effect transistor (EGFET) configuration, which benefits from low power consumption, rapid response, and compatibility with miniaturized gold electrodes. Histones have a high isoelectric point and charge density, which cause them to physically adsorb to non-specific elements of the sensor that have available electrostatic charges. To combat this, the sensing surface is formed with a thiol-modified, high-affinity and histone-specific RNA aptamer sequence and by co-immobilizing with poly(ethylene glycol) methyl ether thiol (PEG) as a blocking agent. Surface plasmon resonance (SPR) is used to analyze aptamer and PEG immobilization strategies, confirm histone binding, and calculate kinetic binding constants. Through comparison of different blocking agents and time-dependent preparation, the ideal equilibrium dissociation constant (K<sub>D</sub>) is estimated to be below 200 pM, which is the upper range of extracellular histone concentrations in critically ill patients with high mortality. The EGFET sensitivity of the optimized aptasensor is 6.65 mV/decade concentration change for histone H4 with a physiologically relevant 5 pM limit of detection. Selectivity tests with 100 nM bovine serum albumin (BSA) demonstrate a signal response that is 13-fold smaller than for histones. This EGFET aptasensor platform is suitable for future point-of-care monitoring of histone levels in critically ill patients, thus permitting the early detection of increased risk and the need for more aggressive interventional measures to prevent mortality.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100501"},"PeriodicalIF":10.61,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000657/pdfft?md5=5abf3262c26bbda68acae06aba70ee43&pid=1-s2.0-S2590137024000657-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141095073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This article has tried to provide an overview of the most sophisticated microfluidic biosensors for identifying nucleic acids and proteins at the site of treatment. Microfluidics, which also automates sample preparation and reduces processing time and reagent consumption, enables the analysis of small sample quantities. Microfluidics and biosensor technologies collaborate to provide diagnostics at the point of care with high throughput analysis, portability, and disposability. The high sensitivity and selectivity requirements, false response errors, and integration with other essential modules are some of the challenges posed by this merger. The broad categories of protein-based and DNA-based biosensor technology are covered in this review. Also, recent advancements in coupling the biosensors to microfluidics, the main challenges and potential solutions in deploying microfluidic biosensors for point-of-care diagnostics, and the most recent developments in these areas have been discussed.
本文试图概述用于鉴定治疗部位核酸和蛋白质的最先进的微流控生物传感器。微流控技术还能自动进行样品制备,减少处理时间和试剂消耗,从而实现对少量样品的分析。微流控技术与生物传感器技术相结合,可在医疗点提供诊断服务,具有高通量分析、便携性和可抛弃性等特点。高灵敏度和高选择性要求、错误响应误差以及与其他重要模块的整合是这一合并带来的部分挑战。本综述涵盖了基于蛋白质和 DNA 的生物传感器技术两大类。此外,还讨论了将生物传感器与微流控技术相结合的最新进展、将微流控生物传感器用于床旁诊断的主要挑战和潜在解决方案,以及这些领域的最新发展。
{"title":"Recent advancements in microfluidic-based biosensors for detection of genes and proteins: Applications and techniques","authors":"Saeed Siavashy , M. Soltani , Shayan Rahimi , Mehraveh Hosseinali , Zahra Guilandokht , Kaamran Raahemifar","doi":"10.1016/j.biosx.2024.100489","DOIUrl":"10.1016/j.biosx.2024.100489","url":null,"abstract":"<div><p>This article has tried to provide an overview of the most sophisticated microfluidic biosensors for identifying nucleic acids and proteins at the site of treatment. Microfluidics, which also automates sample preparation and reduces processing time and reagent consumption, enables the analysis of small sample quantities. Microfluidics and biosensor technologies collaborate to provide diagnostics at the point of care with high throughput analysis, portability, and disposability. The high sensitivity and selectivity requirements, false response errors, and integration with other essential modules are some of the challenges posed by this merger. The broad categories of protein-based and DNA-based biosensor technology are covered in this review. Also, recent advancements in coupling the biosensors to microfluidics, the main challenges and potential solutions in deploying microfluidic biosensors for point-of-care diagnostics, and the most recent developments in these areas have been discussed.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100489"},"PeriodicalIF":10.61,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000530/pdfft?md5=4b74ac1abe95839b91f7b5b1622ed236&pid=1-s2.0-S2590137024000530-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141140676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1016/j.biosx.2024.100490
Yuqian Zhang , Jing Liu , Ting-Wen Lo , Yohan Kim , Fabrice Lucien , Haidong Dong , Yuguang Liu
PD1/PD-L1 checkpoint inhibitors are at the forefront of cancer immunotherapies. However, the overall response rate remains only 10–30%. Even among initial responders, drug resistance often occurs, which can lead to prolonged use of a futile therapy in the race with the fatal disease. It would be ideal to closely monitor key indicators of patients’ immune responsiveness, such as circulating PD-L1 levels. Traditional PD-L1 detection methods, such as ELISA, are limited in sensitivity and rely on core lab facilities, preventing their use for the regular monitoring. Electrochemical sensors exist as an attractive candidate for point-of-care tool, yet, streamlining multiple processes in a single platform remains a challenge. To overcome this challenge, this work integrated electrochemical sensor arrays into a digital microfluidic device to combine their distinct merits, so that soluble PD-L1 (sPD-L1) molecules can be rapidly detected in a programmed and automated manner. This new platform featured microscale electrochemical sensor arrays modified with electrically conductive 3D matrix, and can detect as low as 1 pg/mL sPD-L1 with high specificity. The sensors also have desired repeatability and can obtain reproducible results on different days. To demonstrate the functionality of the device to process more complex biofluids, we used the device to detect sPD-L1 molecules secreted by human breast cancer cell line in culture media directly and observed 2X increase in signal compared with control experiment. This novel platform holds promise for the close monitoring of sPD-L1 level in human physiological fluids to evaluate the efficacy of PD-1/PD-L1 immunotherapy.
{"title":"A digital microfluidic device integrated with electrochemical sensor and 3D matrix for detecting soluble PD-L1","authors":"Yuqian Zhang , Jing Liu , Ting-Wen Lo , Yohan Kim , Fabrice Lucien , Haidong Dong , Yuguang Liu","doi":"10.1016/j.biosx.2024.100490","DOIUrl":"10.1016/j.biosx.2024.100490","url":null,"abstract":"<div><p>PD1/PD-L1 checkpoint inhibitors are at the forefront of cancer immunotherapies. However, the overall response rate remains only 10–30%. Even among initial responders, drug resistance often occurs, which can lead to prolonged use of a futile therapy in the race with the fatal disease. It would be ideal to closely monitor key indicators of patients’ immune responsiveness, such as circulating PD-L1 levels. Traditional PD-L1 detection methods, such as ELISA, are limited in sensitivity and rely on core lab facilities, preventing their use for the regular monitoring. Electrochemical sensors exist as an attractive candidate for point-of-care tool, yet, streamlining multiple processes in a single platform remains a challenge. To overcome this challenge, this work integrated electrochemical sensor arrays into a digital microfluidic device to combine their distinct merits, so that soluble PD-L1 (sPD-L1) molecules can be rapidly detected in a programmed and automated manner. This new platform featured microscale electrochemical sensor arrays modified with electrically conductive 3D matrix, and can detect as low as 1 pg/mL sPD-L1 with high specificity. The sensors also have desired repeatability and can obtain reproducible results on different days. To demonstrate the functionality of the device to process more complex biofluids, we used the device to detect sPD-L1 molecules secreted by human breast cancer cell line in culture media directly and observed 2X increase in signal compared with control experiment. This novel platform holds promise for the close monitoring of sPD-L1 level in human physiological fluids to evaluate the efficacy of PD-1/PD-L1 immunotherapy.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100490"},"PeriodicalIF":10.61,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000542/pdfft?md5=1454dd20b58fa125621fb21bce0827cc&pid=1-s2.0-S2590137024000542-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141026876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human adenosine deaminase acting on RNA1 (ADAR1) is an adenosine-to-inosine (A-to-I) RNA-editing enzyme involved in various types of cancer progression. ADAR1 has emerged as a novel prognostic biomarker for cancer. This study describes the application of a newly identified 70-nt DNA aptamer (Apt38483) against ADAR1 to develop a portable and simple electrochemical biosensor platform for the rapid and sensitive detection of ADAR1 in cell lysates. We selected an ADAR1-specific DNA aptamer from a randomized 70-nt single-stranded DNA library using a competitive in vitro selection method. ADAR1 in the cell lysate was sandwiched onto a bare carbon working electrode of an electro-chemically printed chip between the ADAR1 antibody and gold nanoparticles (40 nm) conjugated with Apt38483, followed by electrochemical analysis using differential pulse voltammetry (DPV) for sensor demonstration. A highly sensitive change in current was observed for as little as 0.53 nM ADAR1 in human embryonic kidney cell lysate. Thus, the merging of a novel DNA aptamer probe for ADAR1 with an electrochemical transduction method enabled the development of a simple, low-cost, and rapid method for the direct measurement of ADAR1 in cell lysates and indicated great potential for the development of an ADAR1 analysis platform, which would be useful in cancer prognosis.
作用于 RNA1 的人类腺苷脱氨酶(ADAR1)是一种腺苷转化为肌苷(A-to-I)的 RNA 编辑酶,与各种癌症进展有关。ADAR1 已成为一种新型的癌症预后生物标志物。本研究介绍了应用新发现的针对 ADAR1 的 70-nt DNA 类似物(Apt38483)开发便携式简易电化学生物传感器平台,用于快速灵敏地检测细胞裂解物中的 ADAR1。我们采用竞争性体外选择方法,从随机 70-nt 单链 DNA 文库中筛选出了 ADAR1 特异性 DNA 类似物。将细胞裂解液中的 ADAR1 夹在电化学印刷芯片的裸炭工作电极上,在 ADAR1 抗体和与 Apt38483 共轭的金纳米粒子(40 nm)之间,然后使用差分脉冲伏安法(DPV)进行电化学分析,以演示传感器。在人类胚胎肾细胞裂解物中,只要 0.53 nM ADAR1 就能观察到高灵敏度的电流变化。因此,将 ADAR1 的新型 DNA 类似物探针与电化学转导方法相结合,开发出了一种简单、低成本、快速的直接测量细胞裂解物中 ADAR1 的方法,这表明 ADAR1 分析平台的开发具有巨大潜力,将有助于癌症预后。
{"title":"A novel aptamer-antibody sandwich electrochemical sensor for detecting ADAR1 in complex biological samples","authors":"Madhu Biyani , Kirti Sharma , Maeda Shoei , Hinako Akashi , Masataka Nakano , Miki Nakajima , Manish Biyani","doi":"10.1016/j.biosx.2024.100491","DOIUrl":"10.1016/j.biosx.2024.100491","url":null,"abstract":"<div><p>Human adenosine deaminase acting on RNA1 (ADAR1) is an adenosine-to-inosine (A-to-I) RNA-editing enzyme involved in various types of cancer progression. ADAR1 has emerged as a novel prognostic biomarker for cancer. This study describes the application of a newly identified 70-nt DNA aptamer (Apt38483) against ADAR1 to develop a portable and simple electrochemical biosensor platform for the rapid and sensitive detection of ADAR1 in cell lysates. We selected an ADAR1-specific DNA aptamer from a randomized 70-nt single-stranded DNA library using a competitive in vitro selection method. ADAR1 in the cell lysate was sandwiched onto a bare carbon working electrode of an electro-chemically printed chip between the ADAR1 antibody and gold nanoparticles (40 nm) conjugated with Apt38483, followed by electrochemical analysis using differential pulse voltammetry (DPV) for sensor demonstration. A highly sensitive change in current was observed for as little as 0.53 nM ADAR1 in human embryonic kidney cell lysate. Thus, the merging of a novel DNA aptamer probe for ADAR1 with an electrochemical transduction method enabled the development of a simple, low-cost, and rapid method for the direct measurement of ADAR1 in cell lysates and indicated great potential for the development of an ADAR1 analysis platform, which would be useful in cancer prognosis.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100491"},"PeriodicalIF":10.61,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000554/pdfft?md5=c29da9dcfd202f3d2a83cd3500d6c8a1&pid=1-s2.0-S2590137024000554-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141024284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}