首页 > 最新文献

Colloids and Surfaces B: Biointerfaces最新文献

英文 中文
Colon-targeted self-assembled nanoparticles loaded with berberine double salt ameliorate ulcerative colitis by improving intestinal mucosal barrier and gut microbiota. 负载小檗碱双盐的结肠靶向自组装纳米粒子可通过改善肠粘膜屏障和肠道微生物群来缓解溃疡性结肠炎。
IF 5.4 2区 医学 Q1 BIOPHYSICS Pub Date : 2024-11-02 DOI: 10.1016/j.colsurfb.2024.114353
Yalong Wang, Yan Chen, Hongjuan Zhang, Shihui Yu, Gang Yuan, Haiyan Hu

Ulcerative colitis (UC) is a chronic, recurrent inflammatory bowel disease marked by disturbances in intestinal mucosal barriers, persistent inflammation, oxidative stress, and dysbiosis of the intestinal microbiota. Traditional treatments often fail to adequately address these issues, primarily targeting inflammation. To address these limitations, this study developed an innovative approach using self-assembled nanoparticles for oral administration that target colonic inflammation. Berberine hydrochloride and ursodeoxycholic acid were combined to form a double salt (BeU), enhancing solubility and encapsulation. An amphiphilic polymer (FU-PA) was created by esterifying fucoidan with palmitic acid. FU-PA/BeU nanoparticles were prepared using the nanoprecipitation method and further encapsulated in acid-resistant sodium alginate microspheres (FU-PA/BeU NPs@MS) for targeted delivery to colonic lesions. The aggregation rate of nanoparticles with mucus was significantly reduced to 59 % of free berberine, while the apparent permeability coefficient increased by 2.4 times. In vitro, FU-PA/BeU NPs effectively targeted inflammatory macrophages, reducing IL-6 and NO levels while increasing IL-10 level (to 42.5 %, 26.8 %, and 539 % of the LPS-treated group, respectively). Additionally, the ABTS and DPPH radical scavenging capabilities of FU-PA/BeU NPs were 177.8 % and 151.7 % of BeU, respectively. In dextran sulphate sodium-induced UC mice, oral FU-PA/BeU NPs@MS significantly improved epithelial and mucosal barriers, restored gut microbiota diversity, reduced inflammation and oxidative stress. Remarkably, the mean colon length in the FU-PA/BeU NPs@MS group was 1.2 times longer than that in the sulfasalazine group. These dual-targeted FU-PA/BeU NPs@MS show great potential for UC treatment.

溃疡性结肠炎(UC)是一种慢性、复发性炎症性肠病,以肠粘膜屏障紊乱、持续炎症、氧化应激和肠道微生物群失调为特征。传统的治疗方法往往不能充分解决这些问题,主要是针对炎症。为了解决这些局限性,本研究开发了一种创新方法,利用自组装纳米颗粒口服给药,靶向结肠炎症。盐酸小檗碱和熊去氧胆酸结合形成双盐(BeU),提高了溶解性和包封性。通过将褐藻糖胶与棕榈酸酯化,制成了一种两亲性聚合物(FU-PA)。利用纳米沉淀法制备了FU-PA/BeU纳米颗粒,并进一步封装在耐酸性海藻酸钠微球(FU-PA/BeU NPs@MS)中,用于靶向递送至结肠病变部位。纳米颗粒与粘液的聚集率明显降低,仅为游离小檗碱的59%,而表观渗透系数则增加了2.4倍。在体外,FU-PA/BeU NPs 能有效靶向炎性巨噬细胞,降低 IL-6 和 NO 水平,同时提高 IL-10 水平(分别为 LPS 处理组的 42.5%、26.8% 和 539%)。此外,FU-PA/BeU NPs 的 ABTS 和 DPPH 自由基清除能力分别是 BeU 的 177.8% 和 151.7%。在葡聚糖硫酸钠诱导的 UC 小鼠中,口服 FU-PA/BeU NPs@MS 能显著改善上皮和粘膜屏障,恢复肠道微生物群的多样性,减少炎症和氧化应激。值得注意的是,FU-PA/BeU NPs@MS 组的平均结肠长度是磺胺沙拉嗪组的 1.2 倍。这些双靶向 FU-PA/BeU NPs@MS 显示出治疗 UC 的巨大潜力。
{"title":"Colon-targeted self-assembled nanoparticles loaded with berberine double salt ameliorate ulcerative colitis by improving intestinal mucosal barrier and gut microbiota.","authors":"Yalong Wang, Yan Chen, Hongjuan Zhang, Shihui Yu, Gang Yuan, Haiyan Hu","doi":"10.1016/j.colsurfb.2024.114353","DOIUrl":"https://doi.org/10.1016/j.colsurfb.2024.114353","url":null,"abstract":"<p><p>Ulcerative colitis (UC) is a chronic, recurrent inflammatory bowel disease marked by disturbances in intestinal mucosal barriers, persistent inflammation, oxidative stress, and dysbiosis of the intestinal microbiota. Traditional treatments often fail to adequately address these issues, primarily targeting inflammation. To address these limitations, this study developed an innovative approach using self-assembled nanoparticles for oral administration that target colonic inflammation. Berberine hydrochloride and ursodeoxycholic acid were combined to form a double salt (BeU), enhancing solubility and encapsulation. An amphiphilic polymer (FU-PA) was created by esterifying fucoidan with palmitic acid. FU-PA/BeU nanoparticles were prepared using the nanoprecipitation method and further encapsulated in acid-resistant sodium alginate microspheres (FU-PA/BeU NPs@MS) for targeted delivery to colonic lesions. The aggregation rate of nanoparticles with mucus was significantly reduced to 59 % of free berberine, while the apparent permeability coefficient increased by 2.4 times. In vitro, FU-PA/BeU NPs effectively targeted inflammatory macrophages, reducing IL-6 and NO levels while increasing IL-10 level (to 42.5 %, 26.8 %, and 539 % of the LPS-treated group, respectively). Additionally, the ABTS and DPPH radical scavenging capabilities of FU-PA/BeU NPs were 177.8 % and 151.7 % of BeU, respectively. In dextran sulphate sodium-induced UC mice, oral FU-PA/BeU NPs@MS significantly improved epithelial and mucosal barriers, restored gut microbiota diversity, reduced inflammation and oxidative stress. Remarkably, the mean colon length in the FU-PA/BeU NPs@MS group was 1.2 times longer than that in the sulfasalazine group. These dual-targeted FU-PA/BeU NPs@MS show great potential for UC treatment.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114353"},"PeriodicalIF":5.4,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface-induced self-assembly of peptides turns superhydrophobic surface of electrospun fibrous into superhydrophilic one. 表面诱导的多肽自组装将电纺纤维的超疏水表面变成超亲水表面。
IF 5.4 2区 医学 Q1 BIOPHYSICS Pub Date : 2024-11-01 DOI: 10.1016/j.colsurfb.2024.114350
Xuan Sun, Han Ren, Yue-Chan Cui, Qian Liu, Jie Li, Jie Gao

Current surface modification strategies for electrospun materials always require covalent conjugation technology, which is relatively inefficient and might damage the bioactivity and structure of peptides and proteins. Here we introduce the use of surface-induced self-assembly technology to modify electrospun materials, which is a simple but efficient noncovalent-based process. Results show that the peptide NapFFGRGD forms burr-like structures on the surface of PCL fibers, reducing the water contact angle of the fibers. Adjusting the peptide sequence and salt concentration affects the self-assembly and surface properties of modified PCL fibers. Additionally, we demonstrate the potential application of this surface modification technique for enhancing cellular responses in tissue engineering applications. The research provides valuable insights into the surface modification of PCL fibers and offers a new method for improving the biological compatibility of materials in tissue engineering.

目前的电纺材料表面改性策略总是需要共价连接技术,这种技术效率相对较低,而且可能会破坏肽和蛋白质的生物活性和结构。在这里,我们介绍使用表面诱导自组装技术来改性电纺材料,这是一种简单而高效的非共价过程。结果表明,多肽 NapFFGRGD 在 PCL 纤维表面形成了毛刺状结构,降低了纤维的水接触角。调整肽序列和盐浓度会影响改性 PCL 纤维的自组装和表面特性。此外,我们还展示了这种表面改性技术在组织工程应用中增强细胞反应的潜在应用。这项研究为 PCL 纤维的表面改性提供了宝贵的见解,并为改善组织工程中材料的生物相容性提供了一种新方法。
{"title":"Surface-induced self-assembly of peptides turns superhydrophobic surface of electrospun fibrous into superhydrophilic one.","authors":"Xuan Sun, Han Ren, Yue-Chan Cui, Qian Liu, Jie Li, Jie Gao","doi":"10.1016/j.colsurfb.2024.114350","DOIUrl":"https://doi.org/10.1016/j.colsurfb.2024.114350","url":null,"abstract":"<p><p>Current surface modification strategies for electrospun materials always require covalent conjugation technology, which is relatively inefficient and might damage the bioactivity and structure of peptides and proteins. Here we introduce the use of surface-induced self-assembly technology to modify electrospun materials, which is a simple but efficient noncovalent-based process. Results show that the peptide NapFFGRGD forms burr-like structures on the surface of PCL fibers, reducing the water contact angle of the fibers. Adjusting the peptide sequence and salt concentration affects the self-assembly and surface properties of modified PCL fibers. Additionally, we demonstrate the potential application of this surface modification technique for enhancing cellular responses in tissue engineering applications. The research provides valuable insights into the surface modification of PCL fibers and offers a new method for improving the biological compatibility of materials in tissue engineering.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114350"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa based on big data monitoring technology. 基于大数据监测技术的铜绿假单胞菌对 EH36 钢腐蚀行为的时间依赖性。
IF 5.4 2区 医学 Q1 BIOPHYSICS Pub Date : 2024-11-01 DOI: 10.1016/j.colsurfb.2024.114349
Shihang Lu, Nianting Xue, Mingxu Gao, Shiqiang Chen, Renzheng Zhu, Xinyu Wang, Guangzhou Liu, Wenwen Dou

Marine microbial corrosion poses a significant threat to the safe service of marine engineering equipment. Previous studies have often failed to thoroughly analyze the continuous and prolonged microbial corrosion process, resulting in an incomplete understanding of microbial corrosion mechanisms involved at various stages and the development of ineffective control strategies. This study employed a corrosion big data online real-time monitoring technique to investigate the time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa in aerobic environments over a 30-d incubation period. It was found that P. aeruginosa accelerated the corrosion of EH36 steel in the early stages by enhancing the cathodic oxygen reduction process. As oxygen levels declined, P. aeruginosa transitioned from aerobic to anaerobic respiration, promoting corrosion through biocatalytic nitrate reduction. In the later stages, the reduction in sessile cell counts, extreme low oxygen concentration, and dense surface film increased the charge transfer and film resistances, ultimately leading to corrosion inhibition. The weight loss and electrochemical data confirmed the effectiveness of the big data monitoring technique in investigating microbial corrosion, which provides new approaches for diagnosing and preventing microbial corrosion.

海洋微生物腐蚀对海洋工程设备的安全使用构成重大威胁。以往的研究往往未能深入分析持续、长时间的微生物腐蚀过程,导致对各阶段涉及的微生物腐蚀机理认识不全面,制定的控制策略效果不佳。本研究采用腐蚀大数据在线实时监测技术,研究了好氧环境中铜绿假单胞菌对 EH36 钢在 30 天培养期内随时间变化的腐蚀行为。研究发现,铜绿假单胞菌在早期阶段通过增强阴极氧还原过程加速了 EH36 钢的腐蚀。随着氧含量的下降,铜绿微囊藻从有氧呼吸过渡到厌氧呼吸,通过生物催化硝酸盐还原促进腐蚀。在后期阶段,无柄细胞数量的减少、极低的氧气浓度和致密的表面薄膜增加了电荷转移和薄膜电阻,最终导致腐蚀抑制。失重和电化学数据证实了大数据监测技术在研究微生物腐蚀方面的有效性,为诊断和预防微生物腐蚀提供了新方法。
{"title":"Time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa based on big data monitoring technology.","authors":"Shihang Lu, Nianting Xue, Mingxu Gao, Shiqiang Chen, Renzheng Zhu, Xinyu Wang, Guangzhou Liu, Wenwen Dou","doi":"10.1016/j.colsurfb.2024.114349","DOIUrl":"https://doi.org/10.1016/j.colsurfb.2024.114349","url":null,"abstract":"<p><p>Marine microbial corrosion poses a significant threat to the safe service of marine engineering equipment. Previous studies have often failed to thoroughly analyze the continuous and prolonged microbial corrosion process, resulting in an incomplete understanding of microbial corrosion mechanisms involved at various stages and the development of ineffective control strategies. This study employed a corrosion big data online real-time monitoring technique to investigate the time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa in aerobic environments over a 30-d incubation period. It was found that P. aeruginosa accelerated the corrosion of EH36 steel in the early stages by enhancing the cathodic oxygen reduction process. As oxygen levels declined, P. aeruginosa transitioned from aerobic to anaerobic respiration, promoting corrosion through biocatalytic nitrate reduction. In the later stages, the reduction in sessile cell counts, extreme low oxygen concentration, and dense surface film increased the charge transfer and film resistances, ultimately leading to corrosion inhibition. The weight loss and electrochemical data confirmed the effectiveness of the big data monitoring technique in investigating microbial corrosion, which provides new approaches for diagnosing and preventing microbial corrosion.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114349"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospun nanofibrous scaffolds reinforced with therapeutic lithium/manganese-doped calcium phosphates: Advancing skin cancer therapy through apoptosis induction. 用治疗性锂/锰掺杂磷酸钙增强的电纺纳米纤维支架:通过诱导细胞凋亡推进皮肤癌治疗。
IF 5.4 2区 医学 Q1 BIOPHYSICS Pub Date : 2024-10-31 DOI: 10.1016/j.colsurfb.2024.114348
Sara Gorgani, Farzad Kermani, Khatereh Sadeghzadeh, Arghavan Vojdani, Sara Hooshmand, Kobra Foroughi, Zoleikha Azari, Seyede Atefe Hosseini, Sahar Mollazadeh, Alireza Ebrahimzadeh Bideskan, Simin Nazarnezhad

In the current study we fabricated potent materials by incorporating therapeutic elements into calcium phosphates (CPs) to combat cancer. This involved synthesizing manganese (Mn)- and lithium (Li)-doped CPs and loading them into electrospun nanofibers (NFs) composed of chitosan (CS) and polyethylene oxide (PEO). The characterized CPs exhibited excellent properties, including a particle size of 47-75 nm, surface charge of -(30-56) mV, and specific surface area of 75-266 m2/g. The electrochemical analysis revealed that Mn and Mn/Li-doped CPs are promising for generating oxygen free radicals and H2O2, crucial for cancer therapy. Biological evaluation showcased the outstanding performance of the developed materials. MTT assay revealed a cytotoxic effect of nano-constructs on melanoma A375 cell line without adverse effects on normal L929 cells over 72 h. Annexin V/PI apoptosis assay indicated substantial apoptosis rates in A375 cells treated with PC-20 % (62.55 ± 4.59 %). The obtained data of qPCR analysis of pro-apoptotic and anti-apoptotic genes (P53, Bax, Bcl-2) in A375 cells treated with different CP nanoparticles (NPs) showed a significant increase in P53 and Bax gene expression, indicating high levels of A375 cell apoptosis. Additionally, the samples containing Mn ion exhibited high reactive oxygen species (ROS) generation. In conclusion, the fabricated NFs scaffolds hold promising potential for cancer therapy.

在目前的研究中,我们通过在磷酸钙(CPs)中加入治疗元素,制造出了有效的抗癌材料。这包括合成掺杂锰(Mn)和锂(Li)的磷酸钙,并将其装入由壳聚糖(CS)和聚环氧乙烷(PEO)组成的电纺纳米纤维(NF)中。所表征的氯化石蜡具有优异的性能,包括粒径为 47-75 nm,表面电荷为 -(30-56) mV,比表面积为 75-266 m2/g。电化学分析表明,锰和锰/锂掺杂的氯化石蜡有望产生氧自由基和 H2O2,这对癌症治疗至关重要。生物学评估显示了所开发材料的卓越性能。MTT 检测显示,纳米结构对黑色素瘤 A375 细胞株有细胞毒性作用,72 小时内对正常 L929 细胞无不良影响。Annexin V/PI 细胞凋亡检测表明,用 PC-20 % 处理的 A375 细胞凋亡率很高(62.55 ± 4.59 %)。不同 CP 纳米粒子(NPs)处理的 A375 细胞中促凋亡基因和抗凋亡基因(P53、Bax、Bcl-2)的 qPCR 分析数据显示,P53 和 Bax 基因表达量显著增加,表明 A375 细胞凋亡水平很高。此外,含有锰离子的样品表现出较高的活性氧(ROS)生成。总之,所制备的 NFs 支架在癌症治疗方面具有广阔的前景。
{"title":"Electrospun nanofibrous scaffolds reinforced with therapeutic lithium/manganese-doped calcium phosphates: Advancing skin cancer therapy through apoptosis induction.","authors":"Sara Gorgani, Farzad Kermani, Khatereh Sadeghzadeh, Arghavan Vojdani, Sara Hooshmand, Kobra Foroughi, Zoleikha Azari, Seyede Atefe Hosseini, Sahar Mollazadeh, Alireza Ebrahimzadeh Bideskan, Simin Nazarnezhad","doi":"10.1016/j.colsurfb.2024.114348","DOIUrl":"https://doi.org/10.1016/j.colsurfb.2024.114348","url":null,"abstract":"<p><p>In the current study we fabricated potent materials by incorporating therapeutic elements into calcium phosphates (CPs) to combat cancer. This involved synthesizing manganese (Mn)- and lithium (Li)-doped CPs and loading them into electrospun nanofibers (NFs) composed of chitosan (CS) and polyethylene oxide (PEO). The characterized CPs exhibited excellent properties, including a particle size of 47-75 nm, surface charge of -(30-56) mV, and specific surface area of 75-266 m<sup>2</sup>/g. The electrochemical analysis revealed that Mn and Mn/Li-doped CPs are promising for generating oxygen free radicals and H<sub>2</sub>O<sub>2</sub>, crucial for cancer therapy. Biological evaluation showcased the outstanding performance of the developed materials. MTT assay revealed a cytotoxic effect of nano-constructs on melanoma A375 cell line without adverse effects on normal L929 cells over 72 h. Annexin V/PI apoptosis assay indicated substantial apoptosis rates in A375 cells treated with PC-20 % (62.55 ± 4.59 %). The obtained data of qPCR analysis of pro-apoptotic and anti-apoptotic genes (P53, Bax, Bcl-2) in A375 cells treated with different CP nanoparticles (NPs) showed a significant increase in P53 and Bax gene expression, indicating high levels of A375 cell apoptosis. Additionally, the samples containing Mn ion exhibited high reactive oxygen species (ROS) generation. In conclusion, the fabricated NFs scaffolds hold promising potential for cancer therapy.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114348"},"PeriodicalIF":5.4,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nickel-doped cuprous oxide nanocauliflowers with specific peroxidase-like activity for sensitive detection of hydrogen peroxide and uric acid. 具有特异性过氧化物酶样活性的掺镍氧化亚铜纳米金花,用于灵敏检测过氧化氢和尿酸。
IF 5.4 2区 医学 Q1 BIOPHYSICS Pub Date : 2024-10-29 DOI: 10.1016/j.colsurfb.2024.114347
Rou Cheng, Zhengyue Xiao, Xiaomin Tang, Peng Xu, Ping Qiu

Copper-based nanomaterials have the properties of mimetic enzymes and can be used as excellent candidates for colorimetric sensing due to their environmental friendliness, low cost, and high abundance. In this paper, Ni-doped Cu2O nano cauliflower (Ni-Cu2O) was synthesized for the first time and applied to the detection of H2O2 and uric acid (UA) in human serum and urine. It was found that the proportion of Ni incorporation controls the morphology and the catalytic effect of Ni-Cu2O. The catalytic mechanism was studied by X-ray photoelectron spectroscopy, free radical capture experiments, photoluminescence spectroscopy, and steady-state kinetic analysis, which verified the redox reactions involving electron transfer and active substances. The results showed that Ni-Cu2O could catalyze the formation of reactive oxygen species (•OH, O2•-, 1O2, h+) from H2O2, which could oxidize 3,3', 5,5'-tetramethylbenzidine (TMB) to oxTMB, and the color changed from colorless to blue. The Michaelis-Menten constant (Km) and the maximum initial velocity (Vmax) of Ni-Cu2O were 1.8 mM and 15.2×10-8 M/s, respectively. Based on the excellent peroxidase-like (POD) activity of Ni-Cu2O, a colorimetric sensing platform combined with TMB was proposed to sensitively detect H2O2 and UA in a wide range, and the detection limits were as low as 0.17 μM and 0.22 μM, respectively. This study creates a platform for using the Cu-based cauliflowers as a biosensor to detect UA in the medical and biomedicine fields.

铜基纳米材料具有模拟酶的特性,因其环保、低成本和高丰度,可作为比色传感的理想候选材料。本文首次合成了掺镍的 Cu2O 纳米花椰菜(Ni-Cu2O),并将其应用于人体血清和尿液中 H2O2 和尿酸(UA)的检测。研究发现,镍的掺入比例控制着 Ni-Cu2O 的形态和催化效果。通过 X 射线光电子能谱、自由基捕获实验、光致发光光谱和稳态动力学分析研究了催化机理,验证了涉及电子转移和活性物质的氧化还原反应。结果表明,Ni-Cu2O 可催化 H2O2 生成活性氧(-OH、O2--、1O2、h+),从而将 3,3',5,5'-四甲基联苯胺(TMB)氧化为 oxTMB,颜色由无色变为蓝色。Ni-Cu2O 的迈克尔斯-门顿常数(Km)和最大初速度(Vmax)分别为 1.8 mM 和 15.2×10-8 M/s。基于 Ni-Cu2O 卓越的过氧化物酶样(POD)活性,提出了一种结合 TMB 的比色传感平台,可在宽范围内灵敏检测 H2O2 和 UA,检测限分别低至 0.17 μM 和 0.22 μM。这项研究为在医疗和生物医学领域使用铜基菜花作为生物传感器检测 UA 搭建了一个平台。
{"title":"Nickel-doped cuprous oxide nanocauliflowers with specific peroxidase-like activity for sensitive detection of hydrogen peroxide and uric acid.","authors":"Rou Cheng, Zhengyue Xiao, Xiaomin Tang, Peng Xu, Ping Qiu","doi":"10.1016/j.colsurfb.2024.114347","DOIUrl":"https://doi.org/10.1016/j.colsurfb.2024.114347","url":null,"abstract":"<p><p>Copper-based nanomaterials have the properties of mimetic enzymes and can be used as excellent candidates for colorimetric sensing due to their environmental friendliness, low cost, and high abundance. In this paper, Ni-doped Cu<sub>2</sub>O nano cauliflower (Ni-Cu<sub>2</sub>O) was synthesized for the first time and applied to the detection of H<sub>2</sub>O<sub>2</sub> and uric acid (UA) in human serum and urine. It was found that the proportion of Ni incorporation controls the morphology and the catalytic effect of Ni-Cu<sub>2</sub>O. The catalytic mechanism was studied by X-ray photoelectron spectroscopy, free radical capture experiments, photoluminescence spectroscopy, and steady-state kinetic analysis, which verified the redox reactions involving electron transfer and active substances. The results showed that Ni-Cu<sub>2</sub>O could catalyze the formation of reactive oxygen species (•OH, O<sub>2</sub><sup>•-</sup>, <sub>1</sub>O<sup>2</sup>, h<sup>+</sup>) from H<sub>2</sub>O<sub>2</sub>, which could oxidize 3,3', 5,5'-tetramethylbenzidine (TMB) to oxTMB, and the color changed from colorless to blue. The Michaelis-Menten constant (K<sub>m</sub>) and the maximum initial velocity (V<sub>max</sub>) of Ni-Cu<sub>2</sub>O were 1.8 mM and 15.2×10<sup>-8</sup> M/s, respectively. Based on the excellent peroxidase-like (POD) activity of Ni-Cu<sub>2</sub>O, a colorimetric sensing platform combined with TMB was proposed to sensitively detect H<sub>2</sub>O<sub>2</sub> and UA in a wide range, and the detection limits were as low as 0.17 μM and 0.22 μM, respectively. This study creates a platform for using the Cu-based cauliflowers as a biosensor to detect UA in the medical and biomedicine fields.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114347"},"PeriodicalIF":5.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional injectable oxidized sodium alginate/carboxymethyl chitosan hydrogel for rapid hemostasis. 用于快速止血的多功能注射用氧化海藻酸钠/羧甲基壳聚糖水凝胶。
IF 5.4 2区 医学 Q1 BIOPHYSICS Pub Date : 2024-10-29 DOI: 10.1016/j.colsurfb.2024.114346
Xuanyu Liu, Junjie Hu, Yinchun Hu, Yeying Liu, Yan Wei, Di Huang

Uncontrolled bleeding from incompressible or irregularly shaped wounds is a major factor in the death of people in the battlefield or surgery process. Ideal rapid hemostatic materials should have the performance of rapid hemostasis and at the same time can be applied to a variety of complex wound trauma types, in addition, excellent antimicrobial properties, adhesion, biocompatibility, degradation, and the non-toxicity of degradation products are also necessary, but there are fewer hemostatic materials that meet these requirements. Herein, we prepared an injectable hemostatic hydrogel based on the natural products sodium alginate (SA) and carboxymethyl chitosan (CMC). Oxidized sodium alginate (OSA) was prepared by the oxidation reaction of NaIO4 with SA, and OSA with aldehyde group was mixed with CMC with amino group to rapidly form an in situ injectable hemostatic hydrogel (OSA/CMC) by the Schiff base reaction. OSA/CMC hydrogel exhibited excellent antimicrobial and adhesion properties by the Schiff base reaction. In addition, OSA/CMC hydrogel directly activate the endogenous coagulation pathway through the synergistic effect of OSA, CMC to enhance the hemostatic effect. The results of in vivo hemostasis study showed that OSA/CMC hydrogel significantly accelerated hemostasis and reduced blood loss in liver hemorrhage model and tail amputation model. Therefore, OSA/CMC hydrogel is expected to be a potential material in the direction of rapid clinical hemostasis due to its good adhesion properties, antimicrobial properties, biocompatibility, blood compatibility, and efficient rapid hemostasis.

在战场或手术过程中,不可压缩或形状不规则的伤口无法控制的出血是导致人员死亡的主要因素。理想的快速止血材料应具有快速止血的性能,同时能适用于各种复杂的创伤类型,此外还需要具有优良的抗菌性、粘附性、生物相容性、降解性和降解产物的无毒性,但目前能满足这些要求的止血材料较少。在此,我们以天然产物海藻酸钠(SA)和羧甲基壳聚糖(CMC)为基础制备了一种可注射止血水凝胶。利用 NaIO4 与海藻酸钠的氧化反应制备氧化海藻酸钠(OSA),并将带有醛基的 OSA 与带有氨基的 CMC 混合,通过席夫碱反应快速形成原位注射止血水凝胶(OSA/CMC)。通过席夫碱反应,OSA/CMC 水凝胶具有优异的抗菌性和粘附性。此外,OSA/CMC 水凝胶还能通过 OSA、CMC 的协同作用直接激活内源性凝血途径,从而增强止血效果。体内止血研究结果表明,OSA/CMC 水凝胶在肝脏出血模型和断尾模型中能明显加快止血速度,减少失血量。因此,OSA/CMC 水凝胶具有良好的粘附性、抗菌性、生物相容性、血液相容性和高效快速止血等特性,有望成为临床快速止血方向的潜在材料。
{"title":"Multifunctional injectable oxidized sodium alginate/carboxymethyl chitosan hydrogel for rapid hemostasis.","authors":"Xuanyu Liu, Junjie Hu, Yinchun Hu, Yeying Liu, Yan Wei, Di Huang","doi":"10.1016/j.colsurfb.2024.114346","DOIUrl":"https://doi.org/10.1016/j.colsurfb.2024.114346","url":null,"abstract":"<p><p>Uncontrolled bleeding from incompressible or irregularly shaped wounds is a major factor in the death of people in the battlefield or surgery process. Ideal rapid hemostatic materials should have the performance of rapid hemostasis and at the same time can be applied to a variety of complex wound trauma types, in addition, excellent antimicrobial properties, adhesion, biocompatibility, degradation, and the non-toxicity of degradation products are also necessary, but there are fewer hemostatic materials that meet these requirements. Herein, we prepared an injectable hemostatic hydrogel based on the natural products sodium alginate (SA) and carboxymethyl chitosan (CMC). Oxidized sodium alginate (OSA) was prepared by the oxidation reaction of NaIO<sub>4</sub> with SA, and OSA with aldehyde group was mixed with CMC with amino group to rapidly form an in situ injectable hemostatic hydrogel (OSA/CMC) by the Schiff base reaction. OSA/CMC hydrogel exhibited excellent antimicrobial and adhesion properties by the Schiff base reaction. In addition, OSA/CMC hydrogel directly activate the endogenous coagulation pathway through the synergistic effect of OSA, CMC to enhance the hemostatic effect. The results of in vivo hemostasis study showed that OSA/CMC hydrogel significantly accelerated hemostasis and reduced blood loss in liver hemorrhage model and tail amputation model. Therefore, OSA/CMC hydrogel is expected to be a potential material in the direction of rapid clinical hemostasis due to its good adhesion properties, antimicrobial properties, biocompatibility, blood compatibility, and efficient rapid hemostasis.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114346"},"PeriodicalIF":5.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imparting insoluble-soluble property to Cyt c by immobilizing Cyt c in UCST-pH dual responsive polymer for highly sensitive detection of phenol. 通过将 Cyt c 固定在 UCST-pH 双响应聚合物中,为 Cyt c 赋予不溶性-溶性特性,从而实现对苯酚的高灵敏度检测。
IF 5.4 2区 医学 Q1 BIOPHYSICS Pub Date : 2024-10-29 DOI: 10.1016/j.colsurfb.2024.114344
Yuanyuan Wang, Weimin Guan, Yulin Yang, Huiling Lan, Yu Wang, Yun Wang, Juan Han, Lei Wang

Immobilization of enzymes in porous organic framework (POF) materials is popular strategy to stabilize enzymes. For such solid enzyme catalysis system, improving the catalytic efficiency is challenging due to the diffusion resistance from solid-liquid interface and inner pores. Here, UCST-pH dual responsive polymeric carrier (PEG-b-PAAm-b-P(GMA-co-AAc)) was synthesized to immobilize cytochrome c (Cyt c), which impart the reversibly insoluble-soluble property to the immobilized Cyt c. The PEG-b-PAAm-b-P(GMA-co-AAc) could serve as an insoluble-soluble matrix to fast and efficiently immobilize Cyt c via covalent attachment, achieving a remarkable 92 % loading efficiency within just 120 min. The obtained insoluble PEG-b-PAAm-b-P(GMA-co-AAc)-Cyt c micelles exhibited an improvement in thermal, pH stability and reusability. The completely soluble PEG-b-PAAm-b-P(GMA-co-AAc)-Cyt c conjugates accelerated substrate diffusion and then enhanced the catalytic efficiency. These excellent advantages led to low detection limit (1.99 μM), lower than the presently reported biosensors based on enzyme mimics in the colorimetric detection of phenol. This UCST-pH dual responsive window presents a new platform to efficiently control the immobilization and release of enzymes, which will achieve excellent stability and catalytic efficiency.

将酶固定在多孔有机框架(POF)材料中是稳定酶的常用策略。对于这种固态酶催化系统来说,由于固液界面和内部孔隙的扩散阻力,提高催化效率具有挑战性。本文合成了 UCST-pH 双响应聚合物载体(PEG-b-PAAm-b-P(GMA-co-AAc))来固定细胞色素 c(Cyt c),该载体赋予了被固定的 Cyt c 可逆的不溶性。所获得的不溶性 PEG-b-PAAm-b-P(GMA-co-AAc)-Cyt c 胶束在热稳定性、pH 稳定性和可重复使用性方面均有改善。完全可溶的 PEG-b-PAAm-b-P(GMA-co-AAc)-Cyt c 共轭物加速了底物的扩散,从而提高了催化效率。这些卓越的优点使其检测限很低(1.99 μM),低于目前报道的基于酶模拟物的苯酚比色检测生物传感器。这种 UCST-pH 双响应窗口为有效控制酶的固定和释放提供了一个新的平台,可实现出色的稳定性和催化效率。
{"title":"Imparting insoluble-soluble property to Cyt c by immobilizing Cyt c in UCST-pH dual responsive polymer for highly sensitive detection of phenol.","authors":"Yuanyuan Wang, Weimin Guan, Yulin Yang, Huiling Lan, Yu Wang, Yun Wang, Juan Han, Lei Wang","doi":"10.1016/j.colsurfb.2024.114344","DOIUrl":"https://doi.org/10.1016/j.colsurfb.2024.114344","url":null,"abstract":"<p><p>Immobilization of enzymes in porous organic framework (POF) materials is popular strategy to stabilize enzymes. For such solid enzyme catalysis system, improving the catalytic efficiency is challenging due to the diffusion resistance from solid-liquid interface and inner pores. Here, UCST-pH dual responsive polymeric carrier (PEG-b-PAAm-b-P(GMA-co-AAc)) was synthesized to immobilize cytochrome c (Cyt c), which impart the reversibly insoluble-soluble property to the immobilized Cyt c. The PEG-b-PAAm-b-P(GMA-co-AAc) could serve as an insoluble-soluble matrix to fast and efficiently immobilize Cyt c via covalent attachment, achieving a remarkable 92 % loading efficiency within just 120 min. The obtained insoluble PEG-b-PAAm-b-P(GMA-co-AAc)-Cyt c micelles exhibited an improvement in thermal, pH stability and reusability. The completely soluble PEG-b-PAAm-b-P(GMA-co-AAc)-Cyt c conjugates accelerated substrate diffusion and then enhanced the catalytic efficiency. These excellent advantages led to low detection limit (1.99 μM), lower than the presently reported biosensors based on enzyme mimics in the colorimetric detection of phenol. This UCST-pH dual responsive window presents a new platform to efficiently control the immobilization and release of enzymes, which will achieve excellent stability and catalytic efficiency.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114344"},"PeriodicalIF":5.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Translocation mechanism of anticancer drugs through membrane with the assistance of graphene quantum dot. 石墨烯量子点辅助下抗癌药物的膜转移机制。
IF 5.4 2区 医学 Q1 BIOPHYSICS Pub Date : 2024-10-28 DOI: 10.1016/j.colsurfb.2024.114340
Luxi Weng, Hao Ren, Ruru Xu, Jiahao Xu, Jun Lin, Jia-Wei Shen, Yongke Zheng

In recent years, as a new type of quasi-zero-dimensional nanomaterials, graphene quantum dots (GQDs) have shown excellent performance in advanced drug targeted delivery and controlled release. In this work, the delivery process of model drugs translocating into POPC lipid membrane with the assistance of GQDs was investigated via molecular dynamics (MD) simulation. Our simulation results demonstrated that a single doxorubicin (DOX) or deoxyadenine (DA) molecule is difficult to penetrate into the cell membrane. GQD7 could form sandwich-like structure with DOX and assist DOX to enter into the POPC membrane. However, due to the weak interaction with DA, both GQD7 and GQD19 can not assist DA translocating the POPC membrane in the limited MD simulation time. The drug delivery process for DOX could be divided into two steps: 1. GQDs and DOX aggregated into a cluster; 2. the aggregates enter into the POPC membrane. In all our simulation systems, if GQDs loaded with model drugs and entered the cell membrane, it had little effect on the cell membrane structure, and the cell membrane could maintain high integrity and stability. These results may promote the molecular design and application of GQD-based drug delivery systems.

近年来,石墨烯量子点(GQDs)作为一种新型的准零维纳米材料,在先进的药物靶向递送和控释中表现出了优异的性能。本研究通过分子动力学(MD)模拟研究了模型药物在石墨烯量子点辅助下转运到 POPC 脂膜中的给药过程。模拟结果表明,单个多柔比星(DOX)或脱氧腺苷(DA)分子很难穿透细胞膜。GQD7能与DOX形成类似三明治的结构,帮助DOX进入POPC膜。然而,由于 GQD7 与 DA 的相互作用较弱,在有限的 MD 模拟时间内,GQD7 和 GQD19 都无法帮助 DA 转位至 POPC 膜。DOX 的给药过程可分为两个步骤:1.GQDs 和 DOX 聚集成团;2.聚集体进入 POPC 膜。在我们所有的模拟系统中,GQDs负载模型药物并进入细胞膜后,对细胞膜结构的影响很小,细胞膜能保持较高的完整性和稳定性。这些结果可能会促进基于 GQD 的药物递送系统的分子设计和应用。
{"title":"Translocation mechanism of anticancer drugs through membrane with the assistance of graphene quantum dot.","authors":"Luxi Weng, Hao Ren, Ruru Xu, Jiahao Xu, Jun Lin, Jia-Wei Shen, Yongke Zheng","doi":"10.1016/j.colsurfb.2024.114340","DOIUrl":"https://doi.org/10.1016/j.colsurfb.2024.114340","url":null,"abstract":"<p><p>In recent years, as a new type of quasi-zero-dimensional nanomaterials, graphene quantum dots (GQDs) have shown excellent performance in advanced drug targeted delivery and controlled release. In this work, the delivery process of model drugs translocating into POPC lipid membrane with the assistance of GQDs was investigated via molecular dynamics (MD) simulation. Our simulation results demonstrated that a single doxorubicin (DOX) or deoxyadenine (DA) molecule is difficult to penetrate into the cell membrane. GQD7 could form sandwich-like structure with DOX and assist DOX to enter into the POPC membrane. However, due to the weak interaction with DA, both GQD7 and GQD19 can not assist DA translocating the POPC membrane in the limited MD simulation time. The drug delivery process for DOX could be divided into two steps: 1. GQDs and DOX aggregated into a cluster; 2. the aggregates enter into the POPC membrane. In all our simulation systems, if GQDs loaded with model drugs and entered the cell membrane, it had little effect on the cell membrane structure, and the cell membrane could maintain high integrity and stability. These results may promote the molecular design and application of GQD-based drug delivery systems.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114340"},"PeriodicalIF":5.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioactive dextran-based scaffolds from emulsion templates co-stabilized by poly(lactic-co-glycolic acid) nanocarriers. 由聚(乳酸-共聚乙醇酸)纳米载体共同稳定的乳液模板制成的生物活性葡聚糖基支架。
IF 5.4 2区 医学 Q1 BIOPHYSICS Pub Date : 2024-10-28 DOI: 10.1016/j.colsurfb.2024.114342
Maude Ducrocq, Arianna Rinaldi, Boris Halgand, Joëlle Veziers, Pierre Guihard, Frank Boury, Antoine Debuigne

Porous polymer scaffolds are widely investigated as temporary implants in regenerative medicine to repair damaged tissues. While biocompatibility, degradability, mechanical properties comparable to the native tissues and controlled porosity are prerequisite for these scaffolds, their loading with pharmaceutical or biological active ingredients such as growth factors, in particular proteins, opens up new perspective for tissue engineering applications. This implies the development of scaffold loading strategies that minimize the risk of protein denaturation and allow to control their release profile. This work reports on a straightforward method for preparing bioactive dextran-based scaffolds from high internal phase emulsion (HIPE) templates containing poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) serving both as co-stabilizers for the emulsion and nanocarriers for drug or therapeutic protein models. Scaffold synthesis are achieved by photocuring of methacrylated dextran located in the external phase of a HIPE stabilized by the NPs in combination or not with a non-ionic surfactant. Fluorescent labelling of the NPs highlights their integration in the scaffold. The introduction of NPs, and even more so when combined with a surfactant, increases the stability and mechanical properties of the scaffolds. Cell viability tests demonstrate the non-toxic nature of these NPs-loaded scaffolds. The study of the release of a model protein from the scaffold, namely lysozyme, shows that its encapsulation in nanoparticles decreases the release rate and provides additional control over the release profile.

多孔聚合物支架作为再生医学中修复受损组织的临时植入物受到广泛研究。虽然生物相容性、可降解性、与原生组织相媲美的机械性能以及可控的孔隙率是这些支架的先决条件,但在支架中添加药物或生物活性成分(如生长因子,特别是蛋白质)为组织工程应用开辟了新的前景。这就意味着需要制定支架装载策略,最大限度地降低蛋白质变性的风险,并控制其释放情况。本研究报告介绍了一种简单易行的方法,利用含有聚乳酸-共聚乙醇酸(PLGA)纳米颗粒(NPs)的高内相乳液(HIPE)模板制备生物活性葡聚糖基支架,这些纳米颗粒既是乳液的辅助稳定剂,也是药物或治疗蛋白质模型的纳米载体。支架的合成是通过光固化位于 HIPE 外相的甲基丙烯酸葡聚糖来实现的,HIPE 由 NPs 与非离子表面活性剂结合或不结合稳定。对 NPs 进行荧光标记可突出显示它们与支架的结合。引入 NPs(与表面活性剂结合使用时效果更佳)可提高支架的稳定性和机械性能。细胞存活率测试证明了这些负载 NPs 的支架的无毒性。对支架释放溶菌酶模型蛋白质的研究表明,将溶菌酶封装在纳米颗粒中可降低释放率,并对释放曲线进行额外控制。
{"title":"Bioactive dextran-based scaffolds from emulsion templates co-stabilized by poly(lactic-co-glycolic acid) nanocarriers.","authors":"Maude Ducrocq, Arianna Rinaldi, Boris Halgand, Joëlle Veziers, Pierre Guihard, Frank Boury, Antoine Debuigne","doi":"10.1016/j.colsurfb.2024.114342","DOIUrl":"https://doi.org/10.1016/j.colsurfb.2024.114342","url":null,"abstract":"<p><p>Porous polymer scaffolds are widely investigated as temporary implants in regenerative medicine to repair damaged tissues. While biocompatibility, degradability, mechanical properties comparable to the native tissues and controlled porosity are prerequisite for these scaffolds, their loading with pharmaceutical or biological active ingredients such as growth factors, in particular proteins, opens up new perspective for tissue engineering applications. This implies the development of scaffold loading strategies that minimize the risk of protein denaturation and allow to control their release profile. This work reports on a straightforward method for preparing bioactive dextran-based scaffolds from high internal phase emulsion (HIPE) templates containing poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) serving both as co-stabilizers for the emulsion and nanocarriers for drug or therapeutic protein models. Scaffold synthesis are achieved by photocuring of methacrylated dextran located in the external phase of a HIPE stabilized by the NPs in combination or not with a non-ionic surfactant. Fluorescent labelling of the NPs highlights their integration in the scaffold. The introduction of NPs, and even more so when combined with a surfactant, increases the stability and mechanical properties of the scaffolds. Cell viability tests demonstrate the non-toxic nature of these NPs-loaded scaffolds. The study of the release of a model protein from the scaffold, namely lysozyme, shows that its encapsulation in nanoparticles decreases the release rate and provides additional control over the release profile.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114342"},"PeriodicalIF":5.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Naringenin loaded fucoidan/polyvinylpyrrolidone nanoparticles protect against folic acid induced acute kidney injury in vitro and in vivo. 负载柚皮苷的褐藻糖胶/聚乙烯吡咯烷酮纳米颗粒在体内外保护叶酸诱导的急性肾损伤。
IF 5.4 2区 医学 Q1 BIOPHYSICS Pub Date : 2024-10-28 DOI: 10.1016/j.colsurfb.2024.114343
Tao Jiang, Feikai Zhu, Xintao Gao, Xiaochen Wu, Wenyong Zhu, Chuanlong Guo

Acute kidney injury (AKI) is a common clinical problem with no effective treatment. Excessive folic acid (FA) induced kidney tubular injury is characterized by oxidative stress and inflammation, and is a common model of AKI. The excellent pharmacological activity of naringenin (NAR) makes it a potential agent for treating AKI, but its poor solubility limits its application. This study prepared NAR loaded nanoparticles (FU/PVP-NAR) using fucoidan (FU) and polyvinylpyrrolidone (PVP) as carriers, with a particle size of 23.96 ± 2.77 nm. In vitro studies showed that FU/PVP-NAR inhibited excessive FA induced proliferation inhibition, accumulation of reactive oxygen species (ROS), and disruption of mitochondrial membrane potential (MMP) of HK-2 cells. Further confirmed that FU/PVP-NAR inhibited FA induced DNA damage and Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) activation. In vivo studies showed that excessive FA induced AKI features in mice, such as elevated serum creatinine (SCr) and blood urea nitrogen (BUN) levels, accompanied by pathological damage to kidney tissues. The above AKI characteristics induced by FA were alleviated by FU/PVP-NAR. FU/PVP-NAR also inhibited the decrease in antioxidant enzyme levels in kidney tissues induced by FA. Furthermore, in vivo mechanism studies indicated that FU/PVP-NAR inhibited the release of inflammatory factors by inhibiting DNA damage-cGAS-STING pathway. In summary, this study provided the possibility for FU/PVP-NAR as a potential candidate drug for treating FA induced AKI.

急性肾损伤(AKI)是一种常见的临床问题,目前尚无有效的治疗方法。过量叶酸(FA)诱导的肾小管损伤以氧化应激和炎症为特征,是一种常见的 AKI 模型。柚皮苷(NAR)具有出色的药理活性,是治疗 AKI 的潜在药物,但其溶解性较差,限制了其应用。本研究以褐藻糖胶(FU)和聚乙烯吡咯烷酮(PVP)为载体制备了负载柚皮苷的纳米颗粒(FU/PVP-NAR),粒径为 23.96 ± 2.77 nm。体外研究表明,FU/PVP-NAR 可抑制过量 FA 引起的 HK-2 细胞增殖抑制、活性氧(ROS)积累和线粒体膜电位(MMP)破坏。进一步证实,FU/PVP-NAR 可抑制 FA 诱导的 DNA 损伤和环 GMP-AMP 合成酶(cGAS)-干扰素基因刺激器(STING)的激活。体内研究表明,过量 FA 会诱导小鼠出现 AKI 特征,如血清肌酐(SCr)和血尿素氮(BUN)水平升高,并伴有肾组织的病理损伤。FU/PVP-NAR 可减轻 FA 诱导的上述 AKI 特征。FU/PVP-NAR 还能抑制 FA 引起的肾组织中抗氧化酶水平的下降。此外,体内机制研究表明,FU/PVP-NAR 可通过抑制 DNA 损伤-GAS-STING 通路来抑制炎症因子的释放。总之,该研究为 FU/PVP-NAR 作为治疗 FA 引起的 AKI 的潜在候选药物提供了可能。
{"title":"Naringenin loaded fucoidan/polyvinylpyrrolidone nanoparticles protect against folic acid induced acute kidney injury in vitro and in vivo.","authors":"Tao Jiang, Feikai Zhu, Xintao Gao, Xiaochen Wu, Wenyong Zhu, Chuanlong Guo","doi":"10.1016/j.colsurfb.2024.114343","DOIUrl":"https://doi.org/10.1016/j.colsurfb.2024.114343","url":null,"abstract":"<p><p>Acute kidney injury (AKI) is a common clinical problem with no effective treatment. Excessive folic acid (FA) induced kidney tubular injury is characterized by oxidative stress and inflammation, and is a common model of AKI. The excellent pharmacological activity of naringenin (NAR) makes it a potential agent for treating AKI, but its poor solubility limits its application. This study prepared NAR loaded nanoparticles (FU/PVP-NAR) using fucoidan (FU) and polyvinylpyrrolidone (PVP) as carriers, with a particle size of 23.96 ± 2.77 nm. In vitro studies showed that FU/PVP-NAR inhibited excessive FA induced proliferation inhibition, accumulation of reactive oxygen species (ROS), and disruption of mitochondrial membrane potential (MMP) of HK-2 cells. Further confirmed that FU/PVP-NAR inhibited FA induced DNA damage and Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) activation. In vivo studies showed that excessive FA induced AKI features in mice, such as elevated serum creatinine (SCr) and blood urea nitrogen (BUN) levels, accompanied by pathological damage to kidney tissues. The above AKI characteristics induced by FA were alleviated by FU/PVP-NAR. FU/PVP-NAR also inhibited the decrease in antioxidant enzyme levels in kidney tissues induced by FA. Furthermore, in vivo mechanism studies indicated that FU/PVP-NAR inhibited the release of inflammatory factors by inhibiting DNA damage-cGAS-STING pathway. In summary, this study provided the possibility for FU/PVP-NAR as a potential candidate drug for treating FA induced AKI.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114343"},"PeriodicalIF":5.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Colloids and Surfaces B: Biointerfaces
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1