首页 > 最新文献

Colloids and Surfaces B: Biointerfaces最新文献

英文 中文
Construction of glycosylated zein-based colloids to simultaneously improve fucoxanthin's thermal processing adaptability, digestive stability, and oral bioavailability. 构建糖基化玉米蛋白胶体,以同时改善岩藻黄质的热加工适应性、消化稳定性和口服生物利用度。
IF 5.4 2区 医学 Q1 BIOPHYSICS Pub Date : 2024-10-23 DOI: 10.1016/j.colsurfb.2024.114334
Yuanjie Guo, Hailan Wang, Liyuan Ma, Zixin Guo, Yixiang Liu, Jie Zheng

Fucoxanthin (FX) is a carotenoid found in marine environments with a range of nutritional functions. However, its application in the food industry has been restricted by its vulnerability to deterioration and absorption challenges. This study employed zein to develop hydrophilic colloids to enhance the thermal processing adaptability, gastrointestinal digestive stability, and oral bioavailability of FX. The findings demonstrated that the using glucose for the grafting modification of zein caused a deviation in its isoelectric point, reduced its water contact angle, and altered its secondary structure, resulting in higher hydrophilicity. Using glycosylated zein (GZ) for FX loading yielded homogenous, stable aqueous GZ-FX complex dispersion solutions with an encapsulation efficiency (EE) > 85.00 %, a particle size < 210.00 nm, a zeta-potential > -30.00 mV, and a polydispersity index (PDI) < 0.30. GZ-based encapsulation notably enhanced the thermal stability of FX, retaining approximately 90.00 % and 80.00 % of the FX at 65 ℃ and 100 ℃, respectively. During in vitro simulated gastrointestinal digestion, GZ-encapsulation of FX demonstrated a retention increase of 30.63 % and a 2.31-fold higher micellization rate. The in vivo absorption results showed that GZ-based encapsulation dramatically increased FX oral bioavailability, while its serum, liver, and kidney response levels were 51.49-fold, 5.13-fold and 6.73-fold higher. This study suggests that glycosylated alcohol-soluble proteins are highly effective carriers for delivering carotenoids, with significant application potential in the food industry.

岩藻黄质(FX)是一种存在于海洋环境中的类胡萝卜素,具有多种营养功能。然而,由于容易变质和吸收困难,它在食品工业中的应用一直受到限制。本研究利用玉米蛋白开发亲水胶体,以提高 FX 的热加工适应性、胃肠道消化稳定性和口服生物利用率。研究结果表明,使用葡萄糖对玉米蛋白进行接枝改性会导致其等电点偏移、水接触角减小,并改变其二级结构,从而产生更高的亲水性。使用糖基化玉米蛋白(GZ)负载 FX 可得到均匀、稳定的 GZ-FX 复合物水分散液,其包封效率(EE)大于 85.00%,粒径小于 210.00 nm,Zeta 电位大于 -30.00 mV,多分散指数(PDI)小于 0.30。基于 GZ 的封装显著提高了 FX 的热稳定性,在 65 ℃ 和 100 ℃ 下分别保留了约 90.00 % 和 80.00 % 的 FX。在体外模拟胃肠道消化过程中,GZ-包囊 FX 的保留率提高了 30.63%,胶束化率提高了 2.31 倍。体内吸收结果表明,基于 GZ 的包囊技术显著提高了 FX 的口服生物利用度,其血清、肝脏和肾脏反应水平分别提高了 51.49 倍、5.13 倍和 6.73 倍。这项研究表明,糖基化醇溶蛋白是输送类胡萝卜素的高效载体,在食品工业中具有巨大的应用潜力。
{"title":"Construction of glycosylated zein-based colloids to simultaneously improve fucoxanthin's thermal processing adaptability, digestive stability, and oral bioavailability.","authors":"Yuanjie Guo, Hailan Wang, Liyuan Ma, Zixin Guo, Yixiang Liu, Jie Zheng","doi":"10.1016/j.colsurfb.2024.114334","DOIUrl":"https://doi.org/10.1016/j.colsurfb.2024.114334","url":null,"abstract":"<p><p>Fucoxanthin (FX) is a carotenoid found in marine environments with a range of nutritional functions. However, its application in the food industry has been restricted by its vulnerability to deterioration and absorption challenges. This study employed zein to develop hydrophilic colloids to enhance the thermal processing adaptability, gastrointestinal digestive stability, and oral bioavailability of FX. The findings demonstrated that the using glucose for the grafting modification of zein caused a deviation in its isoelectric point, reduced its water contact angle, and altered its secondary structure, resulting in higher hydrophilicity. Using glycosylated zein (GZ) for FX loading yielded homogenous, stable aqueous GZ-FX complex dispersion solutions with an encapsulation efficiency (EE) > 85.00 %, a particle size < 210.00 nm, a zeta-potential > -30.00 mV, and a polydispersity index (PDI) < 0.30. GZ-based encapsulation notably enhanced the thermal stability of FX, retaining approximately 90.00 % and 80.00 % of the FX at 65 ℃ and 100 ℃, respectively. During in vitro simulated gastrointestinal digestion, GZ-encapsulation of FX demonstrated a retention increase of 30.63 % and a 2.31-fold higher micellization rate. The in vivo absorption results showed that GZ-based encapsulation dramatically increased FX oral bioavailability, while its serum, liver, and kidney response levels were 51.49-fold, 5.13-fold and 6.73-fold higher. This study suggests that glycosylated alcohol-soluble proteins are highly effective carriers for delivering carotenoids, with significant application potential in the food industry.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114334"},"PeriodicalIF":5.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast tailoring the ZIF-8 surface microenvironment at ambient temperature to boost glucose oxidase-like activity of AuNPs for biosensing. 在常温下快速定制 ZIF-8 表面微环境,提高用于生物传感的 AuNPs 的葡萄糖氧化酶样活性。
IF 5.4 2区 医学 Q1 BIOPHYSICS Pub Date : 2024-10-22 DOI: 10.1016/j.colsurfb.2024.114331
Xianrui Jiang, Tao Yao, Xingxin Shi, Hongliang Han, Zhanfang Ma

Rational design and tailoring of the surface microenvironment surrounding the catalytic sites, such as noble metal nanoparticles, is an effective way to enhance the catalytic activity of mimicking enzymes. However, it remains on-going challenges to regulate the microenvironment of the catalytic sites due to the lack of tunable variability in structural precision of conventional solid catalysts. Herein, three types of zeolitic imidazolate framework-8 (ZIF-8) with different major crystal facet orientations, i.e., cubic with (100) facets (denoted ZIF-8c), truncated dodecahedral with (100), (110) facets (denoted ZIF-8tr), and dodecahedral with (110) facets (denoted ZIF-8r), were developed facilely using an electrochemical method by switching the potential at ambient temperature. Because the Zn2+ nodes were predominantly exposed on the (100) facets of ZIF-8, while the ligands were mainly exposed on the (110) facets. Hence, gold nanoparticles (AuNPs) showed differential glucose oxidase (GOx)-like activities when anchored in situ on different crystal facets of ZIF-8 and obeyed the following order ZIF-8c/Au>ZIF-8tr/Au>ZIF-8r/Au. Notably, both the metal nodes and aromatic linkers of ZIF-8 interacted with AuNPs through coordination and π-π interactions. The Zn2+ nodes facilitated the formation of the electron-deficient Au species. The electron transfer from AuNPs to Zn2+ sites effectively boosted the catalytic activity. It was known that directly tailoring the microenvironment at the supporting sites of noble metal catalysts to boost catalysis through a facile electrochemical method was not reported. Based on the favorable GOx-like activity and long-term stability of ZIF-8tr/Au, a highly sensitive electrochemical biosensing platform for assaying squamous cell carcinoma antigen (SCCA) was developed. It enabled fg-level detection of cancer marker.

合理设计和定制贵金属纳米颗粒等催化位点周围的表面微环境,是提高模拟酶催化活性的有效方法。然而,由于传统固体催化剂的结构精度缺乏可调变化,因此调节催化位点的微环境仍是一项持续的挑战。在此,我们采用电化学方法,通过在环境温度下切换电位,轻松开发了三种具有不同主要晶面取向的唑基咪唑盐框架-8(ZIF-8),即具有(100)个晶面的立方体(记为 ZIF-8c)、具有(100)、(110)个晶面的截断十二面体(记为 ZIF-8tr)和具有(110)个晶面的十二面体(记为 ZIF-8r)。由于 Zn2+ 节点主要暴露在 ZIF-8 的(100)面上,而配体主要暴露在(110)面上。因此,当金纳米粒子(AuNPs)原位锚定在 ZIF-8 的不同晶面上时,会表现出不同的葡萄糖氧化酶(GOx)样活性,并遵循以下顺序:ZIF-8c/Au>ZIF-8tr/Au>ZIF-8r/Au。值得注意的是,ZIF-8 的金属节点和芳香族连接体都通过配位和 π-π 相互作用与 AuNPs 发生相互作用。Zn2+ 节点促进了缺电子金物种的形成。从 AuNPs 到 Zn2+ 位点的电子传递有效地提高了催化活性。据了解,通过简便的电化学方法直接定制贵金属催化剂支持位点的微环境以提高催化活性的方法尚未见报道。基于 ZIF-8tr/Au 良好的类 GOx 活性和长期稳定性,一种用于检测鳞状细胞癌抗原(SCCA)的高灵敏度电化学生物传感平台应运而生。它实现了 fg 级癌症标志物的检测。
{"title":"Fast tailoring the ZIF-8 surface microenvironment at ambient temperature to boost glucose oxidase-like activity of AuNPs for biosensing.","authors":"Xianrui Jiang, Tao Yao, Xingxin Shi, Hongliang Han, Zhanfang Ma","doi":"10.1016/j.colsurfb.2024.114331","DOIUrl":"https://doi.org/10.1016/j.colsurfb.2024.114331","url":null,"abstract":"<p><p>Rational design and tailoring of the surface microenvironment surrounding the catalytic sites, such as noble metal nanoparticles, is an effective way to enhance the catalytic activity of mimicking enzymes. However, it remains on-going challenges to regulate the microenvironment of the catalytic sites due to the lack of tunable variability in structural precision of conventional solid catalysts. Herein, three types of zeolitic imidazolate framework-8 (ZIF-8) with different major crystal facet orientations, i.e., cubic with (100) facets (denoted ZIF-8<sub>c</sub>), truncated dodecahedral with (100), (110) facets (denoted ZIF-8<sub>tr</sub>), and dodecahedral with (110) facets (denoted ZIF-8<sub>r</sub>), were developed facilely using an electrochemical method by switching the potential at ambient temperature. Because the Zn<sup>2+</sup> nodes were predominantly exposed on the (100) facets of ZIF-8, while the ligands were mainly exposed on the (110) facets. Hence, gold nanoparticles (AuNPs) showed differential glucose oxidase (GOx)-like activities when anchored in situ on different crystal facets of ZIF-8 and obeyed the following order ZIF-8<sub>c</sub>/Au>ZIF-8<sub>tr</sub>/Au>ZIF-8<sub>r</sub>/Au. Notably, both the metal nodes and aromatic linkers of ZIF-8 interacted with AuNPs through coordination and π-π interactions. The Zn<sup>2+</sup> nodes facilitated the formation of the electron-deficient Au species. The electron transfer from AuNPs to Zn<sup>2+</sup> sites effectively boosted the catalytic activity. It was known that directly tailoring the microenvironment at the supporting sites of noble metal catalysts to boost catalysis through a facile electrochemical method was not reported. Based on the favorable GOx-like activity and long-term stability of ZIF-8<sub>tr</sub>/Au, a highly sensitive electrochemical biosensing platform for assaying squamous cell carcinoma antigen (SCCA) was developed. It enabled fg-level detection of cancer marker.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114331"},"PeriodicalIF":5.4,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can polymeric nanofibers effectively preserve and deliver live therapeutic bacteria? 聚合物纳米纤维能否有效保存和输送活的治疗性细菌?
IF 5.4 2区 医学 Q1 BIOPHYSICS Pub Date : 2024-10-21 DOI: 10.1016/j.colsurfb.2024.114329
Nina Katarina Grilc, Julijana Kristl, Špela Zupančič

Probiotics and live therapeutic bacteria (LTB), their strictly regulated therapeutic counterpart, are increasingly important in treating and preventing biofilm-related diseases. This necessitates new approaches to (i) preserve bacterial viability during manufacturing and storage and (ii) incorporate LTB into delivery systems for enhanced therapeutic efficacy. This review explores advances in probiotic and LTB product development, focusing on preservation, protection, and improved delivery. Preservation of bacteria can be achieved by drying methods that decelerate metabolism. These methods introduce stresses affecting viability which can be mitigated with suitable excipients like polymeric or low molecular weight stabilizers. The review emphasizes the incorporation of LTB into polymer-based nanofibers via electrospinning, enabling simultaneous drying, encapsulation, and delivery system production. Optimization of bacterial survival during electrospinning and storage is discussed, as well as controlled LTB release achievable through formulation design using gel-forming, gastroprotective, mucoadhesive, and pH-responsive polymers. Evaluation of the presence of the actual therapeutic strains, bacterial viability and activity by CFU enumeration or alternative analytical techniques is presented as a key aspect of developing effective and safe formulations with LTB. This review offers insights into designing delivery systems, especially polymeric nanofibers, for preservation and delivery of LTB, guiding readers in developing innovative biotherapeutic delivery systems.

益生菌和活治疗菌(LTB)是受到严格监管的治疗用细菌,在治疗和预防与生物膜相关的疾病方面越来越重要。这就需要采用新的方法:(i) 在生产和储存过程中保持细菌的活力;(ii) 将治疗用活菌纳入给药系统以增强疗效。本综述探讨了益生菌和低温冻干杆菌产品开发的进展,重点是保存、保护和改进给药。细菌的保存可通过减缓新陈代谢的干燥方法来实现。这些方法会带来影响存活率的应力,而合适的辅料(如聚合物或低分子量稳定剂)可以减轻这些应力。这篇综述强调了通过电纺丝将 LTB 加入聚合物基纳米纤维,从而实现同时干燥、封装和生产给药系统。文章讨论了电纺丝和储存过程中细菌存活率的优化问题,以及通过使用凝胶形成型、胃保护型、粘液黏附型和 pH 值响应型聚合物进行配方设计来控制 LTB 释放的问题。通过 CFU计数或其他分析技术对实际治疗菌株的存在、细菌活力和活性进行评估,是开发有效、安全的 LTB 制剂的关键环节。这篇综述深入探讨了如何设计递送系统,特别是用于保存和递送 LTB 的聚合物纳米纤维,为读者开发创新的生物治疗递送系统提供了指导。
{"title":"Can polymeric nanofibers effectively preserve and deliver live therapeutic bacteria?","authors":"Nina Katarina Grilc, Julijana Kristl, Špela Zupančič","doi":"10.1016/j.colsurfb.2024.114329","DOIUrl":"https://doi.org/10.1016/j.colsurfb.2024.114329","url":null,"abstract":"<p><p>Probiotics and live therapeutic bacteria (LTB), their strictly regulated therapeutic counterpart, are increasingly important in treating and preventing biofilm-related diseases. This necessitates new approaches to (i) preserve bacterial viability during manufacturing and storage and (ii) incorporate LTB into delivery systems for enhanced therapeutic efficacy. This review explores advances in probiotic and LTB product development, focusing on preservation, protection, and improved delivery. Preservation of bacteria can be achieved by drying methods that decelerate metabolism. These methods introduce stresses affecting viability which can be mitigated with suitable excipients like polymeric or low molecular weight stabilizers. The review emphasizes the incorporation of LTB into polymer-based nanofibers via electrospinning, enabling simultaneous drying, encapsulation, and delivery system production. Optimization of bacterial survival during electrospinning and storage is discussed, as well as controlled LTB release achievable through formulation design using gel-forming, gastroprotective, mucoadhesive, and pH-responsive polymers. Evaluation of the presence of the actual therapeutic strains, bacterial viability and activity by CFU enumeration or alternative analytical techniques is presented as a key aspect of developing effective and safe formulations with LTB. This review offers insights into designing delivery systems, especially polymeric nanofibers, for preservation and delivery of LTB, guiding readers in developing innovative biotherapeutic delivery systems.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114329"},"PeriodicalIF":5.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Curcumin-encapsulated glucan nanoparticles as an oxidative stress modulator against human hepatic cancer cells. 姜黄素包裹的葡聚糖纳米颗粒是一种抗人肝癌细胞氧化应激的调节剂。
IF 5.4 2区 医学 Q1 BIOPHYSICS Pub Date : 2024-10-19 DOI: 10.1016/j.colsurfb.2024.114326
Tiago Roquito, Mariana Colaço, João Panão Costa, Olga Borges

In Hepatitis B patients, the virus targets liver cells, leading to inflammation and liver damage, which can result in severe complications such as liver failure, cirrhosis, and liver cancer. Therapeutic options for liver disease are currently limited. Curcumin, a polyphenol with potential protective effects against chronic diseases like cancer, suffers from poor water solubility, restricting its pharmacological applications. This study explores the encapsulation of curcumin in glucan nanoparticles (NPs) and its impact on oxidative stress in liver cancer cells. Two sizes of curcumin-loaded glucan NPs, GC111 (111 nm) and GC398 (398 nm), were produced with nearly 100 % encapsulation efficiency. Cytotoxicity studies revealed that particle size influences the extent of observed effects, with GC111 NPs causing a greater reduction in cell viability. Additionally, the smaller GC111 NPs demonstrated a higher capacity to induce oxidative stress in cancer cells by stimulating the production of ROS, NO, and the chemokine RANTES in a concentration-dependent manner. These findings suggest that the smaller GC111 NPs are promising candidates for future studies aimed at evaluating oxidative stress-induced tumor cell death mechanisms.

乙肝患者体内的病毒会攻击肝细胞,导致炎症和肝损伤,从而引发严重的并发症,如肝功能衰竭、肝硬化和肝癌。目前,治疗肝病的方法非常有限。姜黄素是一种对癌症等慢性疾病具有潜在保护作用的多酚类化合物,但其水溶性较差,限制了其药理应用。本研究探讨了姜黄素在葡聚糖纳米颗粒(NPs)中的封装及其对肝癌细胞氧化应激的影响。研究人员制备了两种尺寸的姜黄素葡聚糖纳米粒子,分别为 GC111(111 nm)和 GC398(398 nm),封装效率接近 100%。细胞毒性研究表明,颗粒大小会影响观察到的效应程度,GC111 NPs 会导致细胞存活率大幅降低。此外,较小的 GC111 NPs 还能以浓度依赖的方式刺激 ROS、NO 和趋化因子 RANTES 的产生,从而诱导癌细胞产生氧化应激。这些研究结果表明,较小的 GC111 NPs 有希望成为未来评估氧化应激诱导肿瘤细胞死亡机制研究的候选物质。
{"title":"Curcumin-encapsulated glucan nanoparticles as an oxidative stress modulator against human hepatic cancer cells.","authors":"Tiago Roquito, Mariana Colaço, João Panão Costa, Olga Borges","doi":"10.1016/j.colsurfb.2024.114326","DOIUrl":"https://doi.org/10.1016/j.colsurfb.2024.114326","url":null,"abstract":"<p><p>In Hepatitis B patients, the virus targets liver cells, leading to inflammation and liver damage, which can result in severe complications such as liver failure, cirrhosis, and liver cancer. Therapeutic options for liver disease are currently limited. Curcumin, a polyphenol with potential protective effects against chronic diseases like cancer, suffers from poor water solubility, restricting its pharmacological applications. This study explores the encapsulation of curcumin in glucan nanoparticles (NPs) and its impact on oxidative stress in liver cancer cells. Two sizes of curcumin-loaded glucan NPs, GC111 (111 nm) and GC398 (398 nm), were produced with nearly 100 % encapsulation efficiency. Cytotoxicity studies revealed that particle size influences the extent of observed effects, with GC111 NPs causing a greater reduction in cell viability. Additionally, the smaller GC111 NPs demonstrated a higher capacity to induce oxidative stress in cancer cells by stimulating the production of ROS, NO, and the chemokine RANTES in a concentration-dependent manner. These findings suggest that the smaller GC111 NPs are promising candidates for future studies aimed at evaluating oxidative stress-induced tumor cell death mechanisms.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114326"},"PeriodicalIF":5.4,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional mesoporous nanoselenium delivery of metformin breaks the vicious cycle of neuroinflammation and ROS, promotes microglia regulation and alleviates Alzheimer's disease. 多功能介孔纳米硒递送二甲双胍打破了神经炎症和 ROS 的恶性循环,促进了小胶质细胞的调节,缓解了阿尔茨海默病。
IF 5.4 2区 医学 Q1 BIOPHYSICS Pub Date : 2024-10-18 DOI: 10.1016/j.colsurfb.2024.114300
Xian Guo, Borui Zhang, Yutong Chen, Zhi Jia, Xiaoyu Yuan, Li Zhang, Jie Liu, Yanan Liu

Clinical trials based on a single molecular target continue to fail, and the adverse effects of Aβ protein aggregation and neuroinflammation need to be solved and treatment of Alzheimer's disease. Herein, by designed a nano-sized flower mesoporous selenium transport carrier (Met@MSe@Tf) with high enzyme-like activity, metformin (Met) was loaded, and transferrin (Tf) was modified to bind to transferrin receptor to promote receptor-mediated transport across the BBB. In the AD lesion environment, with the acidic environment response dissociation, promote the release of metformin by nanoflower to achieve therapeutic effect in the brain lesion site. Metformin, a major anti-diabetic drug in diabetic metabolism, has been found to be a promising new therapeutic target in neurodegenerative diseases. Further studies showed that the metformin drug release from the designed and synthesized transport nanoparticles showed high intrinsic activity and the ability to degrade the substrate involved, especially the degradation of Aβ deposition in the cortex and hippocampus, increased the phagocytosis of microglia, thus relieving neuroinflammation simultaneously. Collectively, in vivo experiments demonstrated that Met@MSe@Tf significantly increased the number of NeuN-positive neurons in the hippocampus of AD mice, promoted neurovascular normalization in the brain, and improved cognitive dysfunction in AD transgenic AD mice. Thus, it provides a preclinical proof of concept for the construction of a highly modular accurate drug delivery platform for Alzheimer's disease.

基于单一分子靶点的临床试验不断失败,Aβ蛋白聚集和神经炎症的不良影响亟待解决,阿尔茨海默病的治疗也是如此。本文通过设计一种具有高酶样活性的纳米级花介孔硒转运载体(Met@MSe@Tf),载入二甲双胍(Met),并修饰转铁蛋白(Tf)与转铁蛋白受体结合,促进受体介导的跨BBB转运。在AD病变环境中,与酸性环境反应解离,促进二甲双胍通过纳米花释放,在脑部病变部位达到治疗效果。二甲双胍是糖尿病代谢中的主要抗糖尿病药物,已被发现是神经退行性疾病的一个有希望的新治疗靶点。进一步的研究表明,二甲双胍药物从设计合成的转运纳米颗粒中释放,表现出较高的内在活性和降解相关底物的能力,尤其是降解大脑皮层和海马中的Aβ沉积,增加小胶质细胞的吞噬能力,从而同时缓解神经炎症。总之,体内实验证明,Met@MSe@Tf能显著增加AD小鼠海马中NeuN阳性神经元的数量,促进大脑神经血管正常化,改善AD转基因小鼠的认知功能障碍。因此,它为构建治疗阿尔茨海默病的高度模块化精准给药平台提供了临床前概念验证。
{"title":"Multifunctional mesoporous nanoselenium delivery of metformin breaks the vicious cycle of neuroinflammation and ROS, promotes microglia regulation and alleviates Alzheimer's disease.","authors":"Xian Guo, Borui Zhang, Yutong Chen, Zhi Jia, Xiaoyu Yuan, Li Zhang, Jie Liu, Yanan Liu","doi":"10.1016/j.colsurfb.2024.114300","DOIUrl":"https://doi.org/10.1016/j.colsurfb.2024.114300","url":null,"abstract":"<p><p>Clinical trials based on a single molecular target continue to fail, and the adverse effects of Aβ protein aggregation and neuroinflammation need to be solved and treatment of Alzheimer's disease. Herein, by designed a nano-sized flower mesoporous selenium transport carrier (Met@MSe@Tf) with high enzyme-like activity, metformin (Met) was loaded, and transferrin (Tf) was modified to bind to transferrin receptor to promote receptor-mediated transport across the BBB. In the AD lesion environment, with the acidic environment response dissociation, promote the release of metformin by nanoflower to achieve therapeutic effect in the brain lesion site. Metformin, a major anti-diabetic drug in diabetic metabolism, has been found to be a promising new therapeutic target in neurodegenerative diseases. Further studies showed that the metformin drug release from the designed and synthesized transport nanoparticles showed high intrinsic activity and the ability to degrade the substrate involved, especially the degradation of Aβ deposition in the cortex and hippocampus, increased the phagocytosis of microglia, thus relieving neuroinflammation simultaneously. Collectively, in vivo experiments demonstrated that Met@MSe@Tf significantly increased the number of NeuN-positive neurons in the hippocampus of AD mice, promoted neurovascular normalization in the brain, and improved cognitive dysfunction in AD transgenic AD mice. Thus, it provides a preclinical proof of concept for the construction of a highly modular accurate drug delivery platform for Alzheimer's disease.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114300"},"PeriodicalIF":5.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing antibacterial performance and stability of implant materials through surface modification with polydopamine/silver nanoparticles. 通过聚多巴胺/银纳米粒子的表面改性,提高植入材料的抗菌性能和稳定性。
IF 5.4 2区 医学 Q1 BIOPHYSICS Pub Date : 2024-10-18 DOI: 10.1016/j.colsurfb.2024.114327
Junnan Cui, Haobo Shu, Xin Gu, Shutong Wu, Xiaodan Liu, Pan Cao

Implants and various medical devices possess surfaces that are prone to bacterial colonization due to bacterial adhesion and the formation of biofilms. Therefore, inhibiting bacterial colonization is a crucial strategy for preventing infections. Although there have been reports on antibacterial surfaces, the synthetic processes involved are often complex and labor-intensive, which significantly limits their practical applications. Furthermore, there is a lack of studies investigating the interplay between antibacterial performance and stability. In this study, silver ions were reduced to form silver nanoparticles, which were then loaded onto polydopamine (PDA) particles. The successful assembly of PDA-Ag on the surface of the titanium alloy was confirmed through X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDS). The morphologies of the micro- and nanoparticles, as well as the surface morphology after deposition, were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and a 3D optical profilometer. The abrasion experiments conducted on the three surfaces demonstrated that the TC4@PDA-Ag3 surface exhibited superior friction performance compared to the other two surfaces. Antibacterial and antibacterial stability experiments were conducted on this series of surfaces. The results indicated that the adhesion rate of TC4@PDA-Ag3 on Escherichia coli (E. coli) was 99.68 %, while the antibacterial efficiency against Staphylococcus aureus (S. aureus) was 95.97 %. This study presents a novel approach to address the issue of implant surface infections by demonstrating resistance to bacterial adhesion and colonization, specifically against E. coli and S. aureus.

植入物和各种医疗器械的表面由于细菌的粘附和生物膜的形成,很容易被细菌定植。因此,抑制细菌定植是预防感染的关键策略。虽然已有关于抗菌表面的报道,但所涉及的合成过程往往复杂且耗费大量人力,这大大限制了其实际应用。此外,还缺乏对抗菌性能和稳定性之间相互影响的研究。在这项研究中,银离子被还原成银纳米粒子,然后被负载到聚多巴胺(PDA)颗粒上。X 射线光电子能谱(XPS)和能量色散 X 射线光谱(EDS)证实了 PDA-Ag 在钛合金表面的成功组装。使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和三维光学轮廓仪分析了微颗粒和纳米颗粒的形态以及沉积后的表面形态。对三种表面进行的磨损实验表明,TC4@PDA-Ag3 表面的摩擦性能优于其他两种表面。对这一系列表面进行了抗菌和抗菌稳定性实验。结果表明,TC4@PDA-Ag3 对大肠杆菌(E. coli)的粘附率为 99.68%,而对金黄色葡萄球菌(S. aureus)的抗菌效率为 95.97%。这项研究提出了一种解决植入物表面感染问题的新方法,即展示抗细菌粘附和定植的能力,特别是对大肠杆菌和金黄色葡萄球菌的抗菌能力。
{"title":"Enhancing antibacterial performance and stability of implant materials through surface modification with polydopamine/silver nanoparticles.","authors":"Junnan Cui, Haobo Shu, Xin Gu, Shutong Wu, Xiaodan Liu, Pan Cao","doi":"10.1016/j.colsurfb.2024.114327","DOIUrl":"https://doi.org/10.1016/j.colsurfb.2024.114327","url":null,"abstract":"<p><p>Implants and various medical devices possess surfaces that are prone to bacterial colonization due to bacterial adhesion and the formation of biofilms. Therefore, inhibiting bacterial colonization is a crucial strategy for preventing infections. Although there have been reports on antibacterial surfaces, the synthetic processes involved are often complex and labor-intensive, which significantly limits their practical applications. Furthermore, there is a lack of studies investigating the interplay between antibacterial performance and stability. In this study, silver ions were reduced to form silver nanoparticles, which were then loaded onto polydopamine (PDA) particles. The successful assembly of PDA-Ag on the surface of the titanium alloy was confirmed through X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDS). The morphologies of the micro- and nanoparticles, as well as the surface morphology after deposition, were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and a 3D optical profilometer. The abrasion experiments conducted on the three surfaces demonstrated that the TC4@PDA-Ag3 surface exhibited superior friction performance compared to the other two surfaces. Antibacterial and antibacterial stability experiments were conducted on this series of surfaces. The results indicated that the adhesion rate of TC4@PDA-Ag3 on Escherichia coli (E. coli) was 99.68 %, while the antibacterial efficiency against Staphylococcus aureus (S. aureus) was 95.97 %. This study presents a novel approach to address the issue of implant surface infections by demonstrating resistance to bacterial adhesion and colonization, specifically against E. coli and S. aureus.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114327"},"PeriodicalIF":5.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-targeted TfRA4-DNA1-Ag@AuNPs: An innovative radiosensitizer for enhancing radiotherapy in glioblastoma multiforme. 双靶向 TfRA4-DNA1-Ag@AuNPs:用于增强多形性胶质母细胞瘤放疗的创新型放射增敏剂。
IF 5.4 2区 医学 Q1 BIOPHYSICS Pub Date : 2024-10-18 DOI: 10.1016/j.colsurfb.2024.114328
Xuechun Kan, Jing Ma, Jun Ma, Dongdong Li, Fan Li, Yuyu Cao, Cheng Huang, Yan Li, Peidang Liu

Radiation therapy (RT) is one of the most effective and widely used treatment methods for glioblastoma multiforme (GBM). However, its efficacy is often compromised by the inherent radioresistance of tumor cells, while the restrictive nature of the blood-brain barrier (BBB) specifically impedes the delivery of radiosensitizer. Thus, we constructed and characterized polyethylene glycol (PEG)-functionalized silver-gold core-shell nanoparticles (PSGNPs) targeting both BBB (TfRA4) and GBM (DNA1) (TDSGNPs). Afterwards, studies conducted both in vitro and in vivo were employed to assess the BBB penetration capabilities, abilities of GBM targeting and radiosensitization effect. Transmission electron microscope images of PSGNPs showed a core-shell structure, and the results of ultraviolet-visible absorption spectroscopy and dynamic light scattering displayed that TDSGNPs were successfully constructed with excellent dispersion properties. TDSGNPs could be specifically taken up by U87MG cells and the uptake peaked at 24 h. TDSGNPs combined with RT obviously increased the apoptosis proportion of the cells. It was shown by the in vitro and in vivo investigations that TDSGNPs could target U87MG cells after crossing the BBB, and further study revealed that TDSGNPs showed an uptake peak in the tumor sites after 3 h intravenous injection. The radiosensitization of TDSGNPs was better than that of the nanoparticles modified with single aptamers and the median survival of tumor-bearing mice was greatly extended. This study demonstrated that TDSGNPs could penetrate BBB to target GBM, functioning as a promising radiosensitizer for the targeted therapy of GBM.

放射治疗(RT)是治疗多形性胶质母细胞瘤(GBM)最有效、应用最广泛的方法之一。然而,肿瘤细胞固有的放射抗性往往会影响其疗效,而血脑屏障(BBB)的限制性又会特别阻碍放射增敏剂的输送。因此,我们构建了聚乙二醇(PEG)功能化银-金核壳纳米粒子(PSGNPs),并对其进行了表征,该粒子同时靶向 BBB(TfRA4)和 GBM(DNA1)(TDSGNPs)。随后,研究人员利用体外和体内研究来评估其 BBB 穿透能力、靶向 GBM 的能力和放射增敏效果。PSGNPs的透射电子显微镜图像显示其具有核壳结构,紫外可见吸收光谱和动态光散射的结果表明,TDSGNPs的构建非常成功,具有良好的分散特性。TDSGNPs 可被 U87MG 细胞特异性吸收,吸收峰值出现在 24 小时后。TDSGNPs 与 RT 联用可明显增加细胞凋亡比例。体外和体内研究表明,TDSGNPs穿过BBB后可靶向U87MG细胞,进一步研究发现,TDSGNPs静脉注射3 h后在肿瘤部位出现摄取峰。TDSGNPs的放射增敏效果优于用单一适配体修饰的纳米粒子,并且大大延长了肿瘤小鼠的中位生存期。这项研究表明,TDSGNPs能穿透BBB靶向GBM,是一种有望用于GBM靶向治疗的放射增敏剂。
{"title":"Dual-targeted TfRA4-DNA1-Ag@AuNPs: An innovative radiosensitizer for enhancing radiotherapy in glioblastoma multiforme.","authors":"Xuechun Kan, Jing Ma, Jun Ma, Dongdong Li, Fan Li, Yuyu Cao, Cheng Huang, Yan Li, Peidang Liu","doi":"10.1016/j.colsurfb.2024.114328","DOIUrl":"https://doi.org/10.1016/j.colsurfb.2024.114328","url":null,"abstract":"<p><p>Radiation therapy (RT) is one of the most effective and widely used treatment methods for glioblastoma multiforme (GBM). However, its efficacy is often compromised by the inherent radioresistance of tumor cells, while the restrictive nature of the blood-brain barrier (BBB) specifically impedes the delivery of radiosensitizer. Thus, we constructed and characterized polyethylene glycol (PEG)-functionalized silver-gold core-shell nanoparticles (PSGNPs) targeting both BBB (TfRA4) and GBM (DNA1) (TDSGNPs). Afterwards, studies conducted both in vitro and in vivo were employed to assess the BBB penetration capabilities, abilities of GBM targeting and radiosensitization effect. Transmission electron microscope images of PSGNPs showed a core-shell structure, and the results of ultraviolet-visible absorption spectroscopy and dynamic light scattering displayed that TDSGNPs were successfully constructed with excellent dispersion properties. TDSGNPs could be specifically taken up by U87MG cells and the uptake peaked at 24 h. TDSGNPs combined with RT obviously increased the apoptosis proportion of the cells. It was shown by the in vitro and in vivo investigations that TDSGNPs could target U87MG cells after crossing the BBB, and further study revealed that TDSGNPs showed an uptake peak in the tumor sites after 3 h intravenous injection. The radiosensitization of TDSGNPs was better than that of the nanoparticles modified with single aptamers and the median survival of tumor-bearing mice was greatly extended. This study demonstrated that TDSGNPs could penetrate BBB to target GBM, functioning as a promising radiosensitizer for the targeted therapy of GBM.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114328"},"PeriodicalIF":5.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trident-inspired fucoidan-based armor-piercing microcapsule for programmed acute pulmonary embolism treatment. 基于褐藻糖胶的三叉启发穿甲微胶囊,用于急性肺栓塞的程序化治疗。
IF 5.4 2区 医学 Q1 BIOPHYSICS Pub Date : 2024-10-16 DOI: 10.1016/j.colsurfb.2024.114323
Ning Yang, Weikun Li, Zhicheng Qian, Xin Tan, Zonghao Liu, Feiling Feng, Ling Liu, Liqin Ge

Pulmonary embolism remains the third leading cause of human mortality after malignant tumors and myocardial infarction. Commonly available thrombolytic therapeutic agents suffer from the limitations of very short half-life, inadequate targeting, limited clot penetration, and a propensity for severe bleeding. Inspired by the trident, we developed the armor-piercing microcapsule (MC), fucoidan-urokinase-S-nitrosoglutathione-polydopamine@MC (FUGP@MC), which exhibited a triple combination of photothermal, mechanical and pharmacological thrombolysis for the therapeutic treatment of acute pulmonary embolism (APE). Briefly, the outermost fucoidan layer was utilized for targeting to the APE area. Programmed APE treatment was triggered by near-infrared (NIR) light irradiation. Photothermal thrombolytic therapy was carried out by photothermal conversion of polydopamine. The photothermal conversion broke the S-nitroso bond in S-nitrosoglutathione (GSNO) and produced large amounts of nitric oxide (NO) for mechanical thrombolysis, which subsequently disrupted the interfacial structure of microcapsule to stimulate the release of the urokinase (UK), leading to a triple synergistic thrombolytic effect. The results demonstrated that the embolization residual rate of FUGP@MC (contained ≈ 1452.5 IU/kg UK) group was significantly lower than that of UK (10,000 IU/kg) group (6.35 % VS 16.78 %). Remarkably, FUGP@MC demonstrated a reliable in vivo biosafety proficiency. In summary, trident-inspired armor-piercing microcapsule FUGP@MC reveals a potential avenue for advancing pulmonary embolism therapeutics and promises to be a safer alternative candidate to current drug approaches.

肺栓塞仍然是继恶性肿瘤和心肌梗塞之后导致人类死亡的第三大原因。常见的溶栓治疗药物存在半衰期极短、靶向性不足、血块穿透力有限以及易导致严重出血等局限性。受三叉戟的启发,我们开发了穿甲微囊(MC)--褐藻糖胶-尿激酶-S-亚硝基谷胱甘肽-多巴胺@MC(FUGP@MC),它具有光热、机械和药物溶栓三重功效,可用于急性肺栓塞(APE)的治疗。简而言之,褐藻糖胶的最外层被用于靶向 APE 区域。通过近红外线(NIR)照射触发程序化APE治疗。光热溶栓疗法是通过多巴胺的光热转换来实现的。光热转换破坏了 S-亚硝基谷胱甘肽(GSNO)中的 S-亚硝基键,产生了大量的一氧化氮(NO)用于机械溶栓,随后破坏了微囊的界面结构,刺激了尿激酶(UK)的释放,从而产生了三重协同溶栓效应。结果表明,FUGP@MC(含≈1452.5 IU/kg UK)组的栓塞残留率明显低于UK(10,000 IU/kg)组(6.35 % VS 16.78 %)。值得注意的是,FUGP@MC 在体内表现出了可靠的生物安全性。总之,受三叉戟启发的穿甲微囊 FUGP@MC 为肺栓塞疗法的发展提供了一条潜在的途径,有望成为当前药物疗法的一种更安全的替代选择。
{"title":"Trident-inspired fucoidan-based armor-piercing microcapsule for programmed acute pulmonary embolism treatment.","authors":"Ning Yang, Weikun Li, Zhicheng Qian, Xin Tan, Zonghao Liu, Feiling Feng, Ling Liu, Liqin Ge","doi":"10.1016/j.colsurfb.2024.114323","DOIUrl":"https://doi.org/10.1016/j.colsurfb.2024.114323","url":null,"abstract":"<p><p>Pulmonary embolism remains the third leading cause of human mortality after malignant tumors and myocardial infarction. Commonly available thrombolytic therapeutic agents suffer from the limitations of very short half-life, inadequate targeting, limited clot penetration, and a propensity for severe bleeding. Inspired by the trident, we developed the armor-piercing microcapsule (MC), fucoidan-urokinase-S-nitrosoglutathione-polydopamine@MC (FUGP@MC), which exhibited a triple combination of photothermal, mechanical and pharmacological thrombolysis for the therapeutic treatment of acute pulmonary embolism (APE). Briefly, the outermost fucoidan layer was utilized for targeting to the APE area. Programmed APE treatment was triggered by near-infrared (NIR) light irradiation. Photothermal thrombolytic therapy was carried out by photothermal conversion of polydopamine. The photothermal conversion broke the S-nitroso bond in S-nitrosoglutathione (GSNO) and produced large amounts of nitric oxide (NO) for mechanical thrombolysis, which subsequently disrupted the interfacial structure of microcapsule to stimulate the release of the urokinase (UK), leading to a triple synergistic thrombolytic effect. The results demonstrated that the embolization residual rate of FUGP@MC (contained ≈ 1452.5 IU/kg UK) group was significantly lower than that of UK (10,000 IU/kg) group (6.35 % VS 16.78 %). Remarkably, FUGP@MC demonstrated a reliable in vivo biosafety proficiency. In summary, trident-inspired armor-piercing microcapsule FUGP@MC reveals a potential avenue for advancing pulmonary embolism therapeutics and promises to be a safer alternative candidate to current drug approaches.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114323"},"PeriodicalIF":5.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An injectable thermosensitive pluronic F127 loaded-nanohydroxyapatite / Polydopamine for promoting sciatic nerve repair after crush injury. 一种可注射的热敏性 pluronic F127 负载纳米羟基磷灰石/聚多巴胺,用于促进挤压伤后的坐骨神经修复。
IF 5.4 2区 医学 Q1 BIOPHYSICS Pub Date : 2024-10-16 DOI: 10.1016/j.colsurfb.2024.114324
Liyuan Kang, Enlai Fang, Muge Gu, Yuanye Guan, Di Wu, Xiangqi Zhang, Wei Yu, Jiayu Wang, Zhen Zeng, Shengjing Xu, Yanjie He, Wei-En Yuan

Peripheral nerve injury (PNI) remains an urgent issue due to its huge financial burden and high rate of disability. Here, an injectable HAP/PDA thermosensitive pluronic F-127 (PF-127) hydrogel is proposed for peripheral nerve repair. We investigated the surface characteristics of HAP/PDA and evaluated biocompatibility, cellular proliferation, differentiation, and apoptosis in vitro. After injecting the hydrogel into the injured site of rats, we recorded the recovery of motor function and judged the degree of nerves through electrophysiological and morphological changes. The hydrogel was found to accelerate the nerve regeneration. Collectively, the HAP/PDA thermosensitive PF-127 hydrogel has potential in promoting sciatic nerve repair.

周围神经损伤(PNI)因其巨大的经济负担和高致残率而一直是一个亟待解决的问题。本文提出了一种可注射的 HAP/PDA 热敏性 pluronic F-127 (PF-127) 水凝胶,用于周围神经修复。我们研究了 HAP/PDA 的表面特性,并在体外评估了其生物相容性、细胞增殖、分化和凋亡情况。将水凝胶注入大鼠受伤部位后,我们记录了运动功能的恢复情况,并通过电生理学和形态学变化判断神经的程度。结果发现,水凝胶能加速神经再生。综上所述,HAP/PDA 热敏 PF-127 水凝胶具有促进坐骨神经修复的潜力。
{"title":"An injectable thermosensitive pluronic F127 loaded-nanohydroxyapatite / Polydopamine for promoting sciatic nerve repair after crush injury.","authors":"Liyuan Kang, Enlai Fang, Muge Gu, Yuanye Guan, Di Wu, Xiangqi Zhang, Wei Yu, Jiayu Wang, Zhen Zeng, Shengjing Xu, Yanjie He, Wei-En Yuan","doi":"10.1016/j.colsurfb.2024.114324","DOIUrl":"https://doi.org/10.1016/j.colsurfb.2024.114324","url":null,"abstract":"<p><p>Peripheral nerve injury (PNI) remains an urgent issue due to its huge financial burden and high rate of disability. Here, an injectable HAP/PDA thermosensitive pluronic F-127 (PF-127) hydrogel is proposed for peripheral nerve repair. We investigated the surface characteristics of HAP/PDA and evaluated biocompatibility, cellular proliferation, differentiation, and apoptosis in vitro. After injecting the hydrogel into the injured site of rats, we recorded the recovery of motor function and judged the degree of nerves through electrophysiological and morphological changes. The hydrogel was found to accelerate the nerve regeneration. Collectively, the HAP/PDA thermosensitive PF-127 hydrogel has potential in promoting sciatic nerve repair.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114324"},"PeriodicalIF":5.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced therapeutic intervention of curcumin loaded in exosomes derived from milk in alleviating retinal pigment epithelial cells damage. 牛奶外泌体中的姜黄素在减轻视网膜色素上皮细胞损伤方面具有更强的治疗干预作用。
IF 5.4 2区 医学 Q1 BIOPHYSICS Pub Date : 2024-10-16 DOI: 10.1016/j.colsurfb.2024.114325
Shida Wu, Kuiyou Wang, Qiyan Lv, Mingqian Tan

The macula, a small but highly important area in the retina, is crucial for healthy vision. Age-related macular degeneration is responsible for approximately 8.7 % of blindness worldwide, and affected individuals are burgeoning. The age-related macular degeneration is often triggered by oxidative stress and excessive inflammation that damage the retinal pigment epithelial cells in the macula. Curcumin, a potent antioxidant and anti-inflammatory carotenoid, is hampered by low compatibility and stability issues in food science. Innovatively, this study harnessed milk-derived exosomes as a novel delivery method yielding a curcumin-infused system (curcumin@exosome) to increase its biocompatibility and stability. This fusion not only curbed excessive reactive oxygen species but also neutralized H2O2-induced mitochondrial disruption in cellular models. It revitalized retinal pigment epithelial cells, reverting their function near to baseline in vitro. The curcumin@exosome outshined in subduing pro-inflammatory cytokines tumor necrosis factor-α and interleukin-1β induced by sodium iodate. This study illuminates that the curcumin@exosome is promise as a therapeutic intervention for retinal ailments marked by oxidative and inflammatory distress.

黄斑是视网膜上一个很小但非常重要的区域,对健康视力至关重要。全球约有 8.7% 的失明是由老年黄斑变性引起的,而且患病人数还在不断增加。与年龄相关的黄斑变性通常是由氧化应激和过度炎症引发的,而氧化应激和过度炎症会损伤黄斑中的视网膜色素上皮细胞。姜黄素是一种强效抗氧化剂和抗炎类胡萝卜素,但在食品科学中却存在相容性低和稳定性差的问题。本研究创新性地利用源自牛奶的外泌体作为一种新型递送方法,产生了一种注入姜黄素的系统(姜黄素@外泌体),以提高其生物相容性和稳定性。这种融合不仅能抑制过多的活性氧,还能中和 H2O2 在细胞模型中诱导的线粒体破坏。它使视网膜色素上皮细胞恢复活力,在体外使其功能接近基线。姜黄素@外泌体在抑制碘酸钠诱导的促炎细胞因子肿瘤坏死因子-α和白细胞介素-1β方面表现突出。这项研究表明,姜黄素@外泌体有望成为治疗氧化和炎症性视网膜疾病的干预措施。
{"title":"Enhanced therapeutic intervention of curcumin loaded in exosomes derived from milk in alleviating retinal pigment epithelial cells damage.","authors":"Shida Wu, Kuiyou Wang, Qiyan Lv, Mingqian Tan","doi":"10.1016/j.colsurfb.2024.114325","DOIUrl":"https://doi.org/10.1016/j.colsurfb.2024.114325","url":null,"abstract":"<p><p>The macula, a small but highly important area in the retina, is crucial for healthy vision. Age-related macular degeneration is responsible for approximately 8.7 % of blindness worldwide, and affected individuals are burgeoning. The age-related macular degeneration is often triggered by oxidative stress and excessive inflammation that damage the retinal pigment epithelial cells in the macula. Curcumin, a potent antioxidant and anti-inflammatory carotenoid, is hampered by low compatibility and stability issues in food science. Innovatively, this study harnessed milk-derived exosomes as a novel delivery method yielding a curcumin-infused system (curcumin@exosome) to increase its biocompatibility and stability. This fusion not only curbed excessive reactive oxygen species but also neutralized H<sub>2</sub>O<sub>2</sub>-induced mitochondrial disruption in cellular models. It revitalized retinal pigment epithelial cells, reverting their function near to baseline in vitro. The curcumin@exosome outshined in subduing pro-inflammatory cytokines tumor necrosis factor-α and interleukin-1β induced by sodium iodate. This study illuminates that the curcumin@exosome is promise as a therapeutic intervention for retinal ailments marked by oxidative and inflammatory distress.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114325"},"PeriodicalIF":5.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Colloids and Surfaces B: Biointerfaces
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1