Pub Date : 2024-07-01DOI: 10.1016/j.cjac.2024.100413
Yong-Fei QIAO , Rong-Can WANG , Xin-Yi WANG , Ya-Li LI
As an important medicinal plant, ginseng has various pharmacological activities such as antioxidant, anti-tumor, and anti-inflammatory. The magnitude of these pharmacological activities is closely related to ginseng quality, so to improve the pharmacological activities of ginseng, it is first necessary to improve its quality. In addition to ginseng variety, cultivation, origin, harvest time, and other factors, the impact of processing on ginseng quality is also crucial. This article reviews the different methods of ginseng processing and their impact on ginseng quality, and proposes some strategies to improve ginseng quality through processing methods, aiming to provide technological support for the high-quality development of the ginseng industry.
{"title":"Research on the effect of processing methods on ginseng quality and key technologies for improvement","authors":"Yong-Fei QIAO , Rong-Can WANG , Xin-Yi WANG , Ya-Li LI","doi":"10.1016/j.cjac.2024.100413","DOIUrl":"https://doi.org/10.1016/j.cjac.2024.100413","url":null,"abstract":"<div><p>As an important medicinal plant, ginseng has various pharmacological activities such as antioxidant, anti-tumor, and anti-inflammatory. The magnitude of these pharmacological activities is closely related to ginseng quality, so to improve the pharmacological activities of ginseng, it is first necessary to improve its quality. In addition to ginseng variety, cultivation, origin, harvest time, and other factors, the impact of processing on ginseng quality is also crucial. This article reviews the different methods of ginseng processing and their impact on ginseng quality, and proposes some strategies to improve ginseng quality through processing methods, aiming to provide technological support for the high-quality development of the ginseng industry.</p></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"52 7","pages":"Article 100413"},"PeriodicalIF":1.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1872204024000586/pdfft?md5=5f905495bc7400adba238f648887f7eb&pid=1-s2.0-S1872204024000586-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141540943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.cjac.2024.100403
Samar M. Mahgoub , Amna A. Kotp , Mahmoud A. Mohamed , Haifa E. Alfassam , Hassan A. Rudayni , Ahmed A. Allam , Rehab Mahmoud , S.A. Abdel Moaty
The increasing amount of pharmaceutical chemicals in wastewater is a concern for both public health and the environment. This research investigates the effectiveness of a new composite material made of alginate-activated carbon in removing caffeine and paracetamol from wastewater simultaneously. The composite material, produced using a simple technique, demonstrates excellent removal rates and exceptional adsorption properties for both medicinal chemicals. The structural stability and integrity of the composite are confirmed through comprehensive characterization methods including scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction, energy dispersive X-ray (EDX), and BET surface area analysis. The study uses batch adsorption experiments to assess the impact of various factors, such as pH, initial concentration, and contact time, on the efficiency of caffeine and paracetamol removal. The highest values for the adsorption process were 89.63% for Paracetamol and 97.32% for Caffeine, achieved under optimal experimental conditions (pH 7, 0.1 g dose of adsorbent at elevated temperature). Additionally, Kinetic studies and thermodynamic parameters such as ΔS°, ΔGº, and ΔH° were calculated, indicating that the adsorption process was endothermic and spontaneous for paracetamol, and exothermic and non-spontaneous for caffeine. Seven non-linear equilibrium isotherm models were utilized to fit the experimental data for paracetamol and caffeine at pH 7 showing maximum adsorption capacities () of 606.80 and 725.05 mg/g for Paracetamol and Caffeine, respectively with a high regression coefficient (R2) of 0.99 using alginate-activated carbon as an adsorbent, The results demonstrate the potential of alginate-activated carbon as an effective adsorbent for the simultaneous removal of various pharmaceutical pollutants, highlighting the synergistic adsorption effects of the composite material. The study also examines the safety of the composite material, particularly in the context of potential medical applications. The study emphasizes the potential for sustainable and repeated use of the activated carbon/alginate composite, demonstrating that it maintains both its structural integrity and adsorption effectiveness after multiple cycles of use. This study evaluated the suitability of the suggested analytical method using BAGI, a metric with a unique formula. The BAGI is a complementary tool to GAPI, Complex GAPI, AGREE, AGREE prep, and ESA. A major focus is on the practical elements of white analytical chemistry centered around "blue”.
{"title":"Assessment of activated carbon/alginate for the concurrent removal efficiency of paracetamol and caffeine from wastewater in their binary solutions","authors":"Samar M. Mahgoub , Amna A. Kotp , Mahmoud A. Mohamed , Haifa E. Alfassam , Hassan A. Rudayni , Ahmed A. Allam , Rehab Mahmoud , S.A. Abdel Moaty","doi":"10.1016/j.cjac.2024.100403","DOIUrl":"10.1016/j.cjac.2024.100403","url":null,"abstract":"<div><p>The increasing amount of pharmaceutical chemicals in wastewater is a concern for both public health and the environment. This research investigates the effectiveness of a new composite material made of alginate-activated carbon in removing caffeine and paracetamol from wastewater simultaneously. The composite material, produced using a simple technique, demonstrates excellent removal rates and exceptional adsorption properties for both medicinal chemicals. The structural stability and integrity of the composite are confirmed through comprehensive characterization methods including scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction, energy dispersive X-ray (EDX), and BET surface area analysis. The study uses batch adsorption experiments to assess the impact of various factors, such as pH, initial concentration, and contact time, on the efficiency of caffeine and paracetamol removal. The highest values for the adsorption process were 89.63% for Paracetamol and 97.32% for Caffeine, achieved under optimal experimental conditions (pH 7, 0.1 g dose of adsorbent at elevated temperature). Additionally, Kinetic studies and thermodynamic parameters such as Δ<em>S</em>°, Δ<em>G</em>º, and Δ<em>H</em>° were calculated, indicating that the adsorption process was endothermic and spontaneous for paracetamol, and exothermic and non-spontaneous for caffeine. Seven non-linear equilibrium isotherm models were utilized to fit the experimental data for paracetamol and caffeine at pH 7 showing maximum adsorption capacities (<span><math><msub><mi>q</mi><mi>max</mi></msub></math></span>) of 606.80 and 725.05 mg/g for Paracetamol and Caffeine, respectively with a high regression coefficient (<em>R</em><sup>2</sup>) of 0.99 using alginate-activated carbon as an adsorbent, The results demonstrate the potential of alginate-activated carbon as an effective adsorbent for the simultaneous removal of various pharmaceutical pollutants, highlighting the synergistic adsorption effects of the composite material. The study also examines the safety of the composite material, particularly in the context of potential medical applications. The study emphasizes the potential for sustainable and repeated use of the activated carbon/alginate composite, demonstrating that it maintains both its structural integrity and adsorption effectiveness after multiple cycles of use. This study evaluated the suitability of the suggested analytical method using BAGI, a metric with a unique formula. The BAGI is a complementary tool to GAPI, Complex GAPI, AGREE, AGREE prep, and ESA. A major focus is on the practical elements of white analytical chemistry centered around \"blue”.</p></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"52 7","pages":"Article 100403"},"PeriodicalIF":1.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1872204024000483/pdfft?md5=847b086ff884c88e3392d14d887dcfd0&pid=1-s2.0-S1872204024000483-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141279608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.cjac.2024.100402
Qiuqin WANG , Li ZHANG , Heng WENG , Qing WANG , Penglu CHEN , Hua CHEN , Rongrong JIANG , Guihua XU , Yamei BAI , Xi CHEN
Guasha is a widely applied non-pharmacological therapy of traditional Chinese medicine (TCM), which has been proved to be effective in the treatment of Parkinson's disease (PD). The objective of this study was to explore the mechanisms of Guasha therapy in the pathological processes including neuroinflammation in PD. After 3 Guasha courses, a reduction in α-synuclein aggregation and alleviation of microglia activation were observed in the substantia nigra pars compacta (SNpc). Furthermore, levels of TNF-α, IL-1β and IFN-γ in the SNpc decreased, while plasma TGF-β, IL-4 and IL-10 increased. Moreover, both TH protein and mRNA levels in the SNpc, as well as dopamine levels in the striatum, exhibited an increase. The proteomics analysis results based on plasma-derived exosomes revealed a total of 943 differentially expressed proteins identified. Compared to the model group, the Guasha group screened for 82 differential proteins, with 30 upregulated and 52 downregulated. The improvement of pathological changes in the PD model mice treated with Guasha primarily involves biological processes such as oxidative stress, immune response and inflammation, and cellular structure regulation. It involves signaling pathways related to aldosterone synthesis and secretion, adrenergic signaling in myocardial cells, COVID-19-related inflammatory signaling, and neurotrophic signaling. Collectively, the mechanisms of Guasha for treating PD might be closely related to inhibiting microglial cell activation-mediated neuroinflammation, regulating oxidative stress, cellular structure, aldosterone synthesis and secretion-mediated electrolyte balance, as well as noradrenergic signaling-mediated neuroprotection. These findings provided new insight for Guasha in treating PD and would potentially enhance therapeutic interventions.
{"title":"A pilot study on the mechanism of Guasha in treating Parkinson's disease based on molecular level and ultra-trace proteomics analysis","authors":"Qiuqin WANG , Li ZHANG , Heng WENG , Qing WANG , Penglu CHEN , Hua CHEN , Rongrong JIANG , Guihua XU , Yamei BAI , Xi CHEN","doi":"10.1016/j.cjac.2024.100402","DOIUrl":"10.1016/j.cjac.2024.100402","url":null,"abstract":"<div><p>Guasha is a widely applied non-pharmacological therapy of traditional Chinese medicine (TCM), which has been proved to be effective in the treatment of Parkinson's disease (PD). The objective of this study was to explore the mechanisms of Guasha therapy in the pathological processes including neuroinflammation in PD. After 3 Guasha courses, a reduction in α-synuclein aggregation and alleviation of microglia activation were observed in the substantia nigra pars compacta (SNpc). Furthermore, levels of TNF-α, IL-1β and IFN-γ in the SNpc decreased, while plasma TGF-β, IL-4 and IL-10 increased. Moreover, both TH protein and mRNA levels in the SNpc, as well as dopamine levels in the striatum, exhibited an increase. The proteomics analysis results based on plasma-derived exosomes revealed a total of 943 differentially expressed proteins identified. Compared to the model group, the Guasha group screened for 82 differential proteins, with 30 upregulated and 52 downregulated. The improvement of pathological changes in the PD model mice treated with Guasha primarily involves biological processes such as oxidative stress, immune response and inflammation, and cellular structure regulation. It involves signaling pathways related to aldosterone synthesis and secretion, adrenergic signaling in myocardial cells, COVID-19-related inflammatory signaling, and neurotrophic signaling. Collectively, the mechanisms of Guasha for treating PD might be closely related to inhibiting microglial cell activation-mediated neuroinflammation, regulating oxidative stress, cellular structure, aldosterone synthesis and secretion-mediated electrolyte balance, as well as noradrenergic signaling-mediated neuroprotection. These findings provided new insight for Guasha in treating PD and would potentially enhance therapeutic interventions.</p></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"52 6","pages":"Article 100402"},"PeriodicalIF":1.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1872204024000471/pdfft?md5=7d50d14248abd8f3a4ed8fdc0808e940&pid=1-s2.0-S1872204024000471-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141136710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.cjac.2024.100400
Jiamei LI , An YAN , Mingquan WANG , Di LI
Targeted delivery of proteins into desired cell groups is crucial for disease therapy and cellular functionalization. However, current delivery methods face severe side effects and off-target problems, making it difficult to achieve cell-targeted protein delivery. Herein, we developed a user-friendly membrane fusion liposome for cancer cell-targeted protein delivery. Phosphorothioated DNA-mediated membrane fusion was employed as an efficient transmembrane delivery approach. The phosphorothioated DNA was capped with the AS1411 aptamer, which specifically recognizes nucleolar proteins on the cancer cell membrane, enabling a controllable delivery of proteins into targeted cancer cells. This delivery system exhibited commendable biocompatibility and targeted delivery ability, thereby realizing highly effective cancer cell inhibition in vitro. The in vivo results further suggested that the membrane protein-responsive membrane fusion delivery system offers a new avenue for highly biocompatible and targeted protein delivery.
将蛋白质靶向输送到所需的细胞群对于疾病治疗和细胞功能化至关重要。然而,目前的递送方法面临着严重的副作用和脱靶问题,很难实现细胞靶向蛋白质递送。在此,我们开发了一种便于使用的膜融合脂质体,用于癌细胞靶向蛋白递送。硫代磷酸 DNA 介导的膜融合是一种高效的跨膜递送方法。硫代磷酸 DNA 以 AS1411 aptamer 为封端,AS1411 aptamer 可特异性识别癌细胞膜上的核仁蛋白,从而可控地将蛋白质输送到靶向癌细胞中。这种递送系统具有良好的生物相容性和靶向递送能力,从而在体外实现了对癌细胞的高效抑制。体内研究结果进一步表明,膜蛋白响应膜融合输送系统为高生物相容性和靶向性蛋白质输送提供了一条新途径。
{"title":"Aptamer and phosphorothioated DNA engineered liposomes as a targeted intracellular protein delivery system","authors":"Jiamei LI , An YAN , Mingquan WANG , Di LI","doi":"10.1016/j.cjac.2024.100400","DOIUrl":"10.1016/j.cjac.2024.100400","url":null,"abstract":"<div><p>Targeted delivery of proteins into desired cell groups is crucial for disease therapy and cellular functionalization. However, current delivery methods face severe side effects and off-target problems, making it difficult to achieve cell-targeted protein delivery. Herein, we developed a user-friendly membrane fusion liposome for cancer cell-targeted protein delivery. Phosphorothioated DNA-mediated membrane fusion was employed as an efficient transmembrane delivery approach. The phosphorothioated DNA was capped with the AS1411 aptamer, which specifically recognizes nucleolar proteins on the cancer cell membrane, enabling a controllable delivery of proteins into targeted cancer cells. This delivery system exhibited commendable biocompatibility and targeted delivery ability, thereby realizing highly effective cancer cell inhibition in vitro. The in vivo results further suggested that the membrane protein-responsive membrane fusion delivery system offers a new avenue for highly biocompatible and targeted protein delivery.</p></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"52 6","pages":"Article 100400"},"PeriodicalIF":1.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1872204024000458/pdfft?md5=2126a0b8837b2a288978dfa8007829ad&pid=1-s2.0-S1872204024000458-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141134236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.cjac.2024.100401
Guochao Yan, Siguo Xiao
Highly selective, sensitive, and fast hydrogen sensing technology is becoming increasingly important in the processes of production, transportation, and usage of hydrogen energy. Field-effect transistor (FET) is the basic element of modern IC. When serving as a gas sensor, FET poses advantages of small size, high sensitivity, and low power consumption. This article reviews the latest developments in FET hydrogen sensors based on channel materials from traditional silicon, III-V compound semiconductors to novel channel materials carbon nanotubes, graphene, and two-dimensional black phosphorus. Firstly, the structure of FET sensors was investigated. Then the sensitive materials severing as gate were reviewed and efforts to improve the performance was summarized. Then, we discuss the sensitive materials that are currently available, with a focus on the interaction mechanisms between hydrogen and the sensitive materials. Lastly, methods to enhance sensor performance by modifying the physical and chemical properties of the sensitive materials are presented. Finally, the article provides an outlook on the future development of FET type hydrogen gas sensing.
在氢能源的生产、运输和使用过程中,高选择性、高灵敏度和快速的氢传感技术正变得越来越重要。场效应晶体管(FET)是现代集成电路的基本元件。在用作气体传感器时,场效应晶体管具有体积小、灵敏度高和功耗低的优点。本文综述了场效应晶体管氢气传感器的最新发展,其沟道材料从传统的硅、III-V 族化合物半导体到新型沟道材料碳纳米管、石墨烯和二维黑磷。首先,研究了 FET 传感器的结构。然后,回顾了用作栅极的敏感材料,并总结了为提高性能所做的努力。然后,我们讨论了目前可用的敏感材料,重点是氢与敏感材料之间的相互作用机制。最后,介绍了通过改变敏感材料的物理和化学特性来提高传感器性能的方法。最后,文章对 FET 型氢气传感的未来发展进行了展望。
{"title":"A review on H2 sensors based on FET","authors":"Guochao Yan, Siguo Xiao","doi":"10.1016/j.cjac.2024.100401","DOIUrl":"https://doi.org/10.1016/j.cjac.2024.100401","url":null,"abstract":"<div><p>Highly selective, sensitive, and fast hydrogen sensing technology is becoming increasingly important in the processes of production, transportation, and usage of hydrogen energy. Field-effect transistor (FET) is the basic element of modern IC. When serving as a gas sensor, FET poses advantages of small size, high sensitivity, and low power consumption. This article reviews the latest developments in FET hydrogen sensors based on channel materials from traditional silicon, III-V compound semiconductors to novel channel materials carbon nanotubes, graphene, and two-dimensional black phosphorus. Firstly, the structure of FET sensors was investigated. Then the sensitive materials severing as gate were reviewed and efforts to improve the performance was summarized. Then, we discuss the sensitive materials that are currently available, with a focus on the interaction mechanisms between hydrogen and the sensitive materials. Lastly, methods to enhance sensor performance by modifying the physical and chemical properties of the sensitive materials are presented. Finally, the article provides an outlook on the future development of FET type hydrogen gas sensing.</p></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"52 6","pages":"Article 100401"},"PeriodicalIF":1.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S187220402400046X/pdfft?md5=8d54383c5151d78b666045c35bb107c7&pid=1-s2.0-S187220402400046X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141324887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.cjac.2024.100408
Yuzheng Cai, Ge Guo, Yankun Fu, Xianqing Huang, Tianlin Wang, Tiange Li
Simultaneous and rapid detection of various mycotoxins in food holds significant practical importance in the field of food processing and safety. In this study, a fluorescent aptasensor based on functionalized graphene oxide (FGO) is developed for simultaneous detection of aflatoxin B1 (AFB1) and aflatoxin M1 (AFM1). The two aptamers specific to AFB1 and AFM1 are labeled with Cy3 and Cy5 respectively. Both the aptamers can be adsorbed onto the surface of FGO through π-π stacking, resulting in fluorescence resonance energy transfer (FRET) between the fluorophore and FGO. The absence of target leads to quenching of fluorescence while presence of either aflatoxin causes interaction between corresponding aptamer and target, leading to release from FGO surface thereby turning on fluorescence signal. The limit of detection (LOD) for AFB1 is determined as 8.7 pg/mL whereas for AFM1 it is found to be 20.1 pg/mL, demonstrating fast and sensitive detection capability using this approach. Furthermore, the aptasensor exhibits good specificity and selectivity even under influence from other common interfering toxins. With its simplicity in operation and portability features, this sensor has potential applications for establishing sensitive and portable on-site detection methods for various mycotoxins.
{"title":"A fluorescent aptasensor based on functional graphene oxide and FRET strategy simultaneously detects aflatoxins B1 and aflatoxins M1","authors":"Yuzheng Cai, Ge Guo, Yankun Fu, Xianqing Huang, Tianlin Wang, Tiange Li","doi":"10.1016/j.cjac.2024.100408","DOIUrl":"10.1016/j.cjac.2024.100408","url":null,"abstract":"<div><p>Simultaneous and rapid detection of various mycotoxins in food holds significant practical importance in the field of food processing and safety. In this study, a fluorescent aptasensor based on functionalized graphene oxide (FGO) is developed for simultaneous detection of aflatoxin B<sub>1</sub> (AFB<sub>1</sub>) and aflatoxin M<sub>1</sub> (AFM<sub>1</sub>). The two aptamers specific to AFB<sub>1</sub> and AFM<sub>1</sub> are labeled with Cy3 and Cy5 respectively. Both the aptamers can be adsorbed onto the surface of FGO through π-π stacking, resulting in fluorescence resonance energy transfer (FRET) between the fluorophore and FGO. The absence of target leads to quenching of fluorescence while presence of either aflatoxin causes interaction between corresponding aptamer and target, leading to release from FGO surface thereby turning on fluorescence signal. The limit of detection (LOD) for AFB<sub>1</sub> is determined as 8.7 pg/mL whereas for AFM<sub>1</sub> it is found to be 20.1 pg/mL, demonstrating fast and sensitive detection capability using this approach. Furthermore, the aptasensor exhibits good specificity and selectivity even under influence from other common interfering toxins. With its simplicity in operation and portability features, this sensor has potential applications for establishing sensitive and portable on-site detection methods for various mycotoxins.</p></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"52 6","pages":"Article 100408"},"PeriodicalIF":1.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1872204024000537/pdfft?md5=2d29d4f9039fc888c29e6a3966d51d64&pid=1-s2.0-S1872204024000537-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141274565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Protein-small molecule interactions play an important role in the life activities of organisms. Since protein/small molecule interactions are important for elucidating the diverse uses and their mechanisms in the fields of biological life multiplicity, disease cure, drug development, etc., methods to accurately detect protein/small molecule interactions have attracted much attention. This paper reviews the recent advances in interaction detection methods based on optical, thermodynamic, chromatographic and other principles. The structural types of small molecules for which the methods are mainly suitable and the principles of method selection are discussed, and the prospects for the combined application of different methods in the field of complex small molecule drugs are also envisaged.
{"title":"Detection of small molecule compounds bound to proteins","authors":"Haoran XU, Hui WANG, Yuanjing ZHAO, Weiquan ZHAN, Simin CHEN, Ping WANG","doi":"10.1016/j.cjac.2024.100398","DOIUrl":"10.1016/j.cjac.2024.100398","url":null,"abstract":"<div><p>Protein-small molecule interactions play an important role in the life activities of organisms. Since protein/small molecule interactions are important for elucidating the diverse uses and their mechanisms in the fields of biological life multiplicity, disease cure, drug development, etc., methods to accurately detect protein/small molecule interactions have attracted much attention. This paper reviews the recent advances in interaction detection methods based on optical, thermodynamic, chromatographic and other principles. The structural types of small molecules for which the methods are mainly suitable and the principles of method selection are discussed, and the prospects for the combined application of different methods in the field of complex small molecule drugs are also envisaged.</p></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"52 6","pages":"Article 100398"},"PeriodicalIF":1.2,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1872204024000434/pdfft?md5=f99a30b9ada1da8a4ae68ff3bbff9a88&pid=1-s2.0-S1872204024000434-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141039906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.cjac.2024.100397
Haolin CHU , Shanshan LIU , Shujing ZHANG , Shuyan WANG , Hongsheng CHANG , Lina LI
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic disease with an unclear etiology and no effective treatment. This study aims to elucidate the pathogenic mechanism networks involving multiple targets and pathways in IPF. Extracts and metabolites of Astragali Radix (AR) and Angelicae Sinensis Radix (ASR), two well-known traditional Chinese medicines, have demonstrated therapeutic effects on IPF. However, the underlying mechanisms of AR and ASR remain unclear. Utilizing network pharmacology analysis, the disease targets associated with IPF were obtained from the GeneCards database and Online Mendelian Inheritance in Man (OMIM) database. Targets of AR and ASR were identified using the Traditional Chinese Medicine (TCM) Systems Pharmacology Database and Analysis Platform and Swiss Target Prediction. A proteinprotein interaction (PPI) network was subsequently constructed and analyzed using the STRING database and Cytoscape software. Gene ontology enrichment (GO) analysis and kyoto encyclopedia of genes and genomes (KEGG) analysis were conducted using DAVID. Additionally, a component-target-pathway network was employed to identify the main active components, and molecular docking was performed between these components and proteins encoded by key targets. Finally, in vitro studies were conducted based on network pharmacology. A total of 260 common targets between IPF and drug targets were identified and included in the PPI network, in which TNF, IL-6, STAT3, AKT1, VEGFA, SRC, EGFR, INS, JUN, and IL1B were predicted as key targets. These 260 targets were enriched in the PI3K-AKT signaling pathway, HIF-1 signaling pathway, TNF signaling pathway, MAPK signaling pathway, FOXO signaling pathway, and Pathways in cancer. Docking scores ranged from –4.1 to –9.5 kcal/mol, indicating a strong binding affinity between the main active compounds and key targets. In vitro studies have indeed shown that Quercetin and Magnolol can alleviate the expression of epithelial-mesenchymal transition in the A549 cells caused by IL-6. The treatment with AR and ASR resulted in a reduction of mRNA levels for key targets HIF-1α and α-SAM. Additionally, the protein expression levels of P-JAK2/ JAK2, P-STAT3/ STAT3, and α-SMA/ β-Actin were also reduced. These results support the therapeutic potential of AR and ASR in ameliorating pulmonary fibrosis and provide insight into the molecular mechanisms involved in their therapeutic effects.
特发性肺纤维化(IPF)是一种慢性、进行性纤维化疾病,病因不明,且无有效治疗方法。本研究旨在阐明 IPF 多靶点、多途径的致病机制网络。黄芪(AR)和当归(ASR)这两种著名中药的提取物和代谢物对 IPF 有治疗作用。然而,黄芪和当归的内在机制仍不清楚。利用网络药理学分析,从基因卡片数据库和在线人类孟德尔遗传(OMIM)数据库中获得了与 IPF 相关的疾病靶点。利用传统中药(TCM)系统药理学数据库和分析平台以及瑞士靶点预测(Swiss Target Prediction)确定了AR和ASR的靶点。随后利用 STRING 数据库和 Cytoscape 软件构建并分析了蛋白质相互作用(PPI)网络。利用 DAVID 进行了基因本体富集(GO)分析和京都基因和基因组百科全书(KEGG)分析。此外,还采用了组分-靶标-途径网络来确定主要活性组分,并在这些组分与关键靶标编码的蛋白质之间进行了分子对接。最后,基于网络药理学进行了体外研究。IPF与药物靶点之间共有260个共同靶点被识别并纳入PPI网络,其中TNF、IL-6、STAT3、AKT1、VEGFA、SRC、EGFR、INS、JUN和IL1B被预测为关键靶点。这 260 个靶点富集在 PI3K-AKT 信号通路、HIF-1 信号通路、TNF 信号通路、MAPK 信号通路、FOXO 信号通路和癌症通路中。对接得分在-4.1 至-9.5 kcal/mol之间,表明主要活性化合物与关键靶点之间有很强的结合亲和力。体外研究确实表明,槲皮素和厚朴酚可减轻 IL-6 在 A549 细胞中引起的上皮-间质转化表达。用 AR 和 ASR 处理后,关键靶标 HIF-1α 和 α-SAM 的 mRNA 水平降低。此外,P-JAK2/ JAK2、P-STAT3/ STAT3 和 α-SMA/ β-Actin 的蛋白表达水平也有所降低。这些结果支持了 AR 和 ASR 在改善肺纤维化方面的治疗潜力,并使人们对其治疗效果的分子机制有了更深入的了解。
{"title":"Active substances and molecular mechanisms of Astragali radix and Angelicae Sinensis radix against idiopathic pulmonary fibrosis effects by network pharmacology and in vitro experiments","authors":"Haolin CHU , Shanshan LIU , Shujing ZHANG , Shuyan WANG , Hongsheng CHANG , Lina LI","doi":"10.1016/j.cjac.2024.100397","DOIUrl":"10.1016/j.cjac.2024.100397","url":null,"abstract":"<div><p>Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic disease with an unclear etiology and no effective treatment. This study aims to elucidate the pathogenic mechanism networks involving multiple targets and pathways in IPF. Extracts and metabolites of Astragali Radix (AR) and Angelicae Sinensis Radix (ASR), two well-known traditional Chinese medicines, have demonstrated therapeutic effects on IPF. However, the underlying mechanisms of AR and ASR remain unclear. Utilizing network pharmacology analysis, the disease targets associated with IPF were obtained from the GeneCards database and Online Mendelian Inheritance in Man (OMIM) database. Targets of AR and ASR were identified using the Traditional Chinese Medicine (TCM) Systems Pharmacology Database and Analysis Platform and Swiss Target Prediction. A proteinprotein interaction (PPI) network was subsequently constructed and analyzed using the STRING database and Cytoscape software. Gene ontology enrichment (GO) analysis and kyoto encyclopedia of genes and genomes (KEGG) analysis were conducted using DAVID. Additionally, a component-target-pathway network was employed to identify the main active components, and molecular docking was performed between these components and proteins encoded by key targets. Finally, in vitro studies were conducted based on network pharmacology. A total of 260 common targets between IPF and drug targets were identified and included in the PPI network, in which TNF, IL-6, STAT3, AKT1, VEGFA, SRC, EGFR, INS, JUN, and IL1B were predicted as key targets. These 260 targets were enriched in the PI3K-AKT signaling pathway, HIF-1 signaling pathway, TNF signaling pathway, MAPK signaling pathway, FOXO signaling pathway, and Pathways in cancer. Docking scores ranged from –4.1 to –9.5 kcal/mol, indicating a strong binding affinity between the main active compounds and key targets. In vitro studies have indeed shown that Quercetin and Magnolol can alleviate the expression of epithelial-mesenchymal transition in the A549 cells caused by IL-6. The treatment with AR and ASR resulted in a reduction of mRNA levels for key targets HIF-1α and α-SAM. Additionally, the protein expression levels of P-JAK2/ JAK2, P-STAT3/ STAT3, and α-SMA/ β-Actin were also reduced. These results support the therapeutic potential of AR and ASR in ameliorating pulmonary fibrosis and provide insight into the molecular mechanisms involved in their therapeutic effects.</p></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"52 5","pages":"Article 100397"},"PeriodicalIF":1.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1872204024000422/pdfft?md5=a17c40f539713e11b03685028ec25880&pid=1-s2.0-S1872204024000422-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141032014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.cjac.2024.100399
Xian LIU , Xi WU , Qirui WANG , Xun WANG
The green chemistry method for analyzing changes in the concentration of substances during a reaction process is an energy-saving and interesting experimental process. In this paper, the performance of electrolysis of methylene blue (MB) in NaCl electrolyte was studied using a smartphone-based paper microzones method (PMZs), and paper microzone platform was made by discarded label stickers. The linear range spanned from 1.25 to 15 mg/L for the concentration-absorbance correspondence measured via spectrophotometry, and from 1.25 to 17.5 mg/L for the concentration-R-value correspondence measured via the PMZs method. The findings revealed that the limit of detection (LOD) value of the PMZs method was 0.494 mg/L, and the limit of quantification (LOQ) value was 1.497 mg/L. Moreover, the accuracy ranking of the measured MB electrolytic change process across different channels was as follows: Red>Grey>Green>Blue. PMZs method also showed well reliability in measuring actual dye polluted wastewater. The results demonstrate the sensitivity and precision of the PMZs method, as indicated by the low LOD and LOQ values. Additionally, the accuracy ranking provides valuable insight into the performance of the method across different color channels, shedding light on the potential applications and limitations of the PMZs technique in color-based electrochemical analyses. The electrolysis reaction led to a red-shift in the absorption characteristics of MB in NaCl electrolyte, resulting in a notable change in its light absorption properties. This information is crucial for researchers and practitioners seeking to employ the PMZs method for accurate and reliable color measurements in various scientific and industrial settings.
{"title":"Evaluating electrocatalytic performance in a simple way using the paper microzones method","authors":"Xian LIU , Xi WU , Qirui WANG , Xun WANG","doi":"10.1016/j.cjac.2024.100399","DOIUrl":"10.1016/j.cjac.2024.100399","url":null,"abstract":"<div><p>The green chemistry method for analyzing changes in the concentration of substances during a reaction process is an energy-saving and interesting experimental process. In this paper, the performance of electrolysis of methylene blue (MB) in NaCl electrolyte was studied using a smartphone-based paper microzones method (PMZs), and paper microzone platform was made by discarded label stickers. The linear range spanned from 1.25 to 15 mg/L for the concentration-absorbance correspondence measured via spectrophotometry, and from 1.25 to 17.5 mg/L for the concentration-<em>R</em>-value correspondence measured via the PMZs method. The findings revealed that the limit of detection (LOD) value of the PMZs method was 0.494 mg/L, and the limit of quantification (LOQ) value was 1.497 mg/L. Moreover, the accuracy ranking of the measured MB electrolytic change process across different channels was as follows: Red>Grey>Green>Blue. PMZs method also showed well reliability in measuring actual dye polluted wastewater. The results demonstrate the sensitivity and precision of the PMZs method, as indicated by the low LOD and LOQ values. Additionally, the accuracy ranking provides valuable insight into the performance of the method across different color channels, shedding light on the potential applications and limitations of the PMZs technique in color-based electrochemical analyses. The electrolysis reaction led to a red-shift in the absorption characteristics of MB in NaCl electrolyte, resulting in a notable change in its light absorption properties. This information is crucial for researchers and practitioners seeking to employ the PMZs method for accurate and reliable color measurements in various scientific and industrial settings.</p></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"52 5","pages":"Article 100399"},"PeriodicalIF":1.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1872204024000446/pdfft?md5=7518947553ca627ab43f3c23bf33cb07&pid=1-s2.0-S1872204024000446-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141031264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water pollution is currently a major problem worldwide. Given its detrimental effects on health, Hg(II) is considered an extremely hazardous heavy metal contaminant, even at low doses. Heterocyclic compounds have been thoroughly evaluated as the chemosensor agents for Hg(II) detection. However, they suffer from poor sensitivity. In this study, we prepared two fluorescence chemosensor agents from vanillin via several steps, i.e., etherification, Claisen–Schmidt, and cyclocondensation reactions to yield N-phenyl- and N-pyridine-pyrazoline compounds. Products characterization was accomplished via spectroscopic techniques. Chalcone, N-phenyl-, and N-pyridine-pyrazoline derivatives were successfully obtained at 87.04%, 90.91%, and 91.73% yields, with limits of detection of 156,840, 65.810, and 161.011 nM, respectively. These results show that the conversion of chalcone to pyrazoline structure improved the sensitivity for Hg(II) detection at the nanomolar level, which is 2384 times lower than that for chalcone. Further spectroscopic investigations through Job's plot, Fourier-transform infrared spectroscopy, and proton-nuclear magnetic resonance analyses revealed that Hg(II) ions were chelated with two nitrogen atoms of pyrazoline. Thus, this phenomenon can explain the considerable sensitivity enhancement for Hg(II) detection. N-Phenyl-pyrazoline is the more sensitive chemosensor to Hg(II) compared with N-pyridine-pyrazoline because the more nitrogen groups in the binding site, the less selective and sensitive the compound. This finding is also supported by the higher binding constant value of N-phenyl-pyrazoline (9.416 × 102 mol−1) than N-pyridine-pyrazoline (1.771 × 102 mol−1). Furthermore, N-phenyl-pyrazoline can be applied in the direct quantification of Hg(II) in tap and groundwater samples with a validity parameter in a range of 80.97%–103.54%.
{"title":"Enhancement of the sensitivity of chalcone derived from vanillin as chemosensor agents for Hg(II) ions through cyclization reaction with arylhydrazine","authors":"Devi RATNAWATI , Indriana KARTINI , Harno Dwi PRANOWO , Yehezkiel Steven KURNIAWAN , Tutik Dwi WAHYUNINGSIH","doi":"10.1016/j.cjac.2024.100395","DOIUrl":"https://doi.org/10.1016/j.cjac.2024.100395","url":null,"abstract":"<div><p>Water pollution is currently a major problem worldwide. Given its detrimental effects on health, Hg(II) is considered an extremely hazardous heavy metal contaminant, even at low doses. Heterocyclic compounds have been thoroughly evaluated as the chemosensor agents for Hg(II) detection. However, they suffer from poor sensitivity. In this study, we prepared two fluorescence chemosensor agents from vanillin via several steps, i.e.<em>,</em> etherification, Claisen–Schmidt, and cyclocondensation reactions to yield <em>N</em>-phenyl- and <em>N</em>-pyridine-pyrazoline compounds. Products characterization was accomplished via spectroscopic techniques. Chalcone, <em>N</em>-phenyl-, and <em>N</em>-pyridine-pyrazoline derivatives were successfully obtained at 87.04%, 90.91%, and 91.73% yields, with limits of detection of 156,840, 65.810, and 161.011 nM, respectively. These results show that the conversion of chalcone to pyrazoline structure improved the sensitivity for Hg(II) detection at the nanomolar level, which is 2384 times lower than that for chalcone. Further spectroscopic investigations through Job's plot, Fourier-transform infrared spectroscopy, and proton-nuclear magnetic resonance analyses revealed that Hg(II) ions were chelated with two nitrogen atoms of pyrazoline. Thus, this phenomenon can explain the considerable sensitivity enhancement for Hg(II) detection. <em>N</em>-Phenyl-pyrazoline is the more sensitive chemosensor to Hg(II) compared with <em>N</em>-pyridine-pyrazoline because the more nitrogen groups in the binding site, the less selective and sensitive the compound. This finding is also supported by the higher binding constant value of <em>N</em>-phenyl-pyrazoline (9.416 × 10<sup>2</sup> mol<sup>−1</sup>) than <em>N</em>-pyridine-pyrazoline (1.771 × 10<sup>2</sup> mol<sup>−1</sup>). Furthermore, <em>N</em>-phenyl-pyrazoline can be applied in the direct quantification of Hg(II) in tap and groundwater samples with a validity parameter in a range of 80.97%–103.54%.</p></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"52 5","pages":"Article 100395"},"PeriodicalIF":1.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1872204024000409/pdfft?md5=0a867528496634627fa612e2d20f465a&pid=1-s2.0-S1872204024000409-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140910210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}