Pub Date : 2025-01-27DOI: 10.1016/j.chempr.2024.102390
Yongping Cui, Jing Ai, Yingying Duan, Menghui Jia, Tianwei Ouyang, Aokun Liu, Lu Yu, Junhong Liu, Xi Liu, Chaoyang Chu, Yuanbo Li, Yanhang Ma, Liwei Chen, Lu Han, Jinquan Chen, Changlin Tian, Shunai Che, Yuxi Fang
Reduction and fixation of CO2 in natural systems via solar energy generate diverse products, ranging from small molecules to biomolecules. To date, only a few multicarbon species have been obtained by artificial CO2 photoreduction, especially abiotic photosynthesis of biomolecules with various functional groups, which is a challenging issue. Herein, we report the photocatalytic synthesis of amino acids from CO2 and NH3 on a chiral mesostructured ZnS (CMZ). Serine is the main component of various amino acids, with an enantiomeric excess (ee) greater than 96% and a total yield of over 30 μmol gcat−1. We propose that the chirality-induced spin polarization of CMZ boosts the creation of triplet OCCO by aligning its parallel electron spins, and the helical lattice distortion reduces the free energy of ∗OCCO. Enantiospecific activation energies of reactions driven by the spin-polarized electrons in CMZ lead to the formation of enantiomeric amino acids.
{"title":"Enantioselective synthesis of amino acids by photocatalytic reduction of CO2 on chiral mesostructured ZnS","authors":"Yongping Cui, Jing Ai, Yingying Duan, Menghui Jia, Tianwei Ouyang, Aokun Liu, Lu Yu, Junhong Liu, Xi Liu, Chaoyang Chu, Yuanbo Li, Yanhang Ma, Liwei Chen, Lu Han, Jinquan Chen, Changlin Tian, Shunai Che, Yuxi Fang","doi":"10.1016/j.chempr.2024.102390","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.102390","url":null,"abstract":"Reduction and fixation of CO<sub>2</sub> in natural systems via solar energy generate diverse products, ranging from small molecules to biomolecules. To date, only a few multicarbon species have been obtained by artificial CO<sub>2</sub> photoreduction, especially abiotic photosynthesis of biomolecules with various functional groups, which is a challenging issue. Herein, we report the photocatalytic synthesis of amino acids from CO<sub>2</sub> and NH<sub>3</sub> on a chiral mesostructured ZnS (CMZ). Serine is the main component of various amino acids, with an enantiomeric excess (<em>ee</em>) greater than 96% and a total yield of over 30 μmol g<sub>cat</sub><sup>−1</sup>. We propose that the chirality-induced spin polarization of CMZ boosts the creation of triplet OCCO by aligning its parallel electron spins, and the helical lattice distortion reduces the free energy of <sup>∗</sup>OCCO. Enantiospecific activation energies of reactions driven by the spin-polarized electrons in CMZ lead to the formation of enantiomeric amino acids.","PeriodicalId":268,"journal":{"name":"Chem","volume":"5 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-24DOI: 10.1016/j.chempr.2024.102404
Naxhije Berisha, Atena Farahpour, Maithreyi Ramakrishnan, Chen Chen, Scott A. McPhee, Tong Wang, Tai-De Li, Kuntrapakam Hema, Magdalini Panagiotakopoulou, Vignesh Athiyarath, Maeva Coste, Yaron Marciano, Emmet Sherman, Rein V. Ulijn, Daniel A. Heller
Nanoparticles can improve drug pharmacokinetics, but low loading efficiencies can limit treatment efficacy. Drug-aggregation-based nanoparticles have demonstrated improved loadings of up to 90%, but few excipients facilitate efficient co-assembly. We investigated peptides as designer excipients because of their diverse chemical space and inherent biodegradability. We designed pentapeptide scaffolds to mimic the structure of known indocyanine excipients by modulating aromaticity, rigidity, and charge. We screened 184 formulations by using diverse drug cargoes. We found drug-peptide combinations that formed nanoparticles with up to 98% drug loading. Molecular dynamics simulations and mass spectrometry analysis demonstrated that tryptophan-drug interactions and solvent exposure of charged amino acid residues drove the formation of core-shell structures. Peptide-drug formulations containing the JAK2/FLT3 inhibitor lestaurtinib were investigated in acute myeloid leukemia models, resulting in enhanced anti-tumor efficacy. This work found that oligopeptides can be designed to efficiently co-assemble with therapeutic cargoes to result in high-loading nanoparticles that improve anti-tumor efficacy.
{"title":"Directed discovery of high-loading nanoaggregates enabled by drug-matched oligo-peptide excipients","authors":"Naxhije Berisha, Atena Farahpour, Maithreyi Ramakrishnan, Chen Chen, Scott A. McPhee, Tong Wang, Tai-De Li, Kuntrapakam Hema, Magdalini Panagiotakopoulou, Vignesh Athiyarath, Maeva Coste, Yaron Marciano, Emmet Sherman, Rein V. Ulijn, Daniel A. Heller","doi":"10.1016/j.chempr.2024.102404","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.102404","url":null,"abstract":"Nanoparticles can improve drug pharmacokinetics, but low loading efficiencies can limit treatment efficacy. Drug-aggregation-based nanoparticles have demonstrated improved loadings of up to 90%, but few excipients facilitate efficient co-assembly. We investigated peptides as designer excipients because of their diverse chemical space and inherent biodegradability. We designed pentapeptide scaffolds to mimic the structure of known indocyanine excipients by modulating aromaticity, rigidity, and charge. We screened 184 formulations by using diverse drug cargoes. We found drug-peptide combinations that formed nanoparticles with up to 98% drug loading. Molecular dynamics simulations and mass spectrometry analysis demonstrated that tryptophan-drug interactions and solvent exposure of charged amino acid residues drove the formation of core-shell structures. Peptide-drug formulations containing the JAK2/FLT3 inhibitor lestaurtinib were investigated in acute myeloid leukemia models, resulting in enhanced anti-tumor efficacy. This work found that oligopeptides can be designed to efficiently co-assemble with therapeutic cargoes to result in high-loading nanoparticles that improve anti-tumor efficacy.","PeriodicalId":268,"journal":{"name":"Chem","volume":"25 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143027096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.1016/j.chempr.2024.12.006
Jeong Hun Kim, Jin Uk Lee, Likai Zheng, Jun Li, Kevin Sivula, Michael Grätzel, Jae Sung Lee, Jin Hyun Kim
The formation of oxygen vacancies () in n-type semiconductors is a key strategy for improving the performance of metal-oxide-based photoanodes. Whereas has traditionally been created by gas- or liquid-phase treatments, here we report a solid-state reduction technique termed the “low-temperature thermite reaction” (LTTR), which is effective for various metal oxides and solid reductants. In the case of ZnFe2O4 (ZFO), the LTTR increases charge-carrier density and bulk charge-separation efficiency by ∼100-fold and 2∼4-fold, respectively, for ZFO with an Fe reductant relative to pristine ZFO. The photocurrent densities for sacrificial reagent and water oxidation (1.8 and 1.6 mA/cm2 at 1.23 VRHE, respectively) achieved here represent the highest values reported for ZFO photoanodes. Also, a ZFO-lead halide perovskite solar cell tandem water-splitting cell demonstrated an unbiased solar-to-hydrogen efficiency of 1.85%. The LTTR is applicable to large-area (25 cm2) photoanodes under ambient atmosphere. Thus, the LTTR could become a more effective and versatile technique than conventional ones.
{"title":"Low-temperature thermite reaction to form oxygen vacancies in metal-oxide semiconductors: A case study of photoelectrochemical cells","authors":"Jeong Hun Kim, Jin Uk Lee, Likai Zheng, Jun Li, Kevin Sivula, Michael Grätzel, Jae Sung Lee, Jin Hyun Kim","doi":"10.1016/j.chempr.2024.12.006","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.12.006","url":null,"abstract":"The formation of oxygen vacancies (<span><span style=\"\"><math><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">V</mi><mi is=\"true\">ö</mi></msub></mrow></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mi mathvariant=\"normal\" is=\"true\">V</mi><mi is=\"true\">ö</mi></msub></mrow></math></script></span>) in n-type semiconductors is a key strategy for improving the performance of metal-oxide-based photoanodes. Whereas <span><span style=\"\"><math><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">V</mi><mi is=\"true\">ö</mi></msub></mrow></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mi mathvariant=\"normal\" is=\"true\">V</mi><mi is=\"true\">ö</mi></msub></mrow></math></script></span> has traditionally been created by gas- or liquid-phase treatments, here we report a solid-state reduction technique termed the “low-temperature thermite reaction” (LTTR), which is effective for various metal oxides and solid reductants. In the case of ZnFe<sub>2</sub>O<sub>4</sub> (ZFO), the LTTR increases charge-carrier density and bulk charge-separation efficiency by ∼100-fold and 2∼4-fold, respectively, for ZFO with an Fe reductant relative to pristine ZFO. The photocurrent densities for sacrificial reagent and water oxidation (1.8 and 1.6 mA/cm<sup>2</sup> at 1.23 V<sub>RHE</sub>, respectively) achieved here represent the highest values reported for ZFO photoanodes. Also, a ZFO-lead halide perovskite solar cell tandem water-splitting cell demonstrated an unbiased solar-to-hydrogen efficiency of 1.85%. The LTTR is applicable to large-area (25 cm<sup>2</sup>) photoanodes under ambient atmosphere. Thus, the LTTR could become a more effective and versatile technique than conventional ones.","PeriodicalId":268,"journal":{"name":"Chem","volume":"140 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-13DOI: 10.1016/j.chempr.2024.12.004
Shijie Deng, Hyuk-Joon Jung, Yi Shen, Hootan Roshandel, Varit Chantranuwathana, Hieu D. Nguyen, Thi V. Tran, Kimberly Vasquez, Joseph Chang, Takeo Iwase, Parisa Mehrkhodavandi, Jeffery A. Byers, Loi H. Do, Paula L. Diaconescu
Among major engineering plastics, aromatic polyamides are high-performance materials with high mechanical strength and heat resistance. However, the production of these materials is limited to para- and meta-aromatic polyamides via polycondensation, leading to polymers with low molecular weight and high dispersity. Here, we report the ring-opening polymerization of N-alkylated aromatic 6-membered-ring N-carboxyanhydrides (6-NCA-R) catalyzed by transition-metal Schiff base complexes in the presence of a base. This system allows the facile synthesis of ortho-aromatic polyamides with high molecular weights via chain-growth polymerization. We propose a mechanism on the basis of the results of polymerizations performed under various reaction conditions. In addition, we show the tunability of polymer solubility and thermal properties by varying the length of N-alkyl side chains and perform copolymerization of 6-NCA-R with heterocyclic monomers to prepare heteroatom-containing copolymers. These findings provide a synthetic pathway for functional polyamide materials with tailored properties for various applications.
{"title":"ortho-Aromatic polyamides by ring-opening polymerization of N-carboxyanhydrides","authors":"Shijie Deng, Hyuk-Joon Jung, Yi Shen, Hootan Roshandel, Varit Chantranuwathana, Hieu D. Nguyen, Thi V. Tran, Kimberly Vasquez, Joseph Chang, Takeo Iwase, Parisa Mehrkhodavandi, Jeffery A. Byers, Loi H. Do, Paula L. Diaconescu","doi":"10.1016/j.chempr.2024.12.004","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.12.004","url":null,"abstract":"Among major engineering plastics, aromatic polyamides are high-performance materials with high mechanical strength and heat resistance. However, the production of these materials is limited to <em>para</em>- and <em>meta</em>-aromatic polyamides via polycondensation, leading to polymers with low molecular weight and high dispersity. Here, we report the ring-opening polymerization of <em>N</em>-alkylated aromatic 6-membered-ring <em>N</em>-carboxyanhydrides (6-NCA-R) catalyzed by transition-metal Schiff base complexes in the presence of a base. This system allows the facile synthesis of <em>ortho</em>-aromatic polyamides with high molecular weights via chain-growth polymerization. We propose a mechanism on the basis of the results of polymerizations performed under various reaction conditions. In addition, we show the tunability of polymer solubility and thermal properties by varying the length of <em>N</em>-alkyl side chains and perform copolymerization of 6-NCA-R with heterocyclic monomers to prepare heteroatom-containing copolymers. These findings provide a synthetic pathway for functional polyamide materials with tailored properties for various applications.","PeriodicalId":268,"journal":{"name":"Chem","volume":"204 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09DOI: 10.1016/j.chempr.2024.08.012
Theresa C. Marlin , Jessica M. Weber , Rachel Y. Sheppard , Scott Perl , Derek Diener , Marc M. Baum , Laura M. Barge
Various studies have hypothesized that life on Earth may have originated near seafloor, mineral-rich hydrothermal vents. The use of laboratory analogs of these environments, such as chemical gardens, allows the creation of controlled, manipulable systems for studying potential prebiotic chemistry and origins-of-life scenarios on Earth and beyond. In this study, we tested reactions of prebiotically relevant organic anions, pyruvate and glyoxylate, in the presence of chemical gardens under a set of conditions relevant to the early Earth and the Saturnian moon Enceladus. Reactions were run for up to 3 weeks and then analyzed. Prebiotically relevant molecules were synthesized from organics reacted in the presence of chemical gardens under early-Earth-like conditions. As our reactants are readily available in geological settings, it is possible that similar self-organized structures could have played a role in prebiotic chemistry on early Earth or potentially even on other ocean-containing places in the solar system.
{"title":"Chemical gardens as analogs for prebiotic chemistry on ocean worlds","authors":"Theresa C. Marlin , Jessica M. Weber , Rachel Y. Sheppard , Scott Perl , Derek Diener , Marc M. Baum , Laura M. Barge","doi":"10.1016/j.chempr.2024.08.012","DOIUrl":"10.1016/j.chempr.2024.08.012","url":null,"abstract":"<div><div>Various studies have hypothesized that life on Earth may have originated near seafloor, mineral-rich hydrothermal vents. The use of laboratory analogs of these environments, such as chemical gardens, allows the creation of controlled, manipulable systems for studying potential prebiotic chemistry and origins-of-life scenarios on Earth and beyond. In this study, we tested reactions of prebiotically relevant organic anions, pyruvate and glyoxylate, in the presence of chemical gardens under a set of conditions relevant to the early Earth and the Saturnian moon Enceladus. Reactions were run for up to 3 weeks and then analyzed. Prebiotically relevant molecules were synthesized from organics reacted in the presence of chemical gardens under early-Earth-like conditions. As our reactants are readily available in geological settings, it is possible that similar self-organized structures could have played a role in prebiotic chemistry on early Earth or potentially even on other ocean-containing places in the solar system.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"11 1","pages":"Article 102289"},"PeriodicalIF":19.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The activation of organic halides by transition metals is one of the most important elementary processes in organic synthesis, which can be achieved by a two-electron oxidation addition process or a one-electron radical process. Currently, the ruthenium-catalyzed meta-C(sp2)–H alkylation with alkyl halides has emerged as a robust tool for remote C(sp2)–H functionalization and was unambiguously proved to occur via a radical pathway. By contrast, the modus operandi of ruthenium-catalyzed ortho-C(sp2)–H alkylation is still somewhat unclear and was proposed to occur through a two-electron manifold of ruthenium(II/IV) regime. In this context, we reported on a photo-induced ruthenium-catalyzed ortho-C(sp2)−H alkylation with secondary/primary alkyl bromides. Mechanistic studies by experiment and computation provide strong support for a ruthenium(II/III/IV) regime, involving a SET between alkyl bromide and the in situ-generated bicycloruthenated complex.
{"title":"Ruthenaphoto-catalyzed ortho-C−H alkylation with secondary alkyl halides: SET-enabled ruthenium(II/III/IV) manifold","authors":"Yulei Wang , Binbin Yuan , Xuexue Chang , Lutz Ackermann","doi":"10.1016/j.chempr.2024.12.005","DOIUrl":"10.1016/j.chempr.2024.12.005","url":null,"abstract":"<div><div>The activation of organic halides by transition metals is one of the most important elementary processes in organic synthesis, which can be achieved by a two-electron oxidation addition process or a one-electron radical process. Currently, the ruthenium-catalyzed <em>meta</em>-C(sp<sup>2</sup>)–H alkylation with alkyl halides has emerged as a robust tool for remote C(sp<sup>2</sup>)–H functionalization and was unambiguously proved to occur via a radical pathway. By contrast, the modus operandi of ruthenium-catalyzed <em>ortho</em>-C(sp<sup>2</sup>)–H alkylation is still somewhat unclear and was proposed to occur through a two-electron manifold of ruthenium(II/IV) regime. In this context, we reported on a photo-induced ruthenium-catalyzed <em>ortho</em>-C(sp<sup>2</sup>)−H alkylation with secondary/primary alkyl bromides. Mechanistic studies by experiment and computation provide strong support for a ruthenium(II/III/IV) regime, involving a SET between alkyl bromide and the <em>in situ</em>-generated bicycloruthenated complex.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"11 1","pages":"Article 102387"},"PeriodicalIF":19.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09DOI: 10.1016/j.chempr.2024.08.013
Linfei Li , Sayantan Mahapatra , Jeremy F. Schultz , Xu Zhang , Nan Jiang
N-heterocyclic carbenes (NHCs) have recently proven to be powerful ligands for planar surface modification in terms of chemical and electronic properties due to their structural diversity, property tunability, and high affinity for a diverse array of elements. However, the utilization of NHCs for planar surface modification has almost exclusively been limited to bulk substrates. Here, we investigate the adsorption of NHCs on a two-dimensional (2D) metal (i.e., borophene) using combined single-molecule optical/electronic spectroscopy. Tip-enhanced Raman spectroscopy reveals two distinct interfacial states between individual NHCs and borophene, which correspond to covalent (boron–carbon bonding) and van-der-Waals-type interactions. Furthermore, the impact of NHC modification on borophene’s electronic properties is demonstrated by local work function reductions, as measured by scanning tunneling spectroscopy. In addition to providing novel insight into NHC–substrate interactions in the 2D regime, this study opens up an avenue for investigations of single-molecule NHC chemistry.
{"title":"Single-molecule spectroscopic probing of N-heterocyclic carbenes on a two-dimensional metal","authors":"Linfei Li , Sayantan Mahapatra , Jeremy F. Schultz , Xu Zhang , Nan Jiang","doi":"10.1016/j.chempr.2024.08.013","DOIUrl":"10.1016/j.chempr.2024.08.013","url":null,"abstract":"<div><div>N-heterocyclic carbenes (NHCs) have recently proven to be powerful ligands for planar surface modification in terms of chemical and electronic properties due to their structural diversity, property tunability, and high affinity for a diverse array of elements. However, the utilization of NHCs for planar surface modification has almost exclusively been limited to bulk substrates. Here, we investigate the adsorption of NHCs on a two-dimensional (2D) metal (i.e., borophene) using combined single-molecule optical/electronic spectroscopy. Tip-enhanced Raman spectroscopy reveals two distinct interfacial states between individual NHCs and borophene, which correspond to covalent (boron–carbon bonding) and van-der-Waals-type interactions. Furthermore, the impact of NHC modification on borophene’s electronic properties is demonstrated by local work function reductions, as measured by scanning tunneling spectroscopy. In addition to providing novel insight into NHC–substrate interactions in the 2D regime, this study opens up an avenue for investigations of single-molecule NHC chemistry.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"11 1","pages":"Article 102290"},"PeriodicalIF":19.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09DOI: 10.1016/j.chempr.2024.08.016
Brigitte A.K. Kriebisch , Christine M.E. Kriebisch , Hamish W.A. Swanson , Daniel Bublitz , Massimo Kube , Alexander M. Bergmann , Alexander van Teijlingen , Zoe MacPherson , Aras Kartouzian , Hendrik Dietz , Matthias Rief , Tell Tuttle , Job Boekhoven
New mechanisms that transduce chemical potential into work are needed to advance the field of nanotechnology, with the ATP-fueled archaeal flagellar rotational motor being the ultimate inspiration. We describe microns-long ribbons assembled from small peptides that catalyze the conversion of a nanometer-sized molecular fuel. This conversion drives a morphological transition of the flat nanoribbons into helical ones and eventually into tubes, which makes the ribbons spin. Remarkably, the spinning speed and directionality can be tuned by molecular design. Moreover, the nanoribbons exert pN forces on their surroundings, allowing them to push micron-sized objects or even crawl. Our work demonstrates a new mechanism by which chemical energy at the nanometer level is used to power micron-sized machinery. We envision such new mechanisms opening the door to micro- and nanoscale autonomous machines.
推动纳米技术领域的发展需要能将化学势转化为工作的新机制,而以 ATP 为燃料的古鞭毛虫旋转电机就是最终的灵感来源。我们描述了由小肽组装而成的微米长的丝带,它能催化纳米级分子燃料的转化。这种转换促使扁平纳米带形态转变为螺旋纳米带,并最终转变为管状纳米带,从而使纳米带旋转起来。值得注意的是,旋转速度和方向性可以通过分子设计进行调整。此外,纳米带还能对周围环境施加 pN 力,从而推动微米大小的物体甚至爬行。我们的工作展示了一种新机制,即利用纳米级化学能为微米级机械提供动力。我们设想,这种新机制将为微型和纳米级自主机械打开大门。
{"title":"Synthetic flagella spin and contract at the expense of chemical fuel","authors":"Brigitte A.K. Kriebisch , Christine M.E. Kriebisch , Hamish W.A. Swanson , Daniel Bublitz , Massimo Kube , Alexander M. Bergmann , Alexander van Teijlingen , Zoe MacPherson , Aras Kartouzian , Hendrik Dietz , Matthias Rief , Tell Tuttle , Job Boekhoven","doi":"10.1016/j.chempr.2024.08.016","DOIUrl":"10.1016/j.chempr.2024.08.016","url":null,"abstract":"<div><div>New mechanisms that transduce chemical potential into work are needed to advance the field of nanotechnology, with the ATP-fueled archaeal flagellar rotational motor being the ultimate inspiration. We describe microns-long ribbons assembled from small peptides that catalyze the conversion of a nanometer-sized molecular fuel. This conversion drives a morphological transition of the flat nanoribbons into helical ones and eventually into tubes, which makes the ribbons spin. Remarkably, the spinning speed and directionality can be tuned by molecular design. Moreover, the nanoribbons exert pN forces on their surroundings, allowing them to push micron-sized objects or even crawl. Our work demonstrates a new mechanism by which chemical energy at the nanometer level is used to power micron-sized machinery. We envision such new mechanisms opening the door to micro- and nanoscale autonomous machines.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"11 1","pages":"Article 102293"},"PeriodicalIF":19.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09DOI: 10.1016/j.chempr.2024.08.018
Jingyi Xu , Meichi Chong , Wenting Li , Enwei Zhu , Hongqiang Jin , Liping Liu , Yuehong Ren , Yongfa Zhu
Unguided electron transfer presents challenges for selectively photo-reducing carbon dioxide (CO2) into C2 products. We constructed continuous inter- and intra-component electric fields within photocatalysts by in situ chemical encapsulation. The dual-tandem electric fields facilitate charge separation and transfer photogenerated electrons accurately toward Cu2+-Cu+ sites for C–C coupling. We tracked the electron transport, observing directional electron migration between contacted heterostructure atoms, ligand carbon atoms, and Cu2+-Cu+ centers. The as-synthesized photocatalyst manifests a remarkable ethane (C2H6) production rate of 16.3 μmol g−1 h−1, a high electron selectivity of 64.4% for C2H6, and a stable electron consumption yield of 354.6 μmol g−1 h−1 in water vapor. These represent one of the best performances for CO2 photoreduction. This work promotes charge separation and manages precise control over electron migration via tandem built-in electric fields, opening a new prospect for selective CO2 photoreduction into high-value chemicals.
{"title":"Guiding electron transfer for selective C2H6 photoproduction from CO2","authors":"Jingyi Xu , Meichi Chong , Wenting Li , Enwei Zhu , Hongqiang Jin , Liping Liu , Yuehong Ren , Yongfa Zhu","doi":"10.1016/j.chempr.2024.08.018","DOIUrl":"10.1016/j.chempr.2024.08.018","url":null,"abstract":"<div><div>Unguided electron transfer presents challenges for selectively photo-reducing carbon dioxide (CO<sub>2</sub>) into C<sub>2</sub> products. We constructed continuous inter- and intra-component electric fields within photocatalysts by <em>in situ</em> chemical encapsulation. The dual-tandem electric fields facilitate charge separation and transfer photogenerated electrons accurately toward Cu<sup>2+</sup>-Cu<sup>+</sup> sites for C–C coupling. We tracked the electron transport, observing directional electron migration between contacted heterostructure atoms, ligand carbon atoms, and Cu<sup>2+</sup>-Cu<sup>+</sup> centers. The as-synthesized photocatalyst manifests a remarkable ethane (C<sub>2</sub>H<sub>6</sub>) production rate of 16.3 μmol g<sup>−1</sup> h<sup>−1</sup>, a high electron selectivity of 64.4% for C<sub>2</sub>H<sub>6</sub>, and a stable electron consumption yield of 354.6 μmol g<sup>−1</sup> h<sup>−1</sup> in water vapor. These represent one of the best performances for CO<sub>2</sub> photoreduction. This work promotes charge separation and manages precise control over electron migration via tandem built-in electric fields, opening a new prospect for selective CO<sub>2</sub> photoreduction into high-value chemicals.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"11 1","pages":"Article 102295"},"PeriodicalIF":19.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09DOI: 10.1016/j.chempr.2024.09.027
Chenchen Du , Alex C. Padgham , Anna G. Slater , Liang Zhang
The development of flow processes for metal-ligand self-assembly and ring-closing metathesis has facilitated the efficient and scalable preparation of iron(II) pentafoil knot and Star of David [2]catenane. Use of a flow reactor also enables the formation of the otherwise inaccessible coordinatively labile zinc(II) pentameric helicate, leading to an efficient two-step synthesis of the zinc(II) pentafoil knot. As the first example of topology-synthesis in flow, our work demonstrates that the metal-ligand self-assembly can be readily adapted to flow techniques, even for labile complexes that are difficult to prepare in batches. The method is well-positioned for expansion to other topological complexes made from the metal template approach. Transitioning from laboratory batch synthesis to efficient large-scale production using continuous flow reactors not only paves the way for new applications of flow synthesis in chemical topology but also enhances the accessibility of these “hard-to-make” entangled moieties, thereby opening avenues for exploring their applications in various fields.
{"title":"Efficient flow synthesis of a Star of David [2]catenane and a pentafoil knot","authors":"Chenchen Du , Alex C. Padgham , Anna G. Slater , Liang Zhang","doi":"10.1016/j.chempr.2024.09.027","DOIUrl":"10.1016/j.chempr.2024.09.027","url":null,"abstract":"<div><div>The development of flow processes for metal-ligand self-assembly and ring-closing metathesis has facilitated the efficient and scalable preparation of iron(II) pentafoil knot and Star of David [2]catenane. Use of a flow reactor also enables the formation of the otherwise inaccessible coordinatively labile zinc(II) pentameric helicate, leading to an efficient two-step synthesis of the zinc(II) pentafoil knot. As the first example of topology-synthesis in flow, our work demonstrates that the metal-ligand self-assembly can be readily adapted to flow techniques, even for labile complexes that are difficult to prepare in batches. The method is well-positioned for expansion to other topological complexes made from the metal template approach. Transitioning from laboratory batch synthesis to efficient large-scale production using continuous flow reactors not only paves the way for new applications of flow synthesis in chemical topology but also enhances the accessibility of these “hard-to-make” entangled moieties, thereby opening avenues for exploring their applications in various fields.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"11 1","pages":"Article 102328"},"PeriodicalIF":19.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}