首页 > 最新文献

Software Impacts最新文献

英文 中文
Python code for modeling ARIMA-LSTM architecture with random forest algorithm 用随机森林算法模拟 ARIMA-LSTM 架构的 Python 代码
IF 2.1 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-05-01 DOI: 10.1016/j.simpa.2024.100650
Achal Lama , Soumik Ray , Tufleuddin Biswas , Lakshmi Narasimhaiah , Yashpal Singh Raghav , Promil Kapoor , K.N. Singh , Pradeep Mishra , Bishal Gurung

Over conventional statistical models, machine learning mechanisms are establishing themselves as a potential area for modeling and forecasting complex time series. Because it can integrate several forecasting methodologies’ capabilities, hybrid time series models are fundamental in data science. Here, we present a Python script that builds a combined architecture of the ARIMA-LSTM model with random forest technique to generate a high-accuracy prediction. This script is a step-by-step process to create a statistical and then machine learning model through statistical assumption.

与传统的统计模型相比,机器学习机制正在成为复杂时间序列建模和预测的潜在领域。由于混合时间序列模型可以整合多种预测方法的能力,因此是数据科学的基础。在此,我们介绍一个 Python 脚本,它将 ARIMA-LSTM 模型与随机森林技术相结合,从而生成高精度的预测结果。该脚本是一个通过统计假设逐步创建统计模型和机器学习模型的过程。
{"title":"Python code for modeling ARIMA-LSTM architecture with random forest algorithm","authors":"Achal Lama ,&nbsp;Soumik Ray ,&nbsp;Tufleuddin Biswas ,&nbsp;Lakshmi Narasimhaiah ,&nbsp;Yashpal Singh Raghav ,&nbsp;Promil Kapoor ,&nbsp;K.N. Singh ,&nbsp;Pradeep Mishra ,&nbsp;Bishal Gurung","doi":"10.1016/j.simpa.2024.100650","DOIUrl":"https://doi.org/10.1016/j.simpa.2024.100650","url":null,"abstract":"<div><p>Over conventional statistical models, machine learning mechanisms are establishing themselves as a potential area for modeling and forecasting complex time series. Because it can integrate several forecasting methodologies’ capabilities, hybrid time series models are fundamental in data science. Here, we present a Python script that builds a combined architecture of the ARIMA-LSTM model with random forest technique to generate a high-accuracy prediction. This script is a step-by-step process to create a statistical and then machine learning model through statistical assumption.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100650"},"PeriodicalIF":2.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000381/pdfft?md5=9264013d1e325932be9536da359a19f0&pid=1-s2.0-S2665963824000381-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140880144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CUDA code to generate computational models and predict mechanical properties for metallic surface nanocoatings 生成计算模型并预测金属表面纳米涂层机械性能的 CUDA 代码
IF 2.1 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-05-01 DOI: 10.1016/j.simpa.2024.100645
M. Bedolla-Hernández , F.J. Sánchez-Ruiz , G. Rosano-Ortega , J. Bedolla-Hernández , P.S. Schabes-Retchkiman , C.A. Vega-Lebrún , E. Vargas-Viveros

The article presents an open-access code, written in CUDA® and C++ programming language, applicable for generating computational models of nanostructured surface coatings deposited by electrodeposition. The code uses the Schrödinger equation, energy potentials, and electrochemistry as a theoretical basis to determine the deposition and electrodeposition energies, allowing the prediction of the formation and growth of these coatings. Likewise, the parameter variation enabled within the code provides for determining the main electrodeposition parameters (voltage, current, concentration, and residence time) for experimental depositions. The code can be easily implemented for any metallic coating-substrate arrangement where the filler material is nanomaterials.

文章介绍了一种用 CUDA® 和 C++ 编程语言编写的开放存取代码,适用于生成通过电沉积沉积的纳米结构表面涂层的计算模型。该代码以薛定谔方程、能势和电化学为理论基础,确定沉积和电沉积能量,从而预测这些涂层的形成和生长。同样,代码中启用的参数变化功能可确定实验沉积的主要电沉积参数(电压、电流、浓度和停留时间)。该代码可轻松应用于填充材料为纳米材料的任何金属涂层-基底排列。
{"title":"CUDA code to generate computational models and predict mechanical properties for metallic surface nanocoatings","authors":"M. Bedolla-Hernández ,&nbsp;F.J. Sánchez-Ruiz ,&nbsp;G. Rosano-Ortega ,&nbsp;J. Bedolla-Hernández ,&nbsp;P.S. Schabes-Retchkiman ,&nbsp;C.A. Vega-Lebrún ,&nbsp;E. Vargas-Viveros","doi":"10.1016/j.simpa.2024.100645","DOIUrl":"10.1016/j.simpa.2024.100645","url":null,"abstract":"<div><p>The article presents an open-access code, written in CUDA® and C++ programming language, applicable for generating computational models of nanostructured surface coatings deposited by electrodeposition. The code uses the Schrödinger equation, energy potentials, and electrochemistry as a theoretical basis to determine the deposition and electrodeposition energies, allowing the prediction of the formation and growth of these coatings. Likewise, the parameter variation enabled within the code provides for determining the main electrodeposition parameters (voltage, current, concentration, and residence time) for experimental depositions. The code can be easily implemented for any metallic coating-substrate arrangement where the filler material is nanomaterials.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100645"},"PeriodicalIF":2.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000332/pdfft?md5=004a6a432718618fdad0d7c64c55e6a0&pid=1-s2.0-S2665963824000332-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140792812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A two-tiered framework for anomaly classification in IoT networks utilizing CNN-BiLSTM model 利用 CNN-BiLSTM 模型进行物联网网络异常分类的双层框架
IF 2.1 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-05-01 DOI: 10.1016/j.simpa.2024.100646
Yue Guan, Morteza Noferesti, Naser Ezzati-Jivan

The paper introduces ACS-IoT, an Anomaly Classification System for IoT networks, structured as a two-tiered framework. In the first, it employs a decision tree classifier for anomaly detection. In the second, a CNN-BiLSTM model is utilized for more profound analysis and classification of anomaly types. To address data imbalance, SMOTE is used, and feature selection is enhanced with PSO. The approach showcases strong practical applicability in real-world industrial settings, achieving an accuracy of 88%, precision of 89%, recall of 88%, and F1-score of 88% for multi-class classification, surpassing other machine learning approaches by at least 6% in all metrics.

本文介绍了 ACS-IoT,这是一个用于物联网网络的异常分类系统,采用两层框架结构。首先,它采用决策树分类器进行异常检测。其次,利用 CNN-BiLSTM 模型对异常类型进行更深入的分析和分类。为解决数据不平衡问题,使用了 SMOTE,并通过 PSO 加强了特征选择。该方法在现实世界的工业环境中具有很强的实用性,多类分类的准确率达到 88%,精确率达到 89%,召回率达到 88%,F1 分数达到 88%,在所有指标上都比其他机器学习方法高出至少 6%。
{"title":"A two-tiered framework for anomaly classification in IoT networks utilizing CNN-BiLSTM model","authors":"Yue Guan,&nbsp;Morteza Noferesti,&nbsp;Naser Ezzati-Jivan","doi":"10.1016/j.simpa.2024.100646","DOIUrl":"https://doi.org/10.1016/j.simpa.2024.100646","url":null,"abstract":"<div><p>The paper introduces ACS-IoT, an Anomaly Classification System for IoT networks, structured as a two-tiered framework. In the first, it employs a decision tree classifier for anomaly detection. In the second, a CNN-BiLSTM model is utilized for more profound analysis and classification of anomaly types. To address data imbalance, SMOTE is used, and feature selection is enhanced with PSO. The approach showcases strong practical applicability in real-world industrial settings, achieving an accuracy of 88%, precision of 89%, recall of 88%, and F1-score of 88% for multi-class classification, surpassing other machine learning approaches by at least 6% in all metrics.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100646"},"PeriodicalIF":2.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000344/pdfft?md5=15788ce74802898e90065f9e6dee2a0b&pid=1-s2.0-S2665963824000344-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140825075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SPARC v2.0.0: Spin-orbit coupling, dispersion interactions, and advanced exchange–correlation functionals SPARC v2.0.0:自旋轨道耦合、弥散相互作用和高级交换相关函数
IF 2.1 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-05-01 DOI: 10.1016/j.simpa.2024.100649
Boqin Zhang , Xin Jing , Qimen Xu , Shashikant Kumar , Abhiraj Sharma , Lucas Erlandson , Sushree Jagriti Sahoo , Edmond Chow , Andrew J. Medford , John E. Pask , Phanish Suryanarayana

SPARC is an accurate, efficient, and scalable real-space electronic structure code for performing ab initio Kohn–Sham density functional theory calculations. Version 2.0.0 of the software provides increased efficiency, and includes spin–orbit coupling, dispersion interactions, and advanced semilocal as well as hybrid exchange–correlation functionals, where it outperforms state-of-the-art planewave codes by an order of magnitude and more, with increasing advantages as the number of processors is increased. These new features further expand the range of physical applications amenable to first principles investigation.

SPARC 是一种精确、高效、可扩展的实空间电子结构代码,用于进行非初始 Kohn-Sham 密度泛函理论计算。该软件的 2.0.0 版提高了效率,并包括自旋轨道耦合、色散相互作用和先进的半局部以及混合交换相关函数,其性能比最先进的平面波代码高出一个数量级甚至更多,而且随着处理器数量的增加,优势也越来越大。这些新功能进一步扩大了第一性原理研究的物理应用范围。
{"title":"SPARC v2.0.0: Spin-orbit coupling, dispersion interactions, and advanced exchange–correlation functionals","authors":"Boqin Zhang ,&nbsp;Xin Jing ,&nbsp;Qimen Xu ,&nbsp;Shashikant Kumar ,&nbsp;Abhiraj Sharma ,&nbsp;Lucas Erlandson ,&nbsp;Sushree Jagriti Sahoo ,&nbsp;Edmond Chow ,&nbsp;Andrew J. Medford ,&nbsp;John E. Pask ,&nbsp;Phanish Suryanarayana","doi":"10.1016/j.simpa.2024.100649","DOIUrl":"https://doi.org/10.1016/j.simpa.2024.100649","url":null,"abstract":"<div><p>SPARC is an accurate, efficient, and scalable real-space electronic structure code for performing ab initio Kohn–Sham density functional theory calculations. Version 2.0.0 of the software provides increased efficiency, and includes spin–orbit coupling, dispersion interactions, and advanced semilocal as well as hybrid exchange–correlation functionals, where it outperforms state-of-the-art planewave codes by an order of magnitude and more, with increasing advantages as the number of processors is increased. These new features further expand the range of physical applications amenable to first principles investigation.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100649"},"PeriodicalIF":2.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266596382400037X/pdfft?md5=53d045bf43f5e203fcd1b6e064635d7f&pid=1-s2.0-S266596382400037X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140880142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MI-NiDIA: A scalable framework for modeling flocculation kinetics and floc evolution in water treatment MI-NiDIA:水处理中絮凝动力学和絮凝体演变建模的可扩展框架
IF 2.1 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-05-01 DOI: 10.1016/j.simpa.2024.100662
Abayomi O. Bankole , Rodrigo Moruzzi , Rogério G. Negri , Cassio M. Oishi , Afolashade R. Bankole , Abraham O. James

This paper presents a scalable framework for modeling floc evolution and flocculation kinetics in water treatment. Unlike the existing methods that subjects Non-intrusive Dynamic Image Analysis (NiDIA) data to complex mathematical concepts, the proposed software devised a scaling concept for NiDIA data and designed an effective algorithm with the capability to predict varying floc lengths and the underlying kinetics under a broad flocculation conditions (Gf and Tf). Technically, the designed machine-intelligence framework (MI-NiDIA) involves data preprocessing, automatic parameter selection, validation and prediction of floc length evolution with metrics. For instance, MI-NiDIA-MLP recorded R2 of 0.95–1.0 for varying floc length at Gf60s1.

本文提出了一个可扩展的框架,用于模拟水处理过程中的絮凝物演变和絮凝动力学。与现有的将非侵入式动态图像分析(NiDIA)数据应用于复杂数学概念的方法不同,本文提出的软件为 NiDIA 数据设计了一个缩放概念,并设计了一种有效的算法,能够预测不同絮凝体长度以及在广泛絮凝条件(Gf 和 Tf)下的基本动力学。从技术上讲,所设计的机器智能框架(MI-NiDIA)包括数据预处理、自动参数选择、验证以及用指标预测絮凝体长度的演变。例如,在 Gf60s-1 条件下,MI-NiDIA-MLP 对不同絮体长度的 R2 值为 0.95-1.0。
{"title":"MI-NiDIA: A scalable framework for modeling flocculation kinetics and floc evolution in water treatment","authors":"Abayomi O. Bankole ,&nbsp;Rodrigo Moruzzi ,&nbsp;Rogério G. Negri ,&nbsp;Cassio M. Oishi ,&nbsp;Afolashade R. Bankole ,&nbsp;Abraham O. James","doi":"10.1016/j.simpa.2024.100662","DOIUrl":"10.1016/j.simpa.2024.100662","url":null,"abstract":"<div><p>This paper presents a scalable framework for modeling floc evolution and flocculation kinetics in water treatment. Unlike the existing methods that subjects Non-intrusive Dynamic Image Analysis (NiDIA) data to complex mathematical concepts, the proposed software devised a scaling concept for NiDIA data and designed an effective algorithm with the capability to predict varying floc lengths and the underlying kinetics under a broad flocculation conditions (<span><math><mrow><mtext>G</mtext><mi>f</mi></mrow></math></span> and <span><math><mrow><mtext>T</mtext><mi>f</mi></mrow></math></span>). Technically, the designed machine-intelligence framework (MI-NiDIA) involves data preprocessing, automatic parameter selection, validation and prediction of floc length evolution with metrics. For instance, MI-NiDIA-MLP recorded <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of 0.95–1.0 for varying floc length at <span><math><mrow><mtext>G</mtext><mi>f</mi><mspace></mspace><mn>60</mn><mspace></mspace><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100662"},"PeriodicalIF":2.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000502/pdfft?md5=6a51bd0a25608cc2c5543ea48ccd7c45&pid=1-s2.0-S2665963824000502-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141057190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Raster Forge: Interactive raster manipulation library and GUI for Python Raster Forge:适用于 Python 的交互式光栅操作库和图形用户界面
IF 2.1 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-05-01 DOI: 10.1016/j.simpa.2024.100657
Afonso Oliveira , Nuno Fachada , João P. Matos-Carvalho

Raster Forge is a Python library and graphical user interface for raster data manipulation and analysis. The tool is focused on remote sensing applications, particularly in wildfire management. It allows users to import, visualize, and process raster layers for tasks such as image compositing or topographical analysis. For wildfire management, it generates fuel maps using predefined models. Its impact extends from disaster management to hydrological modeling, agriculture, and environmental monitoring. Raster Forge can be a valuable asset for geoscientists and researchers who rely on raster data analysis, enhancing geospatial data processing and visualization across various disciplines.

Raster Forge 是一个用于光栅数据处理和分析的 Python 库和图形用户界面。该工具专注于遥感应用,尤其是野火管理。它允许用户导入、可视化和处理光栅图层,以完成图像合成或地形分析等任务。在野火管理方面,它可使用预定义模型生成燃料地图。它的影响范围从灾害管理扩展到水文建模、农业和环境监测。对于依赖光栅数据分析的地球科学家和研究人员来说,Raster Forge 是一笔宝贵的财富,它能增强各学科的地理空间数据处理和可视化。
{"title":"Raster Forge: Interactive raster manipulation library and GUI for Python","authors":"Afonso Oliveira ,&nbsp;Nuno Fachada ,&nbsp;João P. Matos-Carvalho","doi":"10.1016/j.simpa.2024.100657","DOIUrl":"https://doi.org/10.1016/j.simpa.2024.100657","url":null,"abstract":"<div><p>Raster Forge is a Python library and graphical user interface for raster data manipulation and analysis. The tool is focused on remote sensing applications, particularly in wildfire management. It allows users to import, visualize, and process raster layers for tasks such as image compositing or topographical analysis. For wildfire management, it generates fuel maps using predefined models. Its impact extends from disaster management to hydrological modeling, agriculture, and environmental monitoring. Raster Forge can be a valuable asset for geoscientists and researchers who rely on raster data analysis, enhancing geospatial data processing and visualization across various disciplines.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100657"},"PeriodicalIF":2.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000459/pdfft?md5=19ec98729016d05ea702f9bf456c6771&pid=1-s2.0-S2665963824000459-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141078593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MR-LEAP: Mixed-Reality Learning Environment for Aspirational Programmers MR-LEAP:面向有抱负的程序员的混合现实学习环境
IF 2.1 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-04-24 DOI: 10.1016/j.simpa.2024.100648
Santiago Schez-Sobrino, Francisco M. García, Javier A. Albusac, Carlos Glez-Morcillo, Jose J. Castro-Schez, David Vallejo

This paper presents MR-LEAP (Mixed-Reality Learning Environment for Aspirational Programmers), a framework developed for learning programming through Mixed Reality and gamification mechanics. MR-LEAP’s architecture is designed to facilitate the understanding of basic programming concepts while allowing the gradual incorporation of more complex concepts. The framework provides a simple visual level editor. MR-LEAP is supported by the Mixed Reality Toolkit framework to promote portability to new Mixed Reality devices. Our goal is to facilitate programming education using Mixed Reality technology. MR-LEAP has already been used in both research and educational.

本文介绍了 MR-LEAP(面向有抱负的程序员的混合现实学习环境),这是一个通过混合现实和游戏化机制学习编程的框架。MR-LEAP 的架构旨在促进对基本编程概念的理解,同时允许逐步融入更复杂的概念。该框架提供了一个简单的可视化关卡编辑器。MR-LEAP 由混合现实工具包框架支持,可移植到新的混合现实设备。我们的目标是利用混合现实技术促进编程教育。MR-LEAP 已被用于研究和教育领域。
{"title":"MR-LEAP: Mixed-Reality Learning Environment for Aspirational Programmers","authors":"Santiago Schez-Sobrino,&nbsp;Francisco M. García,&nbsp;Javier A. Albusac,&nbsp;Carlos Glez-Morcillo,&nbsp;Jose J. Castro-Schez,&nbsp;David Vallejo","doi":"10.1016/j.simpa.2024.100648","DOIUrl":"10.1016/j.simpa.2024.100648","url":null,"abstract":"<div><p>This paper presents MR-LEAP (Mixed-Reality Learning Environment for Aspirational Programmers), a framework developed for learning programming through Mixed Reality and gamification mechanics. MR-LEAP’s architecture is designed to facilitate the understanding of basic programming concepts while allowing the gradual incorporation of more complex concepts. The framework provides a simple visual level editor. MR-LEAP is supported by the Mixed Reality Toolkit framework to promote portability to new Mixed Reality devices. Our goal is to facilitate programming education using Mixed Reality technology. MR-LEAP has already been used in both research and educational.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100648"},"PeriodicalIF":2.1,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000368/pdfft?md5=d27f1ed20fa0c4c08cfa35701088f9b6&pid=1-s2.0-S2665963824000368-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140780103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
alPCA: An automatic software for the selection and combination of forecasts in monthly series alPCA:用于选择和组合月序列预测的自动软件
IF 2.1 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-04-09 DOI: 10.1016/j.simpa.2024.100644
Carlos García-Aroca, Ma. Asunción Martínez-Mayoral, Javier Morales-Socuéllamos, José Vicente Segura-Heras

alPCA is a software coded in R and designed to automatically combine predictions from a collection of individual forecasting methods that integrate it. It employs three categories of weights derived from the PCA scores, and decision rules to determine the optimal combination of these methods. alPCA serves as an automated component within the artificial intelligence toolkit for monthly time series processing with the objective of obtaining the best forecast.

alPCA 是一款用 R 代码编写的软件,旨在自动合并来自一系列单独预测方法的预测结果,并将其整合在一起。alPCA 是人工智能工具包中的一个自动组件,用于月度时间序列处理,目的是获得最佳预测。
{"title":"alPCA: An automatic software for the selection and combination of forecasts in monthly series","authors":"Carlos García-Aroca,&nbsp;Ma. Asunción Martínez-Mayoral,&nbsp;Javier Morales-Socuéllamos,&nbsp;José Vicente Segura-Heras","doi":"10.1016/j.simpa.2024.100644","DOIUrl":"https://doi.org/10.1016/j.simpa.2024.100644","url":null,"abstract":"<div><p>alPCA is a software coded in R and designed to automatically combine predictions from a collection of individual forecasting methods that integrate it. It employs three categories of weights derived from the PCA scores, and decision rules to determine the optimal combination of these methods. alPCA serves as an automated component within the artificial intelligence toolkit for monthly time series processing with the objective of obtaining the best forecast.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100644"},"PeriodicalIF":2.1,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000320/pdfft?md5=7b465d8975048ac2c3a64c040483d585&pid=1-s2.0-S2665963824000320-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140543273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RAW-HF framework to monitor and allocate resources in real time for database management systems 实时监控和分配数据库管理系统资源的 RAW-HF 框架
IF 2.1 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-04-08 DOI: 10.1016/j.simpa.2024.100643
Mayank Patel , Minal Bhise

Most websites and applications are hosted on a public or private cloud. In-house deployments also require dealing with system resources. Researchers have started considering resources utilized by application workloads to estimate and reduce application running costs. RAW-HF (Resource Availability & Workload aware Hybrid Framework) framework tries to analyze two types of resource utilization; (1) System Resource Utilization and (2) Resource Utilized by each Query task. The RAW-HF code tries to provide a lightweight solution to monitor & analyze the system and DBMS process resource utilization. It filters the required data in real time to find available resources and allocate query-specific resources based on their complexity by utilizing less than 2% CPU resources.

大多数网站和应用程序都托管在公共云或私有云上。内部部署也需要处理系统资源。研究人员已开始考虑应用程序工作负载所使用的资源,以估算和降低应用程序的运行成本。RAW-HF(Resource Availability & Workload aware Hybrid Framework)框架试图分析两种类型的资源利用率:(1)系统资源利用率和(2)每个查询任务所利用的资源。RAW-HF 代码试图提供一种轻量级解决方案来监控和分析系统及 DBMS 流程的资源利用率。它实时过滤所需数据,查找可用资源,并根据查询的复杂程度分配特定资源,占用的 CPU 资源不到 2%。
{"title":"RAW-HF framework to monitor and allocate resources in real time for database management systems","authors":"Mayank Patel ,&nbsp;Minal Bhise","doi":"10.1016/j.simpa.2024.100643","DOIUrl":"https://doi.org/10.1016/j.simpa.2024.100643","url":null,"abstract":"<div><p>Most websites and applications are hosted on a public or private cloud. In-house deployments also require dealing with system resources. Researchers have started considering resources utilized by application workloads to estimate and reduce application running costs. RAW-HF (Resource Availability &amp; Workload aware Hybrid Framework) framework tries to analyze two types of resource utilization; (1) System Resource Utilization and (2) Resource Utilized by each Query task. The RAW-HF code tries to provide a lightweight solution to monitor &amp; analyze the system and DBMS process resource utilization. It filters the required data in real time to find available resources and allocate query-specific resources based on their complexity by utilizing less than 2% CPU resources.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100643"},"PeriodicalIF":2.1,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000319/pdfft?md5=cf5181eea96c0c7d3f6ac66866a6077c&pid=1-s2.0-S2665963824000319-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140605813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OptDNN: Automatic deep neural networks optimizer for edge computing OptDNN:用于边缘计算的深度神经网络自动优化器
IF 2.1 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-04-05 DOI: 10.1016/j.simpa.2024.100641
Luca Giovannesi, Gabriele Proietti Mattia, Roberto Beraldi

DNNs are widely used for complex tasks like image and signal processing, and they are in increasing demand for implementation on Internet of Things (IoT) devices. For these devices, optimizing DNN models is a necessary task. Generally, standard optimization approaches require specialists to manually fine-tune hyper-parameters to find a good trade-off between efficiency and accuracy. In this paper, we propose OptDNN, a software that employs innovative and automatic approaches to determine optimal hyper-parameters for pruning, clustering, and quantization. The models optimized by OptDNN have a smaller memory footprint, faster inference time, and a similar accuracy to the original models.

DNN 被广泛应用于图像和信号处理等复杂任务,在物联网(IoT)设备上的应用需求也日益增加。对于这些设备来说,优化 DNN 模型是一项必要的任务。一般来说,标准优化方法需要专家手动微调超参数,以便在效率和准确性之间找到良好的平衡。在本文中,我们提出了 OptDNN 软件,它采用创新的自动方法来确定剪枝、聚类和量化的最佳超参数。经过 OptDNN 优化的模型内存占用更小,推理时间更快,精度与原始模型相似。
{"title":"OptDNN: Automatic deep neural networks optimizer for edge computing","authors":"Luca Giovannesi,&nbsp;Gabriele Proietti Mattia,&nbsp;Roberto Beraldi","doi":"10.1016/j.simpa.2024.100641","DOIUrl":"https://doi.org/10.1016/j.simpa.2024.100641","url":null,"abstract":"<div><p>DNNs are widely used for complex tasks like image and signal processing, and they are in increasing demand for implementation on Internet of Things (IoT) devices. For these devices, optimizing DNN models is a necessary task. Generally, standard optimization approaches require specialists to manually fine-tune hyper-parameters to find a good trade-off between efficiency and accuracy. In this paper, we propose OptDNN, a software that employs innovative and automatic approaches to determine optimal hyper-parameters for pruning, clustering, and quantization. The models optimized by OptDNN have a smaller memory footprint, faster inference time, and a similar accuracy to the original models.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100641"},"PeriodicalIF":2.1,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000290/pdfft?md5=9408edc33cd6715a12afa1a8f06365fc&pid=1-s2.0-S2665963824000290-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140543982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Software Impacts
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1