Pub Date : 2025-06-21DOI: 10.1016/j.cjac.2025.100580
Chenjing Fan , Yushi Liu , Xiushuang Fan , Hua Zhang , Chao Peng , Jiangtao Ren , Erkang Wang
Early screening of serious diseases can significantly improve survival rates and quality of life, and potable and user-friendly analytical devices are conducive to point-of-care testing (POCT). In this study, a lateral flow assay (LFA) for colorimetric analysis of a significant early cancer biomarker, vascular endothelial growth factor 165 (VEGF165), was designed based on an “antibody-VEGF165-aptamer” sandwiched structure. The aptamer for VEGF165 was introduced to overcome the bottleneck, namely, high cost and limited types of antibodies of VEGF165. In addition, the sensitivity was substantially increased by cascading an in-situ gold growth-mediated signal amplification strategy (ISGGS), and as low as 0.12 ng/mL VEGF165 can be detected. Based on the universal LFA-ISGGS principle, test strips were fabricated for detecting another biomarker (cardiac troponin I, cTnI). Moreover, one test strip with dual detection channels was successfully obtained for simultaneous detection of VEGF165 and cTnI, further confirming the universality of our LFA-ISGGS platform, and indicating that the platform holds great potential for bed diagnosis of serious diseases in the future.
{"title":"Aptamer/antibody-based and amplified lateral flow assays for detection of vascular endothelial growth factor 165","authors":"Chenjing Fan , Yushi Liu , Xiushuang Fan , Hua Zhang , Chao Peng , Jiangtao Ren , Erkang Wang","doi":"10.1016/j.cjac.2025.100580","DOIUrl":"10.1016/j.cjac.2025.100580","url":null,"abstract":"<div><div>Early screening of serious diseases can significantly improve survival rates and quality of life, and potable and user-friendly analytical devices are conducive to point-of-care testing (POCT). In this study, a lateral flow assay (LFA) for colorimetric analysis of a significant early cancer biomarker, vascular endothelial growth factor 165 (VEGF165), was designed based on an “antibody-VEGF165-aptamer” sandwiched structure. The aptamer for VEGF165 was introduced to overcome the bottleneck, namely, high cost and limited types of antibodies of VEGF165. In addition, the sensitivity was substantially increased by cascading an in-situ gold growth-mediated signal amplification strategy (ISGGS), and as low as 0.12 ng/mL VEGF165 can be detected. Based on the universal LFA-ISGGS principle, test strips were fabricated for detecting another biomarker (cardiac troponin I, cTnI). Moreover, one test strip with dual detection channels was successfully obtained for simultaneous detection of VEGF165 and cTnI, further confirming the universality of our LFA-ISGGS platform, and indicating that the platform holds great potential for bed diagnosis of serious diseases in the future.</div></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"53 10","pages":"Article 100580"},"PeriodicalIF":1.3,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144890587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-14DOI: 10.1016/j.cjac.2025.100575
Chunqiong Wang , Wei Li , Yanbo Zeng , Xiaowei Zhang , Haowei Sun , Ke Zhang , Ganpeng Li
Monitoring harmful volatile organic compounds in e-cigarettes is crucial for product quality assessment and consumer safety. In this study, a polydimethylsiloxane (PDMS) film embedded with 2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine (H3TATB)-modified MIL-101(Cr) particles was prepared via dip-coating to serve as a solid-phase microextraction (SPME) medium. Gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOF-MS) method was developed and optimized using this custom SPME film for the determination of eight volatile benzene-series compounds in commercial e-cigarette products. The analytical method was applied to 43 electronic cigarette (e-cigarette) samples, enabling the quantification of target compounds in both e-liquids and aerosols. The method exhibited excellent linearity and high mass accuracy, with limits of quantifications (LOQs) ranging from 0.0016 to 0.0090 µg·g−1 and 0.0037 to 0.0208 µg·20 puffs−1 in e-liquids and aerosols, respectively. Limits of detections (LODs) ranged from 0.0054 to 0.0298 µg·g−1 and 0.0122 to 0.0686 µg·20 puffs−1 for e-liquids and aerosols, respectively. Recoveries of the target compounds in e-liquids ranged from 70.12% to 107.06%. Among the eight compounds, benzene, toluene, and ethylbenzene were consistently detected in both sample types. Benzene concentrations ranged from 0.837 to 5.107 µg·g−1 in e-liquids and 0.201 to 4.179 µg·20 puffs−1 in aerosols; ethylbenzene was present at 0 to 0.798 µg·g−1 and 0 to 1.608 µg·20 puffs−1, respectively. The study presents a rapid, sensitive, and reliable method for analysing volatile benzene-series compounds in complex e-cigarette matrices. The developed approach supports regulatory oversight and contributes to establishing effective quality control systems for e-cigarette products.
{"title":"Determination of eight volatile benzene series in e-cigarette liquids and aerosols by thin-film solid-phase microextraction/GC-QTOF-MS","authors":"Chunqiong Wang , Wei Li , Yanbo Zeng , Xiaowei Zhang , Haowei Sun , Ke Zhang , Ganpeng Li","doi":"10.1016/j.cjac.2025.100575","DOIUrl":"10.1016/j.cjac.2025.100575","url":null,"abstract":"<div><div>Monitoring harmful volatile organic compounds in e-cigarettes is crucial for product quality assessment and consumer safety. In this study, a polydimethylsiloxane (PDMS) film embedded with 2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine (H<sub>3</sub>TATB)-modified MIL-101(Cr) particles was prepared via dip-coating to serve as a solid-phase microextraction (SPME) medium. Gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOF-MS) method was developed and optimized using this custom SPME film for the determination of eight volatile benzene-series compounds in commercial e-cigarette products. The analytical method was applied to 43 electronic cigarette (e-cigarette) samples, enabling the quantification of target compounds in both e-liquids and aerosols. The method exhibited excellent linearity and high mass accuracy, with limits of quantifications (LOQs) ranging from 0.0016 to 0.0090 µg·g<sup>−</sup><sup>1</sup> and 0.0037 to 0.0208 µg·20 puffs<sup>−</sup><sup>1</sup> in e-liquids and aerosols, respectively. Limits of detections (LODs) ranged from 0.0054 to 0.0298 µg·g<sup>−</sup><sup>1</sup> and 0.0122 to 0.0686 µg·20 puffs<sup>−</sup><sup>1</sup> for e-liquids and aerosols, respectively. Recoveries of the target compounds in e-liquids ranged from 70.12% to 107.06%. Among the eight compounds, benzene, toluene, and ethylbenzene were consistently detected in both sample types. Benzene concentrations ranged from 0.837 to 5.107 µg·g<sup>−</sup><sup>1</sup> in e-liquids and 0.201 to 4.179 µg·20 puffs<sup>−</sup><sup>1</sup> in aerosols; ethylbenzene was present at 0 to 0.798 µg·g<sup>−</sup><sup>1</sup> and 0 to 1.608 µg·20 puffs<sup>−</sup><sup>1</sup>, respectively. The study presents a rapid, sensitive, and reliable method for analysing volatile benzene-series compounds in complex e-cigarette matrices. The developed approach supports regulatory oversight and contributes to establishing effective quality control systems for e-cigarette products.</div></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"53 8","pages":"Article 100575"},"PeriodicalIF":1.2,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144704007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-12DOI: 10.1016/j.cjac.2025.100576
Rani , Faiz Ali , Mian Muhammad , Zeid A. AlOthman
An effective photo catalytic method utilizing fluorescent carbon dots (CDP) has been developed for the degradation of imidacloprid. The CDP were synthesized hydrothermally using fructose, palladium, and ethylene diamine and they were characterized via Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), spectrofluorometer, ultraviolet-visible spectroscopy (UV-Vis), and energy dispersive X-ray spectroscopy (EDX) techniques. The key determinants were optimized and using the optimized conditions. 97 % photocatalytic degradation of imidacloprid was achieved in 40 min at 365 nm using 5.0 mg L–1 of imidacloprid at pH 10. The catalyst loading, and the response time were effectively correlated, emphasizing the critical role in improving the degrading efficiency. The pseudo- first order and second order kinetic models were applied to the data showing the best fitting with pseudo-first order kinetic model. The CDP can be used for repeated cycles maintaining its degradation efficiency within reasonable limits. The results highlighted the promising potential of using carbon dots as effective photocatalytic materials which are cost effective and environmentally safe for water remediation.
{"title":"Synthesis and characterization of Pd-doped carbon dots (CDP) for the photocatalytic degradation of imidacloprid","authors":"Rani , Faiz Ali , Mian Muhammad , Zeid A. AlOthman","doi":"10.1016/j.cjac.2025.100576","DOIUrl":"10.1016/j.cjac.2025.100576","url":null,"abstract":"<div><div>An effective photo catalytic method utilizing fluorescent carbon dots (CDP) has been developed for the degradation of imidacloprid. The CDP were synthesized hydrothermally using fructose, palladium, and ethylene diamine and they were characterized via Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), spectrofluorometer, ultraviolet-visible spectroscopy (UV-Vis), and energy dispersive X-ray spectroscopy (EDX) techniques. The key determinants were optimized and using the optimized conditions. 97 % photocatalytic degradation of imidacloprid was achieved in 40 min at 365 nm using 5.0 mg L<sup>–</sup><sup>1</sup> of imidacloprid at pH 10. The catalyst loading, and the response time were effectively correlated, emphasizing the critical role in improving the degrading efficiency. The pseudo- first order and second order kinetic models were applied to the data showing the best fitting with pseudo-first order kinetic model. The CDP can be used for repeated cycles maintaining its degradation efficiency within reasonable limits. The results highlighted the promising potential of using carbon dots as effective photocatalytic materials which are cost effective and environmentally safe for water remediation.</div></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"53 9","pages":"Article 100576"},"PeriodicalIF":1.3,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144738247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-10DOI: 10.1016/j.cjac.2025.100574
Ma Guo-Hua , Xing Xin-Xin , Gao Yuan , He Yu-Fang , Zhao Yu-Wei , Zhao Jian-Hui , Ma Yang , Yin Yu-He , Nan Min-Lun
Epimedium (EP) and its extracts have been shown to be beneficial in the treatment of diabetes mellitus (DM). However, the specific active components and mechanisms whereby they exert their effects remain unclear. This paper will explore the mechanism of action of EP for the treatment of DM using network pharmacology. Traditional Chinese medicines systems pharmacology (TCMSP), Uniprot and Swiss Target Prediction databases were used to obtain compound and target information for EP. GeneCards database was used to obtain DM-related targets, and Cytoscape 3.8.0, Metascape and We Seng Xin platforms were used for network analyses. A total of 23 active components of EP, which are associated with its therapeutic effect in the treatment of DM, were identified by integrating the results of database search. Of the 234 targets, 44 key genes were found to be significantly enriched in the AKT1, TNF, PPARG and STAT3. Icaritin and icariin were identified as the core components affecting DM pathways. Molecular docking and kinetic simulation studies confirmed that the core components effectively bind to the above targets, meanwhile, in vivo and in vitro experiments showed that the core components have better hypoglycemic activity compared with the positive control. In conclusion, the therapeutic effects of EP in DM may be attributed to its bioactive components, such as icaritin and icariin. These components also modulate DM-related pathways, including glutathione metabolism, tryptophan peroxisome-related pathways, and peroxisomes. The present study provides valuable scientific insights into the pharmacological mechanisms underlying the action of EP in DM and highlights the potential of EP as a promising drug.
淫羊藿及其提取物已被证明对糖尿病(DM)的治疗有益。然而,它们发挥作用的具体活性成分和机制尚不清楚。本文将运用网络药理学方法探讨EP治疗糖尿病的作用机制。使用中药系统药理学(TCMSP)、Uniprot和Swiss Target Prediction数据库获取EP的化合物和靶点信息。使用GeneCards数据库获取dm相关靶点,使用Cytoscape 3.8.0、metscape和We Seng Xin平台进行网络分析。通过整合数据库检索结果,共鉴定出EP的23种活性成分,这些活性成分与EP治疗DM的疗效有关。在234个靶点中,发现有44个关键基因在AKT1、TNF、PPARG和STAT3中显著富集。淫羊藿苷和淫羊藿苷被确定为影响DM通路的核心成分。分子对接和动力学模拟研究证实,核心成分与上述靶点有效结合,同时体内和体外实验表明,核心成分与阳性对照相比具有更好的降糖活性。综上所述,EP对DM的治疗作用可能与其生物活性成分如淫羊藿苷和淫羊藿苷有关。这些成分也调节dm相关途径,包括谷胱甘肽代谢、色氨酸过氧化物酶体相关途径和过氧化物酶体。本研究为EP在糖尿病中作用的药理学机制提供了有价值的科学见解,并强调了EP作为一种有前景的药物的潜力。
{"title":"Exploring the mechanism of Epimedium in diabetes mellitus treatment based on network pharmacology and molecular dynamics simulation","authors":"Ma Guo-Hua , Xing Xin-Xin , Gao Yuan , He Yu-Fang , Zhao Yu-Wei , Zhao Jian-Hui , Ma Yang , Yin Yu-He , Nan Min-Lun","doi":"10.1016/j.cjac.2025.100574","DOIUrl":"10.1016/j.cjac.2025.100574","url":null,"abstract":"<div><div><em>Epimedium</em> (EP) and its extracts have been shown to be beneficial in the treatment of diabetes mellitus (DM). However, the specific active components and mechanisms whereby they exert their effects remain unclear. This paper will explore the mechanism of action of EP for the treatment of DM using network pharmacology. Traditional Chinese medicines systems pharmacology (TCMSP), Uniprot and Swiss Target Prediction databases were used to obtain compound and target information for EP. GeneCards database was used to obtain DM-related targets, and Cytoscape 3.8.0, Metascape and We Seng Xin platforms were used for network analyses. A total of 23 active components of EP, which are associated with its therapeutic effect in the treatment of DM, were identified by integrating the results of database search. Of the 234 targets, 44 key genes were found to be significantly enriched in the AKT1, TNF, PPARG and STAT3. Icaritin and icariin were identified as the core components affecting DM pathways. Molecular docking and kinetic simulation studies confirmed that the core components effectively bind to the above targets, meanwhile, <em>in vivo</em> and <em>in vitro</em> experiments showed that the core components have better hypoglycemic activity compared with the positive control. In conclusion, the therapeutic effects of EP in DM may be attributed to its bioactive components, such as icaritin and icariin. These components also modulate DM-related pathways, including glutathione metabolism, tryptophan peroxisome-related pathways, and peroxisomes. The present study provides valuable scientific insights into the pharmacological mechanisms underlying the action of EP in DM and highlights the potential of EP as a promising drug.</div></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"53 9","pages":"Article 100574"},"PeriodicalIF":1.2,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144703653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-10DOI: 10.1016/j.cjac.2025.100553
Asmaa M.S. AHMED , Abdelatty M. RADALLA , Samar M. MAHGOUB , Saber A.A. ELSUCCARY , Mohamed Ali KORANY , Abeer Enaiet ALLAH , Fatma MOHAMED , Ahmed A. ALLAM , Haifa E. ALFASSAM , Rehab MAHMOUD
The widespread presence of antibiotics like clindamycin (CLN) in aquatic environments poses serious ecological and health risks. This study introduces a simple and cost-effective electrochemical sensor based on Zn-Al layered double hydroxide (LDH) nanoparticles, synthesized via coprecipitation, for CLN detection in environmental samples. Characterization by FTIR, SEM, TEM, BET, and TGA confirmed a porous, nano-flake structure conducive to enhanced electrocatalytic activity. The sensor exhibited excellent performance with a detection limit of 0.044 µM (0.0187 µg/mL), a quantification limit of 0.15 µM (0.0638 µg/mL), and a linear range of 4–700 µM, outperforming traditional HPLC methods. Optimal detection was achieved at pH 3.6, with good selectivity, stability, and reproducibility. Application to tap water, Nile river water, groundwater, and wastewater samples confirmed its practical utility. The method's environmental impact was evaluated using green chemistry metrics including AGREEprep, ESA, and AMVI demonstrating its eco-friendliness. Cytotoxicity testing on WI-38 cells showed concentration-dependent effects, supporting its safe use in environmental and biomedical contexts. The total cost of the material was estimated at 8.14 USD/g, confirming its affordability for large-scale applications.
{"title":"Advanced electrochemical detection of clindamycin from aqueous solutions using Zinc Aluminium layered double hydroxide: Green chemistry approaches and cytotoxicity evaluation","authors":"Asmaa M.S. AHMED , Abdelatty M. RADALLA , Samar M. MAHGOUB , Saber A.A. ELSUCCARY , Mohamed Ali KORANY , Abeer Enaiet ALLAH , Fatma MOHAMED , Ahmed A. ALLAM , Haifa E. ALFASSAM , Rehab MAHMOUD","doi":"10.1016/j.cjac.2025.100553","DOIUrl":"10.1016/j.cjac.2025.100553","url":null,"abstract":"<div><div>The widespread presence of antibiotics like clindamycin (CLN) in aquatic environments poses serious ecological and health risks. This study introduces a simple and cost-effective electrochemical sensor based on Zn-Al layered double hydroxide (LDH) nanoparticles, synthesized via coprecipitation, for CLN detection in environmental samples. Characterization by FTIR, SEM, TEM, BET, and TGA confirmed a porous, nano-flake structure conducive to enhanced electrocatalytic activity. The sensor exhibited excellent performance with a detection limit of 0.044 µM (0.0187 µg/mL), a quantification limit of 0.15 µM (0.0638 µg/mL), and a linear range of 4–700 µM, outperforming traditional HPLC methods. Optimal detection was achieved at pH 3.6, with good selectivity, stability, and reproducibility. Application to tap water, Nile river water, groundwater, and wastewater samples confirmed its practical utility. The method's environmental impact was evaluated using green chemistry metrics including AGREEprep, ESA, and AMVI demonstrating its eco-friendliness. Cytotoxicity testing on WI-38 cells showed concentration-dependent effects, supporting its safe use in environmental and biomedical contexts. The total cost of the material was estimated at 8.14 USD/g, confirming its affordability for large-scale applications.</div></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"53 8","pages":"Article 100553"},"PeriodicalIF":1.2,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-10DOI: 10.1016/j.cjac.2025.100577
Hailong Li , Zheng Wang , Qingming Zhang , Wanting Wang , Peipei Han , Haoting Yu , Jiahui Ma , Xingde Zhang , Hui Xie , Hongli Yu
Objective
To establish a high-performance liquid chromatographic method (HPLC) for simultaneous determination of two phenolic acids (gallic acid, salvianolic acid B) and three quinones (cryptotanshinone, tanshinone I, tanshinone IIA) in Compound Salvia miltiorrhiza gel (CSG).
Methods
The HPLC method employs gradient elution with multi-channel to optimize detection sensitivity. Validation parameters include linearity, precision, stability, repeatability, and accuracy.
Results
All five compounds exhibit excellent linearity (R2 > 0.999) within their respective concentration ranges. The method demonstrates high precision (RSD < 2%), stability (RSD < 1.93%), repeatability (RSD < 1.90%), and accuracy (average recoveries: 98.93–101.31%). No interference is observed in negative control samples.
Conclusion
This validated HPLC method provides a robust and efficient approach for quality control of CSG, ensuring accurate quantification of its key bioactive components. The study supports the standardization of herbal gel formulations and offers a foundation for further pharmacological research.
{"title":"Simultaneous determination of five active compounds in compound Salvia Miltiorrhiza gel via multi-channel HPLC detection","authors":"Hailong Li , Zheng Wang , Qingming Zhang , Wanting Wang , Peipei Han , Haoting Yu , Jiahui Ma , Xingde Zhang , Hui Xie , Hongli Yu","doi":"10.1016/j.cjac.2025.100577","DOIUrl":"10.1016/j.cjac.2025.100577","url":null,"abstract":"<div><h3>Objective</h3><div>To establish a high-performance liquid chromatographic method (HPLC) for simultaneous determination of two phenolic acids (gallic acid, salvianolic acid B) and three quinones (cryptotanshinone, tanshinone I, tanshinone IIA) in Compound <em>Salvia miltiorrhiza</em> gel (CSG).</div></div><div><h3>Methods</h3><div>The HPLC method employs gradient elution with multi-channel to optimize detection sensitivity. Validation parameters include linearity, precision, stability, repeatability, and accuracy.</div></div><div><h3>Results</h3><div>All five compounds exhibit excellent linearity (<em>R</em><sup>2</sup> > 0.999) within their respective concentration ranges. The method demonstrates high precision (RSD < 2%), stability (RSD < 1.93%), repeatability (RSD < 1.90%), and accuracy (average recoveries: 98.93–101.31%). No interference is observed in negative control samples.</div></div><div><h3>Conclusion</h3><div>This validated HPLC method provides a robust and efficient approach for quality control of CSG, ensuring accurate quantification of its key bioactive components. The study supports the standardization of herbal gel formulations and offers a foundation for further pharmacological research.</div></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"53 9","pages":"Article 100577"},"PeriodicalIF":1.3,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144723011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-29DOI: 10.1016/j.cjac.2025.100569
Yinyu Chen , Hongji Zeng , Yu Song , Zhengyan Li , Ganghui Chu , Jing Tian , Hongchao Ji
The ‘Kunlun Snow Chrysanthemum’ (Coreopsis tinctoria Nutt.), a medicinal plant native to Xinjiang, China, is valued for its bioactive compounds and therapeutic properties. This study explores the impact of altitude on its metabolic profile using an integrated Liquid Chromatography-Mass Spectrometry (LC-MS) and Gas chromatography-mass spectrometry (GC–MS) metabolomics approach. Samples from four altitudes (∼1231 to ∼3200 m) were analyzed and revealed distinct metabolic variations across samples from different altitudes. To facilitate data analysis, we developed Statistical Metabolomics Suite (StatMS), a Python-based tool that provides preprocessing, statistical analysis, and interactive visualization. By integrating experimental analysis with data processing, this study offers new insights into the environmental influence on C. tinctoria’s metabolic composition, enhancing its potential as a high-value medicinal resource.
{"title":"Development of StatMS platform coupled with MS metabolomics identifies altitude-responsive metabolites in Coreopsis tinctoria Nutt․","authors":"Yinyu Chen , Hongji Zeng , Yu Song , Zhengyan Li , Ganghui Chu , Jing Tian , Hongchao Ji","doi":"10.1016/j.cjac.2025.100569","DOIUrl":"10.1016/j.cjac.2025.100569","url":null,"abstract":"<div><div>The ‘Kunlun Snow Chrysanthemum’ (<em>Coreopsis tinctoria Nutt.</em>), a medicinal plant native to Xinjiang, China, is valued for its bioactive compounds and therapeutic properties. This study explores the impact of altitude on its metabolic profile using an integrated Liquid Chromatography-Mass Spectrometry (LC-MS) and Gas chromatography-mass spectrometry (GC–MS) metabolomics approach. Samples from four altitudes (∼1231 to ∼3200 m) were analyzed and revealed distinct metabolic variations across samples from different altitudes. To facilitate data analysis, we developed Statistical Metabolomics Suite (StatMS), a Python-based tool that provides preprocessing, statistical analysis, and interactive visualization. By integrating experimental analysis with data processing, this study offers new insights into the environmental influence on <em>C. tinctoria’s</em> metabolic composition, enhancing its potential as a high-value medicinal resource.</div></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"53 9","pages":"Article 100569"},"PeriodicalIF":1.2,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144713425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This article is interested in the applications and technological innovations of systems biology to insomnia research within an integrative framework of traditional Chinese medicine (TCM) and modern science. Insomnia, a common sleep disorder, is a significant global health threat and has emerged as an increasing public health concern. Systems biology, based on multi-omics technologies like genomics, proteomics, and metabolomics, enables the explanation of the complex mechanisms of insomnia in an integrative manner. This review considers the possibility of integrating TCM theories with systems biology for identifying new biomarkers and therapeutic targets. The advances such as genome-wide association studies and neurobiological observations are illuminating the pathophysiology of insomnia, which can be integrated with TCM concepts. Network pharmacology and multi-layered regulatory network modeling are highlighted as beneficial in clarifying the pathophysiological mechanisms involved in insomnia. The study emphasizes the importance of personalized medicine and envisions the convergence of TCM and contemporary scientific approaches in the future for better treatment of insomnia.
{"title":"Integrative systems biology in insomnia: Bridging traditional Chinese medicine and modern science","authors":"Xu Zhang , Shasha Zhang , Shanzhong Tan , Lizhong Guo","doi":"10.1016/j.cjac.2025.100564","DOIUrl":"10.1016/j.cjac.2025.100564","url":null,"abstract":"<div><div>This article is interested in the applications and technological innovations of systems biology to insomnia research within an integrative framework of traditional Chinese medicine (TCM) and modern science. Insomnia, a common sleep disorder, is a significant global health threat and has emerged as an increasing public health concern. Systems biology, based on multi-omics technologies like genomics, proteomics, and metabolomics, enables the explanation of the complex mechanisms of insomnia in an integrative manner. This review considers the possibility of integrating TCM theories with systems biology for identifying new biomarkers and therapeutic targets. The advances such as genome-wide association studies and neurobiological observations are illuminating the pathophysiology of insomnia, which can be integrated with TCM concepts. Network pharmacology and multi-layered regulatory network modeling are highlighted as beneficial in clarifying the pathophysiological mechanisms involved in insomnia. The study emphasizes the importance of personalized medicine and envisions the convergence of TCM and contemporary scientific approaches in the future for better treatment of insomnia.</div></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"53 9","pages":"Article 100564"},"PeriodicalIF":1.3,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144886812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-20DOI: 10.1016/j.cjac.2025.100539
Dereje Diriba CHEMEDA , Daniel FITAMO
In rural Borana, Ethiopia, limited access to potable water and the high cost of conventional water treatment methods have led many people to rely on turbid surface water for drinking, exposing them to waterborne diseases. A study was conducted to evaluate the effectiveness of Moringa stenopetala seed powder (MSP) as a natural coagulant for reducing turbidity and Escherichia coli (E. coli) levels in pond water, compared to the conventional coagulant, aluminum sulfate (alum). Water samples were treated with MSP or alum at dosages ranging from 0 to 130 mg/L. The study assessed the effects of initial pH (1.5 to 10.5), settling time (30 to 180 min), and initial turbidity (55 to 319 NTU) on coagulation efficiency for both coagulants. Turbidity, pH, and E. coli levels in the water samples were measured before and after treatment using a portable turbidity meter, portable pH meter, and membrane filtration, respectively. A one-way ANOVA was used to assess significant differences (p < 0.05) between MSP and alum in their coagulation effectiveness. After 120 min of settling, alum (70 mg/L) reduced turbidity from 216 NTU to 1.8 NTU (99.16% removal), while MSP (80 mg/L) reduced turbidity to 4.2 NTU (98.05% removal). Both coagulants achieved turbidity levels below the World Health Organization (WHO) standard of 5 NTU, with MSP showing similar efficacy to alum. In terms of E. coli reduction, alum at 70 mg/L reduced E. coli by 29.78% (from 47 to 33 CFU/100 mL), while MSP at 80 mg/L achieved a 95.74% reduction (to 2 CFU/100 mL). Additionally, MSP did not significantly (P < 0.05) alter the pH of treated water, unlike alum, which typically lowers the pH and requires post-treatment adjustment. These results suggest that MSP is a cost-effective and sustainable alternative to alum, particularly in rural areas like Borana, where access to clean water is limited.
{"title":"Comparative analysis of Moringa stenopetala seed powder and aluminum sulfate for turbidity and E. coli removal from surface water: The case of bake pond, Borana zone, Ethiopia","authors":"Dereje Diriba CHEMEDA , Daniel FITAMO","doi":"10.1016/j.cjac.2025.100539","DOIUrl":"10.1016/j.cjac.2025.100539","url":null,"abstract":"<div><div>In rural Borana, Ethiopia, limited access to potable water and the high cost of conventional water treatment methods have led many people to rely on turbid surface water for drinking, exposing them to waterborne diseases. A study was conducted to evaluate the effectiveness of <em>Moringa stenopetala</em> seed powder (MSP) as a natural coagulant for reducing turbidity and <em>Escherichia coli</em> (<em>E. coli</em>) levels in pond water, compared to the conventional coagulant, aluminum sulfate (alum). Water samples were treated with MSP or alum at dosages ranging from 0 to 130 mg/L. The study assessed the effects of initial pH (1.5 to 10.5), settling time (30 to 180 min), and initial turbidity (55 to 319 NTU) on coagulation efficiency for both coagulants. Turbidity, pH, and <em>E. coli</em> levels in the water samples were measured before and after treatment using a portable turbidity meter, portable pH meter, and membrane filtration, respectively. A one-way ANOVA was used to assess significant differences (<em>p</em> < 0.05) between MSP and alum in their coagulation effectiveness. After 120 min of settling, alum (70 mg/L) reduced turbidity from 216 NTU to 1.8 NTU (99.16% removal), while MSP (80 mg/L) reduced turbidity to 4.2 NTU (98.05% removal). Both coagulants achieved turbidity levels below the World Health Organization (WHO) standard of 5 NTU, with MSP showing similar efficacy to alum. In terms of <em>E. coli</em> reduction, alum at 70 mg/L reduced <em>E. coli</em> by 29.78% (from 47 to 33 CFU/100 mL), while MSP at 80 mg/L achieved a 95.74% reduction (to 2 CFU/100 mL). Additionally, MSP did not significantly (<em>P</em> < 0.05) alter the pH of treated water, unlike alum, which typically lowers the pH and requires post-treatment adjustment. These results suggest that MSP is a cost-effective and sustainable alternative to alum, particularly in rural areas like Borana, where access to clean water is limited.</div></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"53 7","pages":"Article 100539"},"PeriodicalIF":1.2,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144108258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-13DOI: 10.1016/j.cjac.2025.100563
Basima A.A. Saleem , Salim A. Mohammed , Amer Th. Al-Taee
Cilnidipine is an important antihypertensive medication within the dihydropyridine class of calcium channel blockers. The precise quantification of cilnidipine concentrations in pharmaceutical formulations and biological fluid samples is crucial for ensuring therapeutic efficacy and safety. Traditional analytical techniques for measuring cilnidipine amounts have included various methods, with oxidative coupling reactions proving particularly effective. This study presents a novel spectrophotometric method for cilnidipine quantification, employing oxidative coupling with 4-aminoAntipyrine and 4-amino diphenylamine. These reactions yield colored compounds that can be detected in the visible spectrum at wavelengths of 528 nm and 721 nm, significantly improving both sensitivity and accuracy. Methods A and B adhere to Beer's law across specified concentration ranges of 1–55 and 1–30 µg/mL, respectively, demonstrating high molar absorptivity of 1.098×104 L/(mol⋅cm) for method A and 2.1179×104 L/(mol⋅cm) for method B, which highlights their analytical robustness. The limit of detections (LOD) was estimation and found to be 0.1159 and 0.3865 µg/mL for methods A and B, correspondingly, while the limit of quantifications (LOQ) was 0.1976 (method A) and 0.5848 µg/mL (method B), showcasing their strong analytical performance. A thorough validation of linearity and precision was performed, with Sandell's sensitivity assessed at 0.04486 µg/cm2 for method A and 0.02325 µg/cm2 for method B. This innovative approach provides researchers and healthcare professionals with a reliable tool for accurate cilnidipine measurement, thereby enhancing treatment outcomes and ensuring high standards of pharmaceutical quality. The two suggested techniques effectively determined Cilnidipine; with a decent average recovery in pharmaceutical tablets 99.53%–100.2 % and in human urine and serum samples of 99.77%–100.58 %, no intrusions of co-existing additives present in commercial dosage forms were noted.
{"title":"Pioneering spectrophotometric analysis of cilnidipine via coupling with amino reagents: application to pharmaceuticals and biological fluids","authors":"Basima A.A. Saleem , Salim A. Mohammed , Amer Th. Al-Taee","doi":"10.1016/j.cjac.2025.100563","DOIUrl":"10.1016/j.cjac.2025.100563","url":null,"abstract":"<div><div>Cilnidipine is an important antihypertensive medication within the dihydropyridine class of calcium channel blockers. The precise quantification of cilnidipine concentrations in pharmaceutical formulations and biological fluid samples is crucial for ensuring therapeutic efficacy and safety. Traditional analytical techniques for measuring cilnidipine amounts have included various methods, with oxidative coupling reactions proving particularly effective. This study presents a novel spectrophotometric method for cilnidipine quantification, employing oxidative coupling with 4-aminoAntipyrine and 4-amino diphenylamine. These reactions yield colored compounds that can be detected in the visible spectrum at wavelengths of 528 nm and 721 nm, significantly improving both sensitivity and accuracy. Methods A and B adhere to Beer's law across specified concentration ranges of 1–55 and 1–30 µg/mL, respectively, demonstrating high molar absorptivity of 1.098×10<sup>4</sup> L/(mol⋅cm) for method A and 2.1179×10<sup>4</sup> L/(mol⋅cm) for method B, which highlights their analytical robustness. The limit of detections (LOD) was estimation and found to be 0.1159 and 0.3865 µg/mL for methods A and B, correspondingly, while the limit of quantifications (LOQ) was 0.1976 (method A) and 0.5848 µg/mL (method B), showcasing their strong analytical performance. A thorough validation of linearity and precision was performed, with Sandell's sensitivity assessed at 0.04486 µg/cm<sup>2</sup> for method A and 0.02325 µg/cm<sup>2</sup> for method B. This innovative approach provides researchers and healthcare professionals with a reliable tool for accurate cilnidipine measurement, thereby enhancing treatment outcomes and ensuring high standards of pharmaceutical quality. The two suggested techniques effectively determined Cilnidipine; with a decent average recovery in pharmaceutical tablets 99.53%–100.2 % and in human urine and serum samples of 99.77%–100.58 %, no intrusions of co-existing additives present in commercial dosage forms were noted.</div></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"53 8","pages":"Article 100563"},"PeriodicalIF":1.3,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144721057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}